Yidong Chen


A typical parameterized r-opening *r is a filter defined as a union of openings by a collection of compact, convex structuring elements, each of which is governed by a parameter vector r. It reduces to a single parameter r-opening filter by a set of structuring elements when r is a scalar sizing parameter. The parameter vector is adjusted by a set of adaptation rules according to whether the re construction Ar derived from r correctly or incorrectly passes the signal and noise grains sampled from the image. Applied to the signal-union-noise model, the optimization problem is to find the vector of r that minimizes the Mean-Absolute-Error between the filtered and ideal image processes. The adaptive r-opening filter fits into the framework of Markov processes, the adaptive parameter being the state of the process. For a single parameter r-opening filter, we proved that there exists a stationary distribution governing the parameter in the steady state and convergence is characterized in terms of the steady-state distribution. Key filter properties such as parameter mean, parameter variance, and expected error in the steady state are characterized via the stationary distribution. Steady-state behavior is compared to the optimal solution for the uniform model, for which it is possible to derive a closed-form solution for the optimal filter. We also developed the Markov adaptation system for multiparameter opening filters and provided numerical solutions to some special cases. For multiparameter r-opening filters, various adaptive models derived from various assumptions on the form of the filter have been studied. Although the state-probability increment equations can be derived from the appropriate Chapman-Kolmogorov equations, the closed-form representation of steady-state distributions is mathematically problematic due to the support geometry of the boundary states and their transitions. Therefore, numerical methods are employed to approximate for steady state probability distributions. The technique developed for conventional opening filters is also applied to bandpass opening filters. In present thesis study, the concept of signal and noise pass sets plays a central role throughout the adaptive filter analysis. The pass set reduces to the granulometric measure (or {&r}-measure) of the signal and noise grain. Optimization and adaptation are characterized in terms of the distribution of the granulometric measures for single parameter filters, or in terms of the multivariate distribution of the signal and noise pass sets. By introducing these concepts, this thesis study also provides some optimal opening filter error equations. It has been shown in the case of the uniform distribution of single sizing parameter that there is a strong agreement between the adaptive filter and optimal filter based on analytic error minimization. This agreement has been also demonstrated in various r-opening filters. Furthermore, the probabilistic interpretation has a close connection to traditional linear adaptive filter theory. The method has been applied to the classical grain separation (clutter removal) problem. *See content for correct numerical representations

Library of Congress Subject Headings

Image processing--Mathematics; Digital filters--Mathematics; Markov processes

Publication Date


Document Type


Student Type


Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


Dougherty, Edward

Advisor/Committee Member

Raghuveer, Mysore

Advisor/Committee Member

Sinha, Divyendu


Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TA1637 .C428 1995


RIT – Main Campus