Certain internal combustion engines, which run on hydrocarbon fuels, experience difficulty upon engine start-up in extreme cold weather. As ambient temperature decreases below the fuel cloud point and beyond, paraffin form in the fuel and eventually clog the fuel filter causing the engine to fail to start. This problem becomes more pronounced when the engine in question is a Diesel and the fuel utilized is biodiesel. As an alternative fuel source, biodiesel has many advantages; however, its cold weather performance is worse than even conventional diesel fuel. As biodiesel becomes more integrated into the world’s energy usage scenario, one of the systems within a Diesel engine that requires further investigation is its fuel conditioning system. This thesis describes research aimed at the development of a fuel conditioning system that utilizes several emerging technologies while decreasing the amount of electrical energy required for operation. The system utilizes a eutectic - thermoelectric (E-TE) combination which consists of a eutectic compound based latent heat storage device with adjacent thermoelectric elements to transfer waste heat stored in the eutectic reservoir into the fuel filter, thus diminishing the amount of electrical energy typically required for the fuel conditioning process. Simulations of the E-TE system are conducted while operating within three different modes (start-up, heat storage, and electrical energy generation) depending on fuel and ambient temperature conditions, while a supervisory controller distinguishes between desired operational status. The research activities and findings reported contained herein include development of E-TE system models which each consist of several components. The first of which is a set of control laws, implemented in Simulink, which control system performance using various temperature related variables. The second component is a supervisory control law, implemented in Matlab®, which controls the switching between various modes of operation. With system model developed, the viability of the system is examined.

Library of Congress Subject Headings

Biodiesel fuels; Energy conservation

Publication Date


Document Type


Department, Program, or Center

Mechanical Engineering (KGCOE)


Stevens, Robert

Advisor/Committee Member

Crassidis, Agamemnon

Advisor/Committee Member

Hensel, Edward


Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014. Physical copy available from RIT's Wallace Library at TP359.V44 S37 2008


RIT – Main Campus