Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a 'swarm' of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network.

Date of creation, presentation, or exhibit



Copyright 2003 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Paper

Department, Program, or Center

Microelectronic Engineering (KGCOE)


RIT – Main Campus