Abstract
Humans continually learn and adapt to new knowledge and environments throughout their lifetimes. Rarely does learning new information cause humans to catastrophically forget previous knowledge. While deep neural networks (DNNs) now rival human performance on several supervised machine perception tasks, when updated on changing data distributions, they catastrophically forget previous knowledge. Enabling DNNs to learn new information over time opens the door for new applications such as self-driving cars that adapt to seasonal changes or smartphones that adapt to changing user preferences. In this dissertation, we propose new methods and experimental paradigms for efficiently training continual DNNs without forgetting. We then apply these methods to several visual and multi-modal perception tasks including image classification, visual question answering, analogical reasoning, and attribute and relationship prediction in visual scenes.
Library of Congress Subject Headings
Deep learning (Machine learning)--Technological innovations; Neural networks (Computer science)
Publication Date
3-21-2022
Document Type
Dissertation
Student Type
Graduate
Degree Name
Imaging Science (Ph.D.)
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
Christopher Kanan
Advisor/Committee Member
Kara Maki
Advisor/Committee Member
Andreas Savakis
Recommended Citation
Hayes, Tyler L., "Towards Efficient Lifelong Machine Learning in Deep Neural Networks" (2022). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/11115
Campus
RIT – Main Campus
Plan Codes
IMGS-PHD