With rapid developments in satellite and sensor technologies, there has been a dramatic increase in the availability of remotely sensed images. However, the exploration of these images still involves a tremendous amount of human interventions, which are tedious, time-consuming, and inefficient. To help imaging experts gain a complete understanding of the images and locate the objects of interest in a more accurate and efficient way, there is always an urgent need for developing automatic detection algorithms. In this work, we delve into the object detection problems in remote sensing applications, exploring the detection algorithms for both hyperspectral images (HSIs) and high resolution aerial images.

In the first part, we focus on the subpixel target detection problem in HSIs with low spatial resolutions, where the objects of interest are much smaller than the image pixel spatial resolution. To this end, we explore the detection frameworks that integrate image segmentation techniques in designing the matched filters (MFs). In particular, we propose a novel image segmentation algorithm to identify the spatial-spectral coherent image regions, from which the background statistics were estimated for deriving the MFs. Extensive experimental studies were carried out to demonstrate the advantages of the proposed subpixel target detection framework. Our studies show the superiority of the approach when comparing to state-of-the-art methods.

The second part of the thesis explores the object based image analysis (OBIA) framework for geospatial object detection in high resolution aerial images. Specifically, we generate a tree representation of the aerial images from the output of hierarchical image segmentation algorithms and reformulate the object detection problem into a tree matching task. We then proposed two tree-matching algorithms for the object detection framework. We demonstrate the efficiency and effectiveness of the proposed tree-matching based object detection framework.

In the third part, we study object detection in high resolution aerial images from a machine learning perspective. We investigate both traditional machine learning based framework and end-to-end convolutional neural network (CNN) based approach for various object detection tasks. In the traditional detection framework, we propose to apply the Gaussian process classifier (GPC) to train an object detector and demonstrate the advantages of the probabilistic classification algorithm. In the CNN based approach, we proposed a novel scale transfer module that generates enhanced feature maps for object detection. Our results show the efficiency and competitiveness of the proposed algorithms when compared to state-of-the-art counterparts.

Library of Congress Subject Headings

Remote-sensing images--Classification; Pattern recognition systems; Machine learning

Publication Date


Document Type


Student Type


Degree Name

Imaging Science (Ph.D.)

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


Eli Saber

Advisor/Committee Member

Panos Markopoulos

Advisor/Committee Member

Nathan Cahill


RIT – Main Campus

Plan Codes