Abstract
The objective of this research is to improve the atomic oxygen resistance of KaptonTM, a polyimide (PI) made from pyromellitic acid dianhydride (PMDA) and 4,4'-oxydianiline (ODA), while retaining or enhancing the desirable properties of the pure polymer. Toward this end, zirconium-containing complexes and polymers were used to make composites and blends. Tetra(acetylacetonato)zirconium(IV), Zr(acac)4, which is commercially available, was identified as the best zirconium-containing complex for enhancing the atomic oxygen resistance of polyimide composites of the 10 complexes screened. Films prepared from the commercially-available polyamic acid (PAA) of PMDA-ODA (DuPont) have good uniformity, flexibility, and tensile strength. A 24-layer 10% (mol) Zr(acac)4/PI composite film showed significant improvement (ca. 20 fold) of atomic oxygen resistance over the pure polyimide. However, 10% (mol) Zr(acac)4 represents an upper concentration limit, above which films undergo cracking upon thermal imidization. In order to increase the Zr complex concentration in PMDA-ODA PI films, while retaining good film properties, [Zr(adsp)2-PMDA]n coordination polymer [bis(4-amino-N,N'-disalicylidene-1,2-phenylenediamino)zirconium(IV)-pyromellitic dianhydride] and [Zr(adsp)2-PMDA-ODA-PMDA]n terpolymer were synthesized and blended with commercial PAA, respectively. Several techniques were used to characterize the films made from the polymer containing Zr(acac)4. Plasma studies of films having 2% (mol) incremental concentrations of Zr in the Kapton up to 10% (mol) show that the overall rate of erosion is reduced about 75 percent.
Publication Date
2001
Document Type
Article
Department, Program, or Center
School of Chemistry and Materials Science (COS)
Recommended Citation
Illingsworth, M.L.; Betancourt, J.A.; He, L.; Terschak, J.A.; Banks, B.A.; Rutledge, S.K.; Cales, M. Zr-Containing 4,4'-ODA/PMDA Polyimide Composites Parts I and II; NASA/TM-2001-211099; National Aeronautics and Space Administration: Washington, D.C., August 2001.
Campus
RIT – Main Campus
Comments
NASA/TM-2001-211099Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.