Description
Untethered, underwater sensors, deployed for event detection and tracking and operating in an autonomous mode will be required to self-assemble into a configuration, which optimizes their coverage, effectively minimizing the probability that an event in the target area goes undetected. This organized, cooperative, and autonomous, spreading-out of the sensors is complicated due to sensors localized communication. A given sensor will not in general have position and velocity information for all sensors, but only for those in its communication area. A possible approach to this problem, motivated by an evolutionary optimization technique, Particle Swarm Optimization (PSO) is proposed and extended in a novel way. A distributed version of PSO is developed. A distributed version of PSO is explored using experimental fitness to address the coverage problem in a two dimensional area.
Date of creation, presentation, or exhibit
9-1-2004
Document Type
Conference Paper
Department, Program, or Center
Microelectronic Engineering (KGCOE)
Recommended Citation
Jason C. Tillett, Raghuveer Rao, Ferat Sahin, "A distributed evolutionary algorithmic approach to the coverage problem for submersible sensors", Proc. SPIE 5417, Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications VI, (1 September 2004); doi: 10.1117/12.541664; https://doi.org/10.1117/12.541664
Campus
RIT – Main Campus
Comments
Copyright 2004 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.