In medical ultrasonic imaging the signal reflected from the tissue often has a random character to it. It is believed that the random nature of the tissue scattering microstructure is responsible for the stochastic nature of the echo signal. Chen, et. al. Have proposed a signal processing scheme that is based on the statistical moments calculated on the Fourier transform of the time gated echo signal. The theory requires the knowledge of a frequency- dependent effective cell volume term. This paper describes the use of a closed form expression (Lommel diffraction formulation) for this purpose. Our simulation results suggest that reliable estimation of the cell volume is possible only when the time duration of the excitation pulse is small compared to the time gate length.

Date of creation, presentation, or exhibit



Copyright 2001Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

The authors would like to thank Dr. C.J. Daly and Dr. M. Helguera for many helpful discussions on the subject.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Paper

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus