Unitary operations using linear optics have many applications within the quantum and neuromorphic space. In silicon photonics, using networks of simple beam splitters and phase shifters have proven sufficient to realize large-scale arbitrary unitaries. While this technique has shown success with high fidelity, the grid physically scales with an upper bound of O(n2). Consequently, we propose to considerably reduce the footprint by using multimode interference (MMI) devices. In this paper, we investigate the active control of these MMIs and their suitability for approximating traditionally used unitary circuits.

Date of creation, presentation, or exhibit



Copyright 2019 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Document Type

Conference Proceeding

Department, Program, or Center

School of Physics and Astronomy (COS)


RIT – Main Campus