Abstract

Electron-beam physical vapor deposition was completed to fabricate thin-film yttrium coated 6061 aluminum substrates. Subsequently, a consistent specimen fabrication method was developed for thin film-elastomer junction with high interfacial bond strength. Utilizing inherent hydroxyl (-OH) groups on the according thin film, surface treatments were completed to form interfacial silanol bonds that acted to imbue thin-film yttrium with reactive sites for urea and hindered urea bonds. A new polymer was prepared based on polyethylene glycol soft segments. Urea-silanol and hindered urea-silanol moieties are the distinguishing characteristic of fabricated control and experimental specimens, respectively. High interfacial bond strength has resulted in an inability to perform successful mechanical testing following ASTM D903. Other results support the ability of hindered urea-silanol moiety scission and reformation at elevated temperatures, unlike urea-silanol moieties. Characterizing the precise nature of moieties distinguishing control and experimental specimens has been established; optimization of these interfacial bonds is the basis of future work.

Library of Congress Subject Headings

Thin films--Materials; Yttrium; Hydroxylation; Surface chemistry

Publication Date

8-18-2020

Document Type

Thesis

Student Type

Graduate

Degree Name

Manufacturing and Mechanical Systems Integration (MS)

Department, Program, or Center

Manufacturing and Mechanical Engineering Technology (CET)

Advisor

Mark Olles

Advisor/Committee Member

Christopher Lewis

Campus

RIT – Main Campus

Plan Codes

MMSI-MS

Share

COinS