Description
We present preliminary results from self-consistent, high resolution direct N-body simulations of massive black hole binaries in mergers of galactic nuclei. The dynamics of the black hole binary includes the full Post-Newtonian corrections (up to 2.5PN) to its equations of motion. We show that massive black holes starting at separations of 100 pc can evolve down to gravitational-wave-induced coalescence in less than a Hubble time. The binaries, in our models, often form with very high eccentricity and, as a result, reach separations of 50 Schwarzschild radius with eccentricities which are clearly distinct from zero — even though gravitational wave emission damps the eccentricity during the inspiral. These deviations from exact circular orbits, at such small separations, may have important consequences for LISA data analysis.
Date of creation, presentation, or exhibit
2009
Document Type
Conference Paper
Department, Program, or Center
School of Physics and Astronomy (COS)
Recommended Citation
Miguel Preto et al 2009 J. Phys.: Conf. Ser. 154 012049
Campus
RIT – Main Campus
Comments
Proceedings from the 7th LISA Symposium, Barcelona, 16-20 June 2008
This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Physics: Conference Series. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1742-6596/154/1/012049
© 2009 IOP Publishing Ltd.
arXiv:0811.3501v1 [astro-ph]
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.