Abstract

Edge Folkman numbers Fe(G1, G2; k) can be viewed as a generalization of more commonly studied Ramsey numbers. Fe(G1, G2; k) is defined as the smallest order of any Kk -free graph F such that any red-blue coloring of the edges of F contains either a red G1 or a blue G2. In this note, first we discuss edge Folkman numbers involving graphs Js = Ks − e, including the results Fe(J3, Kn; n + 1) = 2n − 1, Fe(J3, Jn; n) = 2n − 1, and Fe(J3, Jn; n + 1) = 2n − 3. Our modification of computational methods used previously in the study of classical Folkman numbers is applied to obtain upper bounds on Fe(J4, J4; k) for all k > 4.

Publication Date

5-22-2019

Comments

DOI: 10.2140/involve.2019.12.813

Document Type

Article

Department, Program, or Center

Computer Science (GCCIS)

Campus

RIT – Main Campus

Share

COinS