Multifunctional carbon nanotubes (CNTs) enable novel ways of interacting with complex biological fluid environments, such as single living cells and tissues. It has been shown that vertically aligned carbon nanotube arrays can be utilized to deliver genes into cells with high efficiency. These arrays were produced through template-based nanomanufacturing, where chemical vapor deposition forms carbon nanotubes inside the pores and oxygen plasma and reactive ion etching (RIE) expose the tubes by selective etching. The same devices could be produced faster and cheaper by replacing oxygen plasma and RIE with mechanical polishing and wet etching. However, the biomedical utilization of CNT-based technology has been hindered by inconsistencies in fabrication of effective CNT arrays which can facilitate fluid transport and gene transfer. In this research, the polishing process of CNT arrays was examined to identify the source of variability in results and developing solutions to overcome the issues. To this end, the capabilities and limitations of the current polishing step was tested using multiple characterization techniques, different variables were investigated, several alternative techniques were developed and explored and the best solutions considering the current restrictions were proposed. The results of this study will contribute to building the platform for a consistent scaled up technology for probing multiple cells in parallel and providing substrates for wearable or implantable biological sensors.

Library of Congress Subject Headings

Carbon nanotubes--Synthesis; Nanomanufacturing

Publication Date


Document Type


Student Type


Degree Name

Mechanical Engineering (MS)

Department, Program, or Center

Mechanical Engineering (KGCOE)


Michael Schrlau

Advisor/Committee Member

Blanca Lapizco-Encinas

Advisor/Committee Member

Rui Liu


RIT – Main Campus

Plan Codes