Abstract

Radio lobes inflated by active galactic nuclei at the centers of clusters are a promising candidate for halting condensation in clusters with short central cooling times because they are common in such clusters. In order to test the AGNheating hypothesis, we obtained Chandra observations of two clusters with short central cooling times yet no evidence for AGN activity: Abell 1650 and Abell 2244. The cores of these clusters indeed appear systematically different from cores with more prominent radio emission. They do not have significant central temperature gradients, and their central entropy levels are markedly higher than in clusters with stronger radio emission, corresponding to central cooling times ~ 1 Gyr. Also, there is no evidence for fossil X-ray cavities produced by an earlier episode of AGN heating. We suggest that either (1) the central gas has not yet cooled to the point at which feedback is necessary to prevent it from condensing, possibly because it is conductively stabilized, or (2) the gas experienced a major heating event & >~ Gyr in the past and has not required feedback since then. The fact that these clusters with no evident feedback have higher central entropy and therefore longer central cooling times than clusters with obvious AGN feedback strongly suggests that AGNs supply the feedback necessary to suppress condensation in clusters with short central cooling times (Refer to PDF file for exact formulas).

Publication Date

8-10-2005

Comments

This is the pre-print of an article published by the American Astronomical Society. The final, published version is available here: https://doi.org/10.1086/462416

© 2005 The American Astronomical Society

Also archived in: arXiv: astro-ph/0508587 v1 26 Aug 2005

Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Numbers SAO GO3-4159X and AR3-4017A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

School of Physics and Astronomy (COS)

Campus

RIT – Main Campus

Share

COinS