Abstract
Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of e/ D> 0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities Rsm, and floor distance to mean line F1,). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness e is then defined as Rp+ Fp,. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" [ "Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage cu "Forschung auf dens Gebiete des Ingenieurwesens," Ausgahe B Band 4. English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03 mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325 um-1819 um with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset roughness arrangements yield different results indicating a need to further characterize the surface features. The laminar to turbulent transition is also seen to occur at lower Reynolds numbers with an increase in the relative roughness.
Publication Date
10-10-2005
Document Type
Article
Department, Program, or Center
Mechanical Engineering (KGCOE)
Recommended Citation
S. G. Kandlikar, D. Schmitt, A. L. Carrano, and J. B. Taylor, "Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels," Physics of Fluids https://doi.org/10.1063/1.1896985 17, 10 (2005).
Campus
RIT – Main Campus
Comments
This is the post-print of an article published by the American Institute of Physics. Copyright 2005 American Institute of Physics. The final, published version is available here: https://doi.org/10.1063/1.1896985
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.