Abstract
The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model has been developed at the RochesterInstitute of Technology (RIT) for over a decade. The model is an established, first-principles based scene simulationtool that has been focused on passive multi- and hyper-spectral sensing from the visible to long wave infrared (0.4 to 14 µm). Leveraging photon mapping techniques utilized by the computer graphics community, a first-principles based elastic Light Detection and Ranging (LIDAR) model was incorporated into the passive radiometry framework so that the model calculates arbitrary, time-gated radiances reaching the sensor for both the atmospheric and topographicreturns. The active LIDAR module handles a wide variety of complicated scene geometries, a diverse set of surface and participating media optical characteristics, multiple bounce and multiple scattering effects, and a flexible suite of sensormodels. This paper will present the numerical approaches employed to predict sensor reaching radiances andcomparisons with analytically predicted results. Representative data sets generated by the DIRSIG model for a topographical LIDAR will be shown. Additionally, the results from phenomenological case studies including standard terrain topography, forest canopy penetration, and camouflaged hard targets will be presented.
Publication Date
5-19-2005
Document Type
Article
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Recommended Citation
Scott D. Brown, Daniel D. Blevins, John R. Schott, "Time-gated topographic LIDAR scene simulation", Proc. SPIE 5791, Laser Radar Technology and Applications X, (19 May 2005); doi: 10.1117/12.604326; https://doi.org/10.1117/12.604326
Campus
RIT – Main Campus
Comments
Copyright 2005 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.