Abstract
In this work, we discuss two implementations that predict antipodal grasps for novel objects: A deep Q-learning approach and a Generative Residual Convolutional Neural Network approach. We present a deep reinforcement learning based method to solve the problem of robotic grasping using visio-motor feedback. The use of a deep learning based approach reduces the complexity caused by the use of hand-designed features. Our method uses an off-policy reinforcement learning framework to learn the grasping policy. We use the double deep Q-learning framework along with a novel Grasp-Q-Network to output grasp probabilities used to learn grasps that maximize the pick success. We propose a visual servoing mechanism that uses a multi-view camera setup that observes the scene which contains the objects of interest. We performed experiments using a Baxter Gazebo simulated environment as well as on the actual robot. The results show that our proposed method outperforms the baseline Q-learning framework and increases grasping accuracy by adapting a multi-view model in comparison to a single-view model. The second method tackles the problem of generating antipodal robotic grasps for unknown objects from an n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (20ms). We evaluate the proposed model architecture on standard dataset and previously unseen household objects. We achieved state-of-the-art accuracy of 97.7% on Cornell grasp dataset. We also demonstrate a 93.5% grasp success rate on previously unseen real-world objects.
Library of Congress Subject Headings
Robots--Motion; Machine learning; Neural networks (Computer science); Convolutions (Mathematics)
Publication Date
8-2020
Document Type
Thesis
Student Type
Graduate
Degree Name
Electrical Engineering (MS)
Department, Program, or Center
Electrical Engineering (KGCOE)
Advisor
Ferat Sahin
Advisor/Committee Member
Gill Tsouri
Advisor/Committee Member
Jamison Heard
Recommended Citation
Joshi, Shirin, "Antipodal Robotic Grasping using Deep Learning" (2020). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/10517
Campus
RIT – Main Campus
Plan Codes
EEEE-MS