The amount of crops harvested varies every year due to changes in climate and other operational as well as economic factors. Predicting the amount of crops a land will produce will result in more efficient field operations and management. At a national level, crop yield prediction can help work towards achieving food security. This, at a global level, will serve as a step towards the UN Sustainable Development Goal of Zero Hunger. This research identifies the significant factors that affect the production of staple crops in regions with desert and semi-arid climate in Africa and predict their yield. Different techniques are experimented to create the model and Random Forest proves to be the most suitable for this problem.

Publication Date


Document Type

Master's Project

Student Type


Degree Name

Professional Studies (MS)

Department, Program, or Center

Graduate Programs & Research (Dubai)


Sanjay Modak

Advisor/Committee Member

Khalil Al Hussaeni


RIT Dubai