Abstract
This paper analyzes the influence of single and combined unfavorable road geometry on rollover and skidding risks of D-class mid-sized sport utility vehicles (SUVs) with front-wheel drive for roads with design speeds at 80 km/h. A closed-loop simulation model of human-vehicle-road interactions is established to examine the systematic influence of road geometry on vehicle rollover and skidding. The effects of different road geometry on rollover and skidding on SUVs are studied for pavement surface with good and poor friction when vehicles are in the action of steady state cornering. The rollover and skidding risks of the most unfavorable road segments are assessed. The critical wheel is defined by the threshold of skidding during curve negotiation. The results found that SUVs are not easy to rollover on the most unfavorable roads, regardless of good or poor friction of pavement surface. The safety margin of rollover is greater than that of skidding. The safety margin of skidding is minimal on poor friction roads. Therefore, for the sake of driving safety, it is not recommended to design the roads with these unfavorable road geometry combinations.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Date
3-3-2020
Document Type
Article
Department, Program, or Center
- Please Select One -
Recommended Citation
Yin, Y.; Wen, H.; Sun, L.; Hou, W. The Influence of Road Geometry on Vehicle Rollover and Skidding. Int. J. Environ. Res. Public Health 2020, 17, 1648. https://doi.org/10.3390/ijerph17051648
Campus
RIT – Main Campus