Abstract
Radio Frequency Identification (RFID) is a trace-and-track technology using RF signals for communication. RFID system was expected to replace barcodes and magnetic stripes because of its extra benefits for the supply chain: multiple items tracking and operation without line-of-sight. A major limitation of RFID technology was the cost of implementation. Since the existing method for RFID applications - "Slap and Ship" - was costly and time-and-labor consuming, this study was aimed to investigate whether the new method - printed-RFID-antenna - could be used in corrugated packaging industry for cost reduction purpose, and also whether those printed antennas could function under the severe environments. Although the results showed the success of the conductive antennas on corrugated materials, the conductivity achieved was not as high as that of the ones on label substrates. This indicated that the printed-RFID-antenna method could be used in corrugated packaging production, but an additional treatment might be needed. Moreover, the results also showed that those printed antennas on corrugated substrates had a little effect under the high temperature/high humidity environment, but had a big impact under the frozen condition.
Library of Congress Subject Headings
Inventory control--Automation; Radio frequency identification systems; Flexography; Antennas (Electronics)--Testing; Package printing; Corrugated paperboard--Testing
Publication Date
2005
Document Type
Thesis
Student Type
Graduate
Degree Name
Packaging Science(MS)
Department, Program, or Center
Packaging Science (CAST)
Advisor
Bruce Kahn
Advisor/Committee Member
Daniel Clark
Advisor/Committee Member
Daniel Goodwin
Recommended Citation
Sayampol, Juthamart, "Feasability of printing RFID antennas on corrugated paperboard" (2005). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7729
Campus
RIT – Main Campus
Plan Codes
PACK-MS