Abstract

Many of the real world clustering problems arising in data mining applications are heterogeneous in nature. Heterogeneous co-clustering involves simultaneous clustering of objects of two or more data types. While pairwise co-clustering of two data types has been well studied in the literature, research on high-order heterogeneous co-clustering is still limited. In this paper, we propose a graph theoretical framework for addressing star- structured co-clustering problems in which a central data type is connected to all the other data types. Partitioning this graph leads to co-clustering of all the data types under the constraints of the star-structure. Although, graph partitioning approach has been adopted before to address star-structured heterogeneous complex problems, the main contribution of this work lies in an e cient algorithm that we propose for partitioning the star-structured graph. Computationally, our algorithm is very quick as it requires a simple solution to a sparse system of overdetermined linear equations. Theoretical analysis and extensive exper- iments performed on toy and real datasets demonstrate the quality, e ciency and stability of the proposed algorithm.

Publication Date

2008

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

Center for Advancing the Study of CyberInfrastructure

Campus

RIT – Main Campus

Share

COinS