Abstract

Traditionally, synthetic imagery has been constructed to simulate images captured with low resolution, nadirviewing sensors. Advances in sensor design have driven a need to simulate scenes not only at higher resolutions but also from oblique view angles. The primary efforts of this research include: real image capture, scene construction and modeling, and validation of the synthetic imagery in the reflective portion of the spectrum. High resolution imagery was collected of an area named MicroScene at the Rochester Institute of Technology using the Chester F. Carlson Center for Imaging Science’s MISI and WASP sensors using an oblique view angle. Three Humvees, the primary targets, were placed in the scene under three different levels of concealment. Following the collection, a synthetic replica of the scene was constructed and then rendered with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model configured to recreate the scene both spatially and spectrally based on actual sensor characteristics. Finally, a validation of the synthetic imagery against the real images of MicroScene was accomplished using a combination of qualitative analysis, Gaussian maximum likelihood classification, and the RX algorithm. The model was updated following each validation using a cyclical development approach. The purpose of this research is to provide a level of confidence in the synthetic imagery produced by DIRSIG so that it can be used to train and develop algorithms for real world concealed target detection.

Publication Date

10-15-2004

Comments

Copyright 2004 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Campus

RIT – Main Campus

Share

COinS