Abstract

It is shown that a 4-(12,6,6) design, if it exists, must be rigid. The intimate relationship of such a design with 4-(12,5,4) designs and 5-(12,6,3) designs is presented and exploited. In this endeavor we found: (i) 30 nonisomorphic 4-(12,5,4) designs; (ii) all cyclic 3-(11,5,6) designs; (iii) all 5-(12,6,3) designs preserved by an element of order three fixing no points and no blocks; and (iv) all 5-(12,6,3) designs preserved by an element of order two fixing 2 points.

Publication Date

1993

Comments

This article is also available at the journal's site at: http://ajc.maths.uq.edu.au/ ISSN:1034-4942 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

Center for Advancing the Study of CyberInfrastructure

Campus

RIT – Main Campus

Share

COinS