Abstract

The unprecedented COVID-19 pandemic highlights the need for portable, sensitive, and accurate biosensors. Here, a novel biosensor that takes advantage of localized surface plasmonic resonance (LSPR) through unique nanoscale geometries was fabricated for sensitive detection of biomarkers. The formation of an adaptable system capable of combining with other sensing methods, such as CRISPR-Cas13a assays, allowed for the detection of specific targets to be realized. In this system, streptavidin-coated gold nanoparticles (GNPs) hybridize with single-stranded RNA (ssRNA) before binding to the surface of gold nanomushrooms (GNMs). Through LSPR enhancement, this binding event produces a red shift in the resonance wavelength peak due to changes in the refractive index surrounding the GNMs. Various concentrations, shapes, and diameters of nanoparticles were investigated to determine the greatest possible resonant shift. Through this work, the use of streptavidin-coated 40 nm AuNPs produced the greatest redshift at ~30 nm for concentrations greater than 500 pM. Packaged in a microfluidic cell, the device offers a novel strategy for the detection of biomarkers with minimal sample preparation and rapid, label-free detection. Expanding this process to include CRISPR-Cas13a proteins incorporates the advantage of collateral cleavage which further enhances the sensitivity of LSPR, a critical and far-reaching bottleneck specifically of concern in label-free biosensing.

Library of Congress Subject Headings

Surface plasmon resonance; Biosensors; Nanoelectronics--Materials

Publication Date

7-7-2022

Document Type

Thesis

Student Type

Graduate

Degree Name

Materials Science and Engineering (MS)

Department, Program, or Center

School of Chemistry and Materials Science (COS)

Advisor

Ke Du

Advisor/Committee Member

Nikhil Bhalla

Advisor/Committee Member

Parsian Mohseni

Campus

RIT – Main Campus

Plan Codes

MSENG-MS

Share

COinS