We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/mH 0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counter-aligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hang-up effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high central resolutions (h M/320). We find that these highly spinning holes reach a maximum recoil velocity of 3300 km s−1 (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/mH 0.922. These results are consistent with our previous predictions for the maximum recoil velocity of 4000 km s−1 and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r−2) singularity at the puncture, rather than the usual O(r−4) singularity seen for non-maximal spins.

Publication Date



This is the pre-print of an article published by the American Physical Society. The final, published version is available here: https://doi.org/10.1103/PhysRevD.78.024039

© 2008 American Physical Society

Also archived in arXiv:0803.0351 v2 Jul 17, 2008.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

School of Physics and Astronomy (COS)


RIT – Main Campus