Description
In this paper, we propose and compare two spectral angle based approaches for spatial-spectral classification. Our methods use the spectral angle to generate unary energies in a grid-structured Markov random field defined over the pixel labels of a hyperspectral image. The first approach is to use the exponential spectral angle mapper (ESAM) kernel/covariance function, a spectral angle based function, with the support vector machine and the Gaussian process classifier. The second approach is to directly use the minimum spectral angle between the test pixel and the training pixels as the unary energy. We compare the proposed methods with the state-of-the-art Markov random field methods that use support vector machines and Gaussian processes with squared exponential kernel/covariance function. In our experiments with two datasets, it is seen that using minimum spectral angle as unary energy produces better or comparable results to the existing methods at a smaller running time.
Date of creation, presentation, or exhibit
7-31-2016
Document Type
Conference Paper
Department, Program, or Center
Electrical Engineering (KGCOE)
Recommended Citation
U.B. Gewali, S.T. Monteiro, "Spectral Angle Based Unary Energy Functions for Spatial-Spectral Hyperspectral Classification Using Markov Random Fields," 8th IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, August 2016. arXiv:1610.06985v1
Campus
RIT – Main Campus
Comments
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.