Abstract
In the field of cryptography, the focus is often placed on security in a mathematical or information-theoretic sense; for example, cipher security is typically evaluated by the difficulty of deducing the plaintext from the ciphertext without knowledge of the key. However, once these cryptographic schemes are implemented in electronic devices, another class of attack presents itself. Side-channel attacks take advantage of the side effects of performing a computation, such as power consumption or electromagnetic emissions, to extract information outside of normal means. In particular, these side-channels can reveal parts of the internal state of a computation. This is important because intermediate values occurring during computation are typically considered implementation details, invisible to a potential attacker. If this information is revealed, then the assumptions of a non-side-channel-aware security analysis based only on inputs and outputs will no longer hold, potentially enabling an attack. This work tests the effectiveness of power-based side-channel attacks against MK-3, a customizable authenticated encryption scheme developed in a collaboration between RIT and L3Harris Technologies. Using an FPGA platform, Correlation Power Analysis (CPA) is performed on several different implementations of the algorithm to evaluate their resistance to power side-channel attacks. This method does not allow the key to be recovered directly; instead, an equivalent 512-bit intermediate state value is targeted. By applying two sequential stages of analysis, a total of between 216 and 322 bits are recovered, dependent on customization parameters. If a 128-bit key is used, then this technique has no benefit to an attacker over brute-forcing the key itself; however, in the case of a 256-bit key, CPA may provide up to a 66-bit advantage. In order to completely defend MK-3 against this type of attack, several potential countermeasures are discussed at the implementation, design, and overall system levels.
Library of Congress Subject Headings
Data encryption (Computer science)--Security measures; Cyberterrorism--Prevention
Publication Date
12-13-2022
Document Type
Thesis
Student Type
Graduate
Degree Name
Computer Engineering (MS)
Department, Program, or Center
Computer Engineering (KGCOE)
Advisor
Marcin Lukowiak
Advisor/Committee Member
Corey Merkel
Advisor/Committee Member
Stanislaw Radziszowski
Recommended Citation
Fabinski, Peter, "Side-Channel Attacks and Countermeasures for the MK-3 Authenticated Encryption Scheme" (2022). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/11349
Campus
RIT – Main Campus
Plan Codes
CMPE-MS