Detection of a known target in an image can be accomplished using several different approaches. The complexity and number of steps involved in the target detection process makes a comparison of the different possible algorithm chains desirable. Of the different steps involved, some have a more significant impact than others on the final result - the ability to find a target in an image. These more important steps often include atmospheric compensation, noise and dimensionality reduction, background characterization, and detection (matched filtering for this research). A brief overview of the algorithms to be compared for each step will be presented. This research seeks to identify the most effective set of algorithms for a particular image or target type. Several different algorithms for each step will be presented, to include ELM, FLAASH, MNF, PPI, MAXD, the structured background matched filters OSP, and ASD. The chains generated by these algorithms will be compared using the Forest Radiance I HYDICE data set. Finally, receiver operating characteristic (ROC) curves will be calculated for each algorithm chain and, as an end result, a comparison of the various algorithm chains will be presented.

Date of creation, presentation, or exhibit



Copyright 2005 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Paper

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus