The rapid growth in computational power and technology has enabled the automotive industry to do extensive research into autonomous vehicles. So called self- driven cars are seen everywhere, being developed from many companies like, Google, Mercedes Benz, Delphi, Tesla, Uber and many others. One of the challenging tasks for these vehicles is to track incremental motion in runtime and to analyze surroundings for accurate localization. This crucial information is used by many internal systems like active suspension control, autonomous steering, lane change assist and many such applications. All these systems rely on incremental motion to infer logical conclusions. Measurement of incremental change in pose or perspective, in other words, changes in motion, measured using visual only information is called Visual Odometry. This thesis proposes an approach to solve the Visual Odometry problem by using stereo-camera vision to incrementally estimate the pose of a vehicle by examining changes that motion induces on the background in the frame captured from stereo cameras.

The approach in this thesis research uses a selective feature based motion tracking method to track the motion of the vehicle by analyzing the motion of its static surroundings and discarding the motion induced by dynamic background (outliers). The proposed approach considers that the surrounding may have moving objects like a truck, a car or a pedestrian body which has its own motion which may be different with respect to the vehicle. Use of stereo camera adds depth information which provides more crucial information necessary for detecting and rejecting outliers. Refining the interest point location using sinusoidal interpolation further increases the accuracy of the motion estimation results. The results show that by using a process that chooses features only on the static background and by tracking these features accurately, robust semantic information can be obtained.

Library of Congress Subject Headings

Odometers; Autonomous vehicles; Motion detectors; Computer vision

Publication Date


Document Type


Student Type


Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)


Raymond Ptucha

Advisor/Committee Member

Andreas Savakis

Advisor/Committee Member

Clark Hochgraf


Physical copy available from RIT's Wallace Library at TL272.5 .V36 2016


RIT – Main Campus

Plan Codes