People who are deaf or hard-of-hearing (DHH) benefit from sign-language interpreting or live-captioning (with a human transcriptionist), to access spoken information. However, such services are not legally required, affordable, nor available in many settings, e.g., impromptu small-group meetings in the workplace or online video content that has not been professionally captioned. As Automatic Speech Recognition (ASR) systems improve in accuracy and speed, it is natural to investigate the use of these systems to assist DHH users in a variety of tasks. But, ASR systems are still not perfect, especially in realistic conversational settings, leading to the issue of trust and acceptance of these systems from the DHH community. To overcome these challenges, our work focuses on: (1) building metrics for accurately evaluating the quality of automatic captioning systems, and (2) designing interventions for improving the usability of captions for DHH users.

The first part of this dissertation describes our research on methods for identifying words that are important for understanding the meaning of a conversational turn within transcripts of spoken dialogue. Such knowledge about the relative importance of words in spoken messages can be used in evaluating ASR systems (in part 2 of this dissertation) or creating new applications for DHH users of captioned video (in part 3 of this dissertation). We found that models which consider both the acoustic properties of spoken words as well as text-based features (e.g., pre-trained word embeddings) are more effective at predicting the semantic importance of a word than models that utilize only one of these types of features.

The second part of this dissertation describes studies to understand DHH users' perception of the quality of ASR-generated captions; the goal of this work was to validate the design of automatic metrics for evaluating captions in real-time applications for these users. Such a metric could facilitate comparison of various ASR systems, for determining the suitability of specific ASR systems for supporting communication for DHH users. We designed experimental studies to elicit feedback on the quality of captions from DHH users, and we developed and evaluated automatic metrics for predicting the usability of automatically generated captions for these users. We found that metrics that consider the importance of each word in a text are more effective at predicting the usability of imperfect text captions than the traditional Word Error Rate (WER) metric.

The final part of this dissertation describes research on importance-based highlighting of words in captions, as a way to enhance the usability of captions for DHH users. Similar to highlighting in static texts (e.g., textbooks or electronic documents), highlighting in captions involves changing the appearance of some texts in caption to enable readers to attend to the most important bits of information quickly. Despite the known benefits of highlighting in static texts, research on the usefulness of highlighting in captions for DHH users is largely unexplored. For this reason, we conducted experimental studies with DHH participants to understand the benefits of importance-based highlighting in captions, and their preference on different design configurations for highlighting in captions. We found that DHH users subjectively preferred highlighting in captions, and they reported higher readability and understandability scores and lower task-load scores when viewing videos with captions containing highlighting compared to the videos without highlighting. Further, in partial contrast to recommendations in prior research on highlighting in static texts (which had not been based on experimental studies with DHH users), we found that DHH participants preferred boldface, word-level, non-repeating highlighting in captions.

Library of Congress Subject Headings

Automatic speech recognition--Evaluation; Automatic speech recognition--Quality control; Speech processing systems

Publication Date


Document Type


Student Type


Degree Name

Computing and Information Sciences (Ph.D.)


Matt Huenerfauth

Advisor/Committee Member

Cecilia Ovesdotter Alm

Advisor/Committee Member

Vicki Hanson


RIT – Main Campus

Plan Codes