Peng Xie


Current assumptions for the limits of immersion optical lithography include NA values at 1.35, largely based on the lack of high-index materials. In this research we have been working with ultra-high NA evanescent wave lithography (EWL) where the NA of the projection system is allowed to exceed the corresponding acceptance angle of one or more materials of the system. This approach is made possible by frustrating the total internal reflection (TIR) evanescent field into propagation. With photoresist as the frustrating media, the allowable gap for adequate exposure latitude is in the sub-100 nm range. Through static imaging, we have demonstrated the ability to resolve 26 nm half-pitch features at 193 nm and 1.85 NA using existing materials. Such imaging could lead to the attainment of 13 nm half-pitch through double patterning. In addition, a scanning EWL imaging system was designed, prototyped with a two-stage gap control imaging head including a DC noise canceling carrying air-bearing, and a AC noise canceling piezoelectric transducer with real-time closed-loop feedback from gap detection. Various design aspects of the system including gap detection, feedback actuation, prism design and fabrication, software integration, and scanning scheme have been carefully considered to ensure sub-100 nm scanning. Experiments performed showed successful gap gauging at sub-100 nm scanning height. Scanning EWL results using a two-beam interference imaging approach achieved pattern resolution comparable to static EWL imaging results. With this scanning EWL approach and the imaging head developed, optical lithography becomes extendable to sub-22 nm generations.

Library of Congress Subject Headings

Nanolithography; Electromagnetic waves

Publication Date


Document Type


Student Type


Department, Program, or Center

Microsystems Engineering (KGCOE)


Smith, Bruce


Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TK7874.84 .X44 2012


RIT – Main Campus