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Abstract

The primary objective of this thesis is to develop a fast and efficient compu-
tational framework for the nonlinear inverse problem of identifying a variable
coefficient in a system of partial differential equation modelling the response
of an incompressible elastic object under some known body forces and bound-
ary traction. The main novelty of this contribution is to use, for the first
time, of the so-called heavy ball with friction method for inverse problems.
The heavy ball with friction dynamical system is a nonlinear oscillator with
damping. The key idea is to pose the inverse problem as an optimization
problem, derive its optimality system, and then seek the solution through
a trajectory of a dynamical system. In this work, we will study four differ-
ent optimization formulations for the nonlinear inverse problem and thor-
oughly compare their convergence and numerical performance. Since we use
a second-order method, we also investigate a general second-order hybrid and
a second-order adjoint method for an efficient computation of the hessian of
the output least-squares formulation. The stability of the dynamical system
approach with respect to the contamination in the data is thoroughly inves-
tigate in the context of a simpler elliptic partial differential equation. The
mixed finite element approach is used to discretize the direct as well as the
inverse problems.

Keywords: Inverse problems, parameter identification, heavy ball with fric-
tion method, optimization, differential equations, dynamical systems.
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Chapter 1

Introduction

This chapter introduces the concept of an inverse problem of parameter iden-
tification. It also provides motivation for the research in the field of inverse
problems. A literature review is performed on the ideas and concepts leading
up to this work. Finally, it states the structure and objectives of the thesis
work.

1.1 Motivation

Cancer is becoming one of fastest growing causes of death in the world [39].
Soft tissue cancer is but one form and it is as deadly as any other. The
large number of deaths due to soft tissue cancer can be managed through
early detection of the tumorous cells within a tissue that could be potentially
cancerous. However, the means of identification of these tumorous cells are
somewhat lacking. Palpation and ultrasound are some of the procedures
currently used in the identification of such cells. Ultrasound relies on the
acoustic behavior of tissue based on its physical properties, which is in turn
determined by its health. Ultrasound detect differences in tissue stiffness by
passing sound waves through the tissue and using the response times as an
indication of this property [29]. Palpation is a procedure in which force is
manually applied to a region of concern, and differences in the structure of
healthy versus unhealthy cells are used to determine if an area has harder
”lumps” than its surrounding tissue [19]. A drawback of palpation is that
it can only be used near the surface of the skin. Also, deciding which cell
regions are classified as harder than others is very subjective.
Recently, elastic imaging has been considered in early tumor identification
[1]. Force is applied to the tissue in question, and the axial displacement
field of the tissue is retrieved. This displacement field is used to determine
the elasticity throughout the tissue, and thus the location for a potentially
cancerous tumor.
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1.2 The Inverse Problem

An inverse problem arises from an underlying direct problem. Consider a
mathematical system that models the heat transfer from a heat source to a
metallic body. In this system, we have a heat source, the temperature of the
metallic body as a function of position, and the thermal conductivity of the
body. In the direct problem, the thermal conductivity and the heat source
are the known terms, and the output of the direct problem is the temperature
of the body. One possible inverse problem would be to calculate the amount
of heat produced from the heat source, provided we know the thermal con-
ductivity of the body, and we have a means of measuring the temperature
of the body. This is known as the inverse problem of source identification.
The other kind of inverse problem would involve identifying the thermal
conductivity of the body given the heat source, and a measurement of the
temperature of the body. In most mathematical systems, innate properties
such as the thermal conductivity of a body are represented by parameters
within the model. As a result, the latter problem is referred to as the inverse
problem of parameter identification. Broadly, the inverse problem is a way of
non intrusively calculating some innate characteristic of a material within a
system that could otherwise not be measured. In the cancer problem, using
elastic imaging, the elasticity is the innate characteristic of the tissue that is
to be calculated. Some amount of force is applied, which is the source, and
the output, is the displacement, which can be measured or observed. Other
examples of inverse problems are studied in [12, 22, 23, 25, 32, 36, 46].

1.3 Literature Review

There has been a lot of work leading up to the ideas explored in this thesis
both in the field of elasticity imaging with respect to inverse problems, and
the use of dynamical systems in optimization problems. This review is in
no way exhaustive, but it highlights a few works that have led up to the
concepts used directly and extensively in this thesis.
Ultrasound based methods have been extensively used over time when it
comes to tumor identification and elasticity imaging. Bertrand[14] and Parker
et al.[40], both used ultrasound methods to try to attain the elasticity mod-
ulus of a tissue. Bamber at al. [11] used ultrasound techniques to image
the compressed breast in order to attain axial displacements. These meth-
ods were somewhat idealized as they assumed that both the location, and
geometry of the tumor were known at the start of the process.
The idea of using an inverse problem to recover the difference in the strains
of a healthy versus an unhealthy tissue was brought forth by Raghavan and
Yagle[41]. They applied finite differences when solving the problem. Finite
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element methods were used by Kallel and Bertrand[31] when they tried to
fit the axial displacement of the compressed tissue gotten from ultrasound
imaging, in a least squares sense. Doyley et al.[21] used iterative schemes to
retrieve the Young’s modulus or elasticity modulus. Such work can be see in
[27, 33] as well.
In 2003, Oberai et al.[38] studied the identification of the shear modulus in
an incompressible elastic material.
More recently, Arnold et al.[7] developed numerical methods for identification
of the elasticity modulus. In the same year, Ammari et al.[5] used optimiza-
tion approaches to tackle the same problem. Doyley has a very extensive
survey article on these topics[19]. More can be found in [20, 18, 13, 37, 47]
In the field of continuous methods and its applications to optimization,
Bostaris[15] introduced broader curvilinear search paths that used the eigen
property of the Hessian matrix in function minimization. Bartholomew-Biggs
and Brown[17, 16] studied trajectories based on a system of differential equa-
tions to solve an equality constraint optimization problem. Schäffler[42] con-
sidered a gradient trajectory method for optimization and fifteen years later
Liao[35] considered a gradient based continuous method.
Antipin[6] did work with convex programming problems using continuous
gradient projections of both the first and second order. Glazos et al.[24]
presented a family of dynamical systems whose steady state solution solves
a convex optimization problem. Alvarez and Pérez[4] did work on convex
minimization problems using newton type continuous methods. Alvarez[2]
then went on to study the dissipative dynamical system and gave results in
a Hilbert space setting. He studied the asymptotic behavior of the solution
to a particular dynamical system when its convex potential is bounded, and
gave conditions for the convergence of the solution to a minimizer of the
potential.
Attouch et al.[10] worked on dynamical systems that incorporate the gradi-
ent of the functional being minimized into the dissipative dynamical system
to yield a solution. They discussed the convergence analysis of the so-called
heavy ball with friction problem. They presented conditions for convergence
placing constraints on certain terms in the system. Shi[43] developed a multi-
step method for solving the unconstrained minimization problem which en-
sured stability of convergence, and linear rate of convergence under specified
conditions.
Liao et al.[34] used a gradient based continuous method to solve the mini-
mization problem. In [35], Liao used a continuous method for convex pro-
gramming problems in which he converted the problems into variational in-
equalities.
Zhang et al.[48] proposed the continuous Newton type method for uncon-
strained optimization which is implemented in [44] in the one dimensional
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case. Attouch and Alvarez[8] use the second order dissipative dynamical sys-
tem - the heavy ball with friction method - to solve the same unconstrained
optimization problem. Jules and Mainge[30] compared the standard proxi-
mal point algorithm to the implicit discretization of the dissipative dynamical
system by considering a co-coercive operator. The idea that certain parame-
ters in the heavy ball with friction system have large effect on the convergence
speed to a minimizer was extensively studied separately in [30] and [10].

1.4 Objectives and Structure

The main goals of this thesis work is to solve the inverse problem of parameter
identification using differential equation approaches studied in [45, 48]. It also
looks to consider possible extension discussed in [2, 4, 3, 9] with the heavy
ball with friction method [2]. Different objective functionals are considered
for the optimization scheme and the results are reported.
This thesis is structured as follows: First, we introduce the elastography in-
verse problem, and we discretize it using mixed finite element methods. We
also propose optimization schemes that will be applied in order to solve the
inverse problem. We introduce the novel computations of the second order
derivative of the output least squares functional. In chapter 3, we discretize
the functionals presented in the previous chapter. We introduce the heavy
ball with friction method in chapter 4. We discuss other continuous meth-
ods, and how we intend to use them in our optimization problem. Chapter 5
reports the results of testing both the new second order derivative computa-
tions for the output least squares functional, and the heavy ball with friction
method on the elastorgraphy problem. Chapter 6 considers a simpler elliptic
partial differential equation. For completeness, we retest the heavy ball with
friction method, using different differential equation solvers. Finally, we con-
duct a noise study to compare both the differential equation techniques and
the optimization schemes applied.



Chapter 2

Various Optimization Schemes

In this chapter, we introduce the system of partial differential equations
that model the elasticity system. We use mixed finite element methods to
derive the weak form of the system, and then formulate the optimization
functionals that define the schemes to be used. We also present and derive
the novel computation of the second order derivative of the Output Least
Squares functional.

2.1 Saddle Point Formulation

Given the domain Ω as a subset of R2 or R3 and ∂Ω = Γ1∪Γ2 as its boundary,
the following system models the response of an isotropic elastic body to the
known body forces and boundary traction:

−∇ · σ = f in Ω, (2.1a)

σ = 2µε(u) + λdivu I, (2.1b)

u = g on Γ1, (2.1c)

σn = h on Γ2. (2.1d)

In (2.1), the vector-valued function u = u(x) is the displacement of the
elastic body, f is the applied body force, n is the unit outward normal, and
ε(u) = 1

2
(∇u + ∇uT) is the linearized strain tensor. The resulting stress

tensor σ in the stress-strain law (2.1b) is obtained under the condition that
the elastic body is isotropic and the displacement is sufficiently small so that
a linear relationship remains valid. Here µ and λ are the Lamé parameters
which quantify the elastic properties of the object.
In this work, our primary objective is to develop a computational framework
for the elastography inverse problem of locating soft inclusions in an incom-
pressible object, for example, cancerous tumor in the human body. From a
mathematical stand point this inverse problem seeks µ from a measurement
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of the displacement vector u under the assumption that the parameter λ is
very large. The key idea behind the elatography inverse problem is that the
stiffness of soft tissue can vary significantly based on its molecular makeup
and varying macroscopic/microscopic structure (see [19]) and such changes
in stiffness are related to changes in tissue health. In other words, the elas-
tography inverse problem mathematically mimics the practice of palpation
by making use of the differing elastic properties of healthy and unhealthy
tissue to identify tumors. In most of the existing literature on elastography
inverse problem, the human body is modelled as an incompressible elastic ob-
ject. Although this assumption simplifies the identification process as there
is only one parameter µ to identify, it significantly complicates the computa-
tional process as the classical finite element methods become quite ineffective
due to the so-called locking effect. One of the few remedies of this situation
is by resorting to mixed finite element formulation. We explain this in the
following. For the time being, in (2.1), we set g = 0. For this case, the space
of test functions, denoted by V, is given by:

V = {v̄ ∈ H1(Ω)×H1(Ω) : v̄ = 0 on Γ1}.

By using the Green’s identity and the boundary conditions (2.1c) and (2.1d),
we obtain the following weak form of the elasticity system (2.1): Find ū ∈ V
such that∫

Ω

2µε(ū)·ε(v̄)+

∫
Ω

λ(div ū)(div v̄) =

∫
Ω

fv̄+

∫
Γ2

v̄h, for every v̄ ∈ V. (2.2)

The mixed finite elements approach then consists of introducing a pressure
term p ∈ Q = L2(Ω)

p = λ(div ū), (2.3)

or equivalently, ∫
Ω

(div ū)q −
∫

Ω

1

λ
pq = 0, for every q ∈ Q. (2.4)

By using relation (2.3), the weak form (2.2) reads: Find ū ∈ V such that∫
Ω

2µε(ū) · ε(v̄) +

∫
Ω

p(div v̄) =

∫
Ω

fv̄ +

∫
Γ2

v̄h, for every v̄ ∈ V. (2.5)

In other words, the problem of finding ū ∈ V satisfying (2.2) has now been
reformulated as the problem of finding (ū, p) ∈ V × Q satisfying the mixed
variational problems (2.4) and (2.5).
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In the following we set B = L∞. Let A ⊂ B be the set of all feasible coeffi-
cients which we assume to be nonempty, closed, and convex. Equations (2.4)
and (2.5) can be written as follows:

a(`, u, v) + b(v, p) = m(v) ∀v ∈ V (2.6a)

b(u, q)− c(p, q) = 0 ∀q ∈ Q (2.6b)

where

a(µ, u, v) =

∫
Ω

2µε(u) · ε(v),

b(v, p) =

∫
Ω

p(divv),

b(u, q) =

∫
Ω

(divu)q,

c(p, q) =

∫
Ω

1

λ
pq,

m(v) =

∫
Ω

fv +

∫
Γ2

vh.

(2.7)

It is easy to verify that a : B × V × V → R is trilinear and symmetric with
respect to its last two arguments, b : V ×Q→ R is bilinear, c : Q×Q→ R
is symmetric and bilinear, and m : V → R is a linear continuous map.
We assume that constants, k0, k1, k2, c1, c2 > 0, exist such that

a(`, v, v) ≥ k1||v||2,
|a(`, u, v)| ≤ k2||l||||u||||v||,

c(q, q) ≥ c1||q||2,
|c(p, q)| ≤ c2||p||||q||,
|b(v, q)| ≤ k0||v||||q||,

(2.8)

for every ` ∈ A, u, v ∈ V , p, q ∈ Q. It is important to note that, in the
following sections, since the pressure term p is also unknown, we would be
stating the weak form in such a way that we look to find ū = (u, p) for the
saddle point problem.

2.2 Output Least Squares

Optimizing the Output Least Squares (OLS) functional is the most com-
mon approach to solving inverse problems. It employs the simple idea of
minimizing the norm between the solution to the weak form, ū, and some
measurement of this solution, z = (z̄, ẑ).
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JOLS(`) =
1

2
||u(`)− z̄||2V +

1

2
||p(`)− ẑ||2Q

where V̂ = V ×Q, for the saddle point problem (SPP).
Inverse problems are highly ill-posed posed, meaning that the existence,
uniqueness, and stability of a solution cannot be guaranteed. As a result,
regularization is employed in order to attain a stable version. This ultimately
yields the following optimization problem:

min
`∈A

JOLS(`) =
1

2
||ū(`)− z||2

V̂
+ κR(`) (2.9)

where R is the regularization functional, and κ > 0 is the regularization
parameter.
Now that we have derived our OLS functional, we look to compute the first
order and second order derivatives of the functional. We compute the first
order derivative using the first order adjoint method, and we compute the
second order derivative using the second order adjoint method, and the hy-
brid method.

2.2.1 First Order Derivative

Here, we use the first order adjoint method for the computation of the first
derivative of the regularized OLS functional. Recall, the OLS funtional

JOLS(`) =
1

2
||u(`)− z̄||2V +

1

2
||p(`)− ẑ||2Q + κR(`).

This functional can be written in terms of the inner products of the spaces
in which they exist to get

JOLS(`) =
1

2
〈u(`)− z̄, u(`)− z̄〉+

1

2
〈p(`)− ẑ, p(`)− ẑ〉+ κR(`)

By using the chain rule, the derivative of JOLS at ` ∈ A in the direction δ` ∈ A
is given by

DJOLS(`)(δ`) = 〈Du(`)(δ`), u(`)− z̄〉+ 〈Dp(`)(δ`), p(`)− ẑ〉+ κDR(`)(δ`),

where Dū(`)(δ`) = (Du(`)(δ`), Dp(`)(δ`)) is the derivative of the coefficient-
to-solution map ū and DR(`)(δ`) is the derivative of the regularizer R, both
computed at ` in the direction δ`.
For an arbitrary v̄ = (v, q) ∈ V̂ , we define the functional J̃OLS : B × V̂ → R
by

J̃OLS(`, v̄) = JOLS(`) + a(`, u, v) + b(v, p) + b(u, q)− c(p, q)−m(v).
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Since ū(`) = (u(`), p(`)) is the solution of saddle point problem (2.6), we
have that

J̃OLS(`, v̄) = JOLS(`), ∀v̄ ∈ V̂ .

Consequently, for every v̄ ∈ V̂ , the following identity holds

∂J̃OLS

∂`
(`, v̄) (δ`) = DJOLS(`) (δ`) , for every δ` ∈ A. (2.10)

The adjoint method is used to avoid the direct computation of δū = Dū(`)(δ`),

by choosing v̄ ∈ V̂ appropriately.

∂J̃OLS

∂`
(`, v̄) (δ`) = 〈Du(`)(δ`), u− z̄〉+ 〈Dp(`)(δ`), p− ẑ〉

+ κDR(`)(δ`) + a(δ`, u, v) + a(`,Du(`)(δ`), v)

+ b(v,Dp(`)(δ`)) + b(Du(`)(δ`), q)− c(Dp(`)(δ`), q).
(2.11)

For ` ∈ A, let w(`) = (w̄(`), pw(`)) be the unique solution of the saddle point
problem

a(`, w̄, v) + b(v, pw) = 〈z̄ − u, v〉 , for every v ∈ V, (2.12a)

b(w̄, q)− c(pw, q) = 〈ẑ − p, q〉 , for every q ∈ Q, (2.12b)

where the right-hand sides of (2.12a) and (2.12b) include the solution (u, p)
of (2.6) for the given parameter, `, and data, (z̄, ẑ).
By plugging v̄ = (w̄, pw) in (2.11), we obtain

∂J̃OLS

∂`
(`, w) (δ`) = 〈Du(`)(δ`), u− z̄〉+ 〈Dp(`)(δ`), p− ẑ〉

+ κDR(`)(δ`) + a(δ`, u, w̄) + a(`,Du(`)(δ`), w̄)

+ b(w̄,Dp(`)(δ`)) + b(Du(`)(δ`), pw)− c(Dp(`)(δ`), pw)

= κDR(`)(δ`) + a(δ`, u, w̄),

where we used the symmetry of a and c and the fact that w satisfies (2.12).
Therefore, using (2.10), we obtain the following formula for the first-order
derivative of JOLS:

DJOLS(`) (δ`) = κDR(`)(δ`) + a(δ`, u, w̄). (2.13)

Therefore, in order to compute the derivative DJOLS(`) (δ`) of the OLS func-
tional, given `, δ` ∈ A, we first compute ū(`) = (u(`), p(`)) using (2.6). Next,
we find w(`) = (w̄(`), pw(`)) by solving the system in (2.12), and finally we
evaluate DJOLS(`) (δ`) by using (2.13).
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2.2.2 Second Order Derivative

We compute the second order derivative of the OLS functional using two
different methods: the Hybrid method and the second-order Adjoint method.

2.2.2.1 Hybrid Method for Second Derivative Computation

We aim to compute the second order derivative of the regularized OLS func-
tional in such a way that we can avoid the computation of the second order
derivative of the solution map ū. This method is referred to as the hybrid
method because the derivative, δū is computed using a direct method, and
the computation of the second derivative δ2ū is avoided using an adjoint type
method.
The hybrid method is based on the following result;
For each ` in the interior of A, ū = ū(`) = (u(`), p(`)) is infinitely differ-
entiable at `. The first derivative δū = (δu, δp) = (Du(`)δ`,Dp(`)δ`) is the
unique solution of the saddle point problem:

a(`, δu, v) + b(v, δp) = −a(δ`, u, v), for every v ∈ V, (2.14a)

b(δu, q)− c(δp, q) = 0, for every q ∈ Q. (2.14b)

Let δ`2 ∈ A be a fixed direction. For any v̄ = (v, q) ∈ V̂ , we define

H(`, v̄) = DJOLS(`)(δ`2) + a(`,Du(`)(δ`2), v) + b(v,Dp(`)(δ`2))

+ b(Du(`)(δ`2), q)− c(Dp(`)(δ`2), q) + a(δ`2, u, v)

= 〈Du(`)(δ`2), u− z̄〉+ 〈Dp(`)(δ`2), p− ẑ〉+ κDR(`)(δ`2)

+ a(`,Du(`)(δ`2), v) + b(v,Dp(`)(δ`2)) + b(Du(`)(δ`2), q)

− c(Dp(`)(δ`2), q) + a(δ`2, u, v).

Thus, for every v̄ ∈ V̂ , we have

∂H

∂`
(`, v̄)(δ`1) = D2JOLS(`)(δ`1, δ`2), for every δ`1 ∈ A. (2.15)

Computing this derivative of H in the direction δ`1 directly, we have

∂H

∂`
(`, v̄)(δ`1) =

〈
D2u(`)(δ`1, δ`2), u− z̄

〉
+ 〈Du(`)(δ`2), Du(`)(δ`1)〉

+
〈
D2p(`)(δ`1, δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉

+ κD2R(`)(δ`1, δ`2) + a(δ`1, Du(`)(δ`2), v)

+ a(`,D2u(`)(δ`1, δ`2), v) + b(v,D2p(`)(δ`1, δ`2))

+ b(D2u(`)(δ`1, δ`2), q)− c(D2p(`)(δ`1, δ`2), q)

+ a(δ`2, Du(`)(δ`1), v). (2.16)
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Let w(`) = (w̄(`), pw(`)) be the solution of (2.12), that is,

a(`, w̄, v) + b(v, pw) = 〈z̄ − u, v〉 , for every v ∈ V
b(w̄, q)− c(`, pw, q) = 〈ẑ − p, q〉 , for every q ∈ Q.

Now make the substitution v̄ = w in (2.16), to obtain

∂H

∂`
(`, w)(δ`1) =

〈
D2u(`)(δ`1, δ`2), u− z̄

〉
+ 〈Du(`)(δ`2), Du(`)(δ`1)〉

+
〈
D2p(`)(δ`1, δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉

+ κD2R(`)(δ`1, δ`2) + a(δ`1, Du(`)(δ`2), w̄)

+ a(`,D2u(`)(δ`1, δ`2), w̄) + b(w̄,D2p(`)(δ`1, δ`2))

+ b(D2u(`)(δ`1, δ`2), pw)− c(D2p(`)(δ`1, δ`2), pw)

+ a(δ`2, Du(`)(δ`1), w̄)

= κD2R(`)(δ`1, δ`2) + 〈Du(`)(δ`2), Du(`)(δ`1)〉
+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉+ a(δ`1, Du(`)(δ`2), w̄)

+ a(δ`2, Du(`)(δ`1), w̄).

Therefore from (2.15)

D2JOLS(`)(δ`1, δ`2) = κD2R(`)(δ`1, δ`2) + 〈Du(`)(δ`2), Du(`)(δ`1)〉
+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉+ a(δ`1, Du(`)(δ`2), w̄)

+ a(δ`2, Du(`)(δ`1), w̄).

Arbitrarily, we have

D2JOLS(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + 〈δu, δu〉
+ 〈δp, δp〉+ 2a(δ`, δu, w̄). (2.17)

We can now compute the derivative D2JOLS(`)(δ`, δ`) given ` ∈ A, δ` ∈ A
by solving (2.6) to compute u(`) = (ū(`), p(`)), then computing w(`) =
(w̄(`), pw(`)) by (2.12), and then getting δu = (δu, δp) by (2.14). This gives
all the elements required to finally get D2JOLS(`)(δ`, δ`) by using (2.17).

2.2.2.2 Adjoint Method for Second Derivative Computation

The second method for computation of the second order derivative of the
regularized OLS functional is the second order adjoint method. It is used
in order to avoid the computation of the second derivative of the solution
map ū. The idea is to apply the results (2.14) and (2.12) twice to avoid the
computation of δ2ū.
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Define H : A× V̂ × V̂ → R by

H(`, t, s) = DJOLS(`)(δ`2) + a(`, u, t̄) + b(t̄, p) + b(u, qt)− c(p, qt)−m(t̄)

+ a(`, w̄s̄) + b(s̄, pw) + b(w̄, qs)− c(pw, qs)− 〈z̄ − u, s̄〉 − 〈ẑ − p, qs〉
= κDR(`)(δ`2) + a(δ`2, u, w̄) + a(`, u, t̄) + b(t̄, p)

+ b(u, qt)− c(p, qt)−m(t̄) + a(`, w̄, s̄) + b(s̄, pw)

+ b(w̄, qs)− c(pw, qs)− 〈z̄ − u, s̄〉 − 〈ẑ − p, qs〉 ,

where δ`2 is a fixed direction, ū = (u, p) is the solution of the saddle point
problem (2.6), w = (w̄, pw) is the solution of the saddle point problem (2.12),
t = (t̄, qt) and s = (s̄, qs) ∈ V are arbitrary elements, and (2.13) is used for
DJOLS(`)(δ`2).

From the above we get that for every t, s ∈ V̂
∂H

∂`
(`, t, s)(δ`1) = D2JOLS(`)(δ`1, δ`2). (2.18)

The right-hand side derivative of H(·, ·, ·) at ` ∈ A in the direction δ`1 can
be computed as follows:

∂H

∂`
(`, t, s)(δ`1) = κD2R(`)(δ`1, δ`2) + a(δ`2, Du(`)(δ`1), w̄)

+ a(δ`2, u,Dw̄(`)(δ`1)) + a(δ`1, u, t̄) + a(`,Du(`)(δ`1), t̄)

+ b(t̄, Dp(`)(δ`1)) + b(Du(`)(δ`1), qt)− c(Dp(`)(δ`1), qt)

+ a(δ`1, w̄, s̄) + a(`,Dw̄(`)(δ`1), s̄) + b(s̄, Dpw(`)(δ`1))

+ b(Dw̄(`)(δ`1), qs)− c(Dpw(`)(δ`1), qs)

+ 〈Du(`)(δ`1), s̄〉+ 〈Dp(`)(δ`1), qs〉 . (2.19)

Recall (2.14) can be rewritten as

a(`,Du(`)(δ`2), v) + b(v,Dp(`)(δ`2)) = −a(δ`2, u, v), ∀v ∈ V, (2.20a)

b(Du(`)(δ`2), q)− c(Dp(`)(δ`2), q) = 0, ∀q ∈ Q, (2.20b)

Making the substitution (v, q) = (Dw̄(`)(δ`1), Dpw(`)(δ`1)) in (2.20) we get

a(`,Du(`)(δ`2), Dw̄(`)(δ`1)) + b(Dw̄(`)(δl1), Dp(`)(δ`2))

= −a(δ`2, u,Dw̄(`)(δ`1)),

b(Du(`)(δ`2), Dpw(`)(δ`1))−c(Dp(`)(δ`2), Dpw(`)(δ`1)) = 0,

adding both expressions and using the symmetric property of a(·, ·, ·) and
c(·, ·), we obtain

a(`,Dw̄(`)(δ`1), Du(`)(δ`2)) + b(Du(`)(δ`2), Dpw(`)(δ`1))

+b(Dw̄(`)(δ`1), Dp(`)(δ`2))−c(Dpw(`)(δ`1), Dp(`)(δ`2))

= −a(δ`2, u,Dw̄(`)(δ`1)). (2.21)



14 2.2. Output Least Squares

Because w(`) = (w̄(`), pw(`)) is the solution of (2.12), the following saddle
point problem holds,

a(`, w̄, v) + b(v, pw) = 〈z̄ − u, v〉 , for every v ∈ V
b(w̄, q)− c(pw, q) = 〈ẑ − p, q〉 , for every q ∈ Q,

It can be shown that the derivative, Dw(`)(δ`2) = (Dw̄(`)(δ`2), Dpw(`)(δ`2)),
of w(`) in any direction δ`2 ∈ A is characterized as the solution of the
following saddle point problem:

a(`,Dw̄(`)(δ`2), v) + b(v,Dpw(`)(δ`2))

= −a(δ`2, w̄, v)− 〈Du(`)(δ`2), v〉 , ∀v ∈ V,
b(Dw̄(`)(δ`2), q)− c(Dpw(`)(δ`2), q)

= −〈Dp(`)(δ`2), q〉 , ∀q ∈ Q. (2.22)

Making the substitution (v, q) = (Du(`)(δ`1), Dp(`)(δ`1)) into (2.22), we
obtain

a(`,Dw̄(`)(δ`2), Du(`)(δ`1)) + b(Du(`)(δ`1), Dpw(`)(δ`2))

= −a(δ`2, w̄, Du(`)(δ`1))− 〈Du(`)(δ`2), Du(`)(δ`1)〉
b(Dw̄(`)(δ`2), Dp(`)(δ`1))− c(Dpw(`)(δ`2), Dp(`)(δ`1))

= −〈Dp(`)(δ`2), Dp(`)(δ`1)〉 ,
By adding up these equations and using the symmetry of a(·, ·, ·) and c(·, ·),
we obtain,

a(`,Du(`)(δ`1), Dw̄(`)(δ`2)) + b(Dw̄(`)(δ`2), Dp(`)(δ`1))

+ b(Du(`)(δ`1), Dpw(`)(δ`2))− c(Dp(`)(δ`1), Dpw(`)(δ`2))

= −a(δ`2, w̄, Du(`)(δ`1))− 〈Du(`)(δ`2), Du(`)(δ`1)〉
− 〈Dp(`)(δ`2), Dp(`)(δ`1)〉 . (2.23)

Now we set s = (s̄, qs) = (Du(`)(δ`2), Dp(`)(δ`2)) and
t = (t̄, qt) = (Dw̄(`)(δ`2), Dpw(`)(δ`2)) in (2.19) and put that into (2.21) and
(2.23), to get

∂H

∂`
(`, t, s)(δ`1) = κD2R(`)(δ`1, δ`2) + a(δ`2, Du(`)(δ`1), w̄)

+ a(δ`2, u,Dw̄(`)(δ`1)) + a(δ`1, u,Dw̄(`)(δ`2))

− a(δ`2, w̄, Du(`)(δ`1))− 〈Du(`)(δ`2), Du(`)(δ`1)〉
− 〈Dp(`)(δ`2), Dp(`)(δ`1)〉+ a(δ`1, w̄, Du(`)(δ`2))

− a(δ`2, u,Dw̄(`)(δ`1)) + 〈Du(`)(δ`1), Du(`)(δ`2)〉
+ 〈Dp(`)(δ`1), Dp(`)(δ`2)〉

= κD2R(`)(δ`1, δ`2) + a(δ`1, u,Dw(`)(δ`2))

+ a(δ`1, w̄, Du(`)(δ`2)).
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Therefore, from (2.18), we obtain the following formula for the second-order
derivative of the regularized OLS that has no explicit computation of the
second-order derivatives of the solution map:

D2JOLS(`)(δ`1, δ`2) = κD2R(`)(δ`1, δ`2) + a(δ`1, u,Dw(`)(δ`2))

+ a(δ`1, w̄, Du(`)(δ`2))

Arbitrarily,

D2JOLS(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + a(δ`, u,Dw(`)(δ`))

+ a(δ`, w̄,Du(`)(δ`)). (2.24)

Given ` ∈ A, δ` ∈ A, we compute D2JOLS(`)(δ`, δ`) by first using (2.6) to
compute ū = (u, p), and (2.12) to compute w = (w̄, pw). Next we use (2.14)
to get δū = (δu, δp), and (2.22) to get δw = (δw̄, δpw). This gives all the
pieces needed to compute D2JOLS(`)(δ`, δ`) using (2.24).

2.3 Modified Output Least Squares

The Modified Output Least Squares, (MOLS), scheme is introduced to cope
with some of the problems of the OLS functional like convexity. The MOLS
functional is convex,so the local optimality conditions are also global opti-
mality conditions. The MOLS functional does not require the computation
of the solution map for the first order derivative. It is known that the con-
vexity allows for higher convergence speed of the MOLS functional over the
OLS functional.
The MOLS objective functional uses the weak form of the system as a guide,
and is as follows:

JMOLS(`) =
1

2
a(`, u(`)− z̄, u(`)− z̄) + b(u(`)− z̄, p(`)− ẑ)

− 1

2
c(p(`)− ẑ, p(`)− ẑ) (2.25)

where all variables are the same as in the case of the OLS scheme. Also,
as with the OLS, this functional is susceptible to ill-posedness and so reg-
ularization of some sort is introduced to combat this problem, and provide
numerical and computational stability.
Because of the definition of the MOLS functional in (2.25), the computation
of the derivative is very simple. The first derivative is free from the com-
putation of the solution map u, which is one of the reasons this method is
computationally less expensive that OLS.
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Given (2.25), we get that

DJMOLS(`)(δ`) =
1

2
a(δ`, u(`)− z̄, u(`)− z̄) + a(`, δu(`), u(`)− z̄)

− c(δp(`), p(`)− ẑ) + b(δu(`), p(`)− z̄) + b(u(`)− z̄, δp)

= −1

2
a(δ`, u(`) + z̄, u(`)− z̄).

Computation of the second order derivative of the MOLS method is as easy
as the first order derivative computation. We apply the chain rule to the
above form of the first order derivative and obtain

D2JMOLS(`)(δ`, δ`) = −1

2
a(δ`, δu, u(`)− z̄)− 1

2
a(δ`, u(`) + z̄, δu)

= a(`, δu, δu) + c(δp, δp) (2.26)

This then makes the second order derivative of the MOLS functional, a two
step procedure. First, compute δu = (δu, δp) by solving (2.14), and then use
(2.26) to compute D2JMOLS(`)(δ`, δ`)
All the details on the MOLS functional can be found in [28].

2.4 Energy Output Least Squares

A variant of the modified OLS is the following energy OLS given below:

JEOLS(`) =
1

2
a(`, u(`)− z̄, u(`)− z̄) +

1

2
c(p(`)− ẑ, p(`)− ẑ) (2.27)

All variables used are the same as in the previous sections. Because of the
ill-posed nature of the functional, regularization needs to be applied to some
level in order to ensure stability, but not so much that it alters the accuracy
of the method. This functional is also convex, and this is an advantage over
the generic OLS functional.
It follows that the first order derivative of the EOLS functional is given by.

DJEOLS(`)(δ`) =
1

2
a(δ`, u− z̄, u− z̄) + a(δ`, u, w̄). (2.28)

Furthermore, it is known that the second derivative is given by

D2JEOLS(`)(δ`, δ`) = 2a(δ`, δu, u− z̄) + a(`, δu, δu)

+ c(δp, δp) + 2a(δ`, δu, w̄). (2.29)

All the details on the EOLS functional can be found in [20].
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2.5 Equation Error Approach

Another optimization formulation is the so-called equation error approach
introduced below. We define e1(µ, ū) ∈ V and e2(µ, ū) ∈ Q such that

〈e1(µ, ū), v〉 =

∫
Ω

2µε(u) · ε(v) +

∫
Ω

p(divv)−
∫

Ω

fv −
∫

Γ2

vh ∀v ∈ V,

〈e2(µ, ū), q〉 =

∫
Ω

(divu)q −
∫

Ω

1

λ
pq ∀q ∈ Q.

This now allows us to define e(µ, ū) = (e1(µ, ū), e2(µ, ū)) ∈ V ×Q such that

〈e(µ, ū), v̄〉 =

∫
Ω

2µε(u)·ε(v)+

∫
Ω

p(divv)−
∫

Ω

fv−
∫

Γ2

vh−
∫

Ω

(divu)q+

∫
Ω

1

λ
pq

(2.30)
where v̄ = (v, q).
With this framework set up, it then makes sense to minimize the newly
defined function e(µ, z) with respect to µ, where z = (z̄, ẑ) is some form of
measurement of the solution map ū.
This then makes the EE functional

JEE(µ) =
1

2
||e(µ, z)||2

V̂
(2.31)

where z = (z̄, ẑ) is some measurement of the solution map u, and pressure
p. As with every other functional, this functional also requires a level of
regularization for computational stability.
An advantage of this scheme is that it is uniquely solvable in both its con-
tinuous, and discrete form. It also produces a convex functional therefore
a minimizer is guaranteed to be found. Lastly, this scheme is computation-
ally inexpensive compared to the other forms of the Output Least Squares
schemes, as there are no underlying variational problems to be solved. The
drawback of this method is that it relies on differentiating the data or mea-
surements entered into the system. As a result, noise or errors in the data
can cause solutions to be very inaccurate. In other words, this method is not
very robust, and is very sensitive to noise in the data.
The EE functional is uniquely set up such that the computation of its deriva-
tives are defined similarly. The functional (2.31) can be written as

JEE(µ) =
1

2
〈e1, e1〉+

1

2
〈e2, e2〉 (2.32)

Note that derivatives are taken with respect to µ, and by the definition of
e1, and e2, we know that e2 is constant with respect to µ. The first order
derivative of the EE functional is the direct derivative of (2.32)

DJEE(µ)(δµ) = 〈e1(µ, z)δµ, e1t(µ, z)〉 (2.33)
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where
〈e1t(µ, ū), v〉 = a(µ, ū, v̄) + b(v̄, p)

Similarly, the second order derivative is uniquely defined through direct com-
putation of (2.33) to yield

D2JEE(µ)(δµ, δµ) = 〈e1t(µ, z)δµ, e1t(µ, z)δµ〉. (2.34)

All the details on the EE functional can be found in [18].



Chapter 3

Discretization

In this section, we give the discrete formulations of the objective functionals
and their derivatives. We start off by discretizing the spaces in which all our
variables and parameters are defined, and then we discretize the functionals
of our optimization schemes.

3.1 Finite Element Discretization

We use finite element discretization for both the direct and the inverse prob-
lem. We assume that we have a set of finite dimensional subspaces of V and
Q, which we represent as {Vh}, and {Qh}. Now, we define V̂h = Vh × Qh,
where the spaces is the product topology are such that the discrete form of
the Babushka-Brezzi condition holds. We also assume Bh is a finite dimen-
sional subspace of B so that we can define a non-empty finite dimensional
subspace of feasible coefficients Ah = Bh ∩ A. Lastly, we assume that there
exist component wise projection operations from each space to its choice
finite dimensional subspace.
The discrete version of the saddle point problem now becomes

a(`h, uh, v) + b(v, ph) = m(v) ∀v ∈ Vh
b(uh, q)− c(ph, q) = 0 ∀q ∈ Qh (3.1)

First we define a triangulation Th on Ω ⊂ R2, in which Lh is the space of all
piecewise continuous polynomials of degree d` relative to Th, Uh is the space
of all piecewise continuous polynomials of degree du relative to Th, and Qh is
the space of all piecewise continuous polynomials of degree dq relative to Th.
Next we define the bases for the finite dimensional subspaces Lh, Uh and Qh

by {ϕ1, ϕ2, . . . , ϕm} , {ψ1, ψ2, . . . , ψn} , and {χ1, χ2, . . . , χk}, respectively in
order to allow for numerical computation. Lh is now isomorphic to Rm and
for any ` ∈ Lh, we define L ∈ Rm by Li = `(xi), i = 1, 2, . . . ,m, where
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the nodal basis {ϕ1, ϕ2, . . . , ϕm} corresponds to the nodes {x1, x2, . . . , xm}.
Each L ∈ Rm now corresponds to ` ∈ Lh defined by

` =
m∑
i=1

Liϕi.

Similarly, u ∈ Uh will correspond to U ∈ Rn, where Ūi = u(yi), i =
1, 2, . . . , n, and we define

u =
n∑

i=1

Ūiψi,

where y1, y2, . . . , yn are the nodes of the mesh defining Uh. Lastly, q ∈ Qh

will correspond to Q ∈ Rk, where Qi = q(zi), i = 1, 2, . . . , k, and

q =
k∑

i=1

Qiχi,

where z1, z2, . . . , zk are the nodes of the mesh defining Qh. The finite dimen-
sional subspaces Ah, Uh, and Qh are defined relative to the same elements,
but the nodes will be different if the condition that d` 6= du 6= dq hold.
Recall that the discrete saddle point problem in (3.1) looks to find the unique
(uh, ph) ∈ Vh ×Qh, for each `h, such that

a(`h, uh, v) + b(v, ph) = m(v), ∀v ∈ Uh, (3.2a)

b(uh, q)− c(ph, q) = 0, ∀q ∈ Qh. (3.2b)

Now, define S : Rm → Rn+k to be the finite element solution operator that
assigns the unique approximate solution ūh = (uh, ph) ∈ Uh × Qh to each
coefficient `h ∈ Ah. Thus S(L) = U , where U is defined by

K(L)U = F, (3.3)

where the stiffness matrix K(L) ∈ R(n+k)×(n+k) and the load vector F ∈ Rn+k

are given by

K(L) =

[
K̂n×n(L) BT

n×k
Bk×n −Ck×k

]
with

K̂(L)i,j = a(`, ψj, ψi), i, j = 1, 2, . . . , n,

Bi,j = b(ψj, χi), i = 1, 2, . . . , k, n = 1, 2, . . . , n

Ci,j = c(χj, χi), i, j = 1, 2, . . . , k,

Fi = m(ψi), i = 1, 2, . . . , n,

Fj = 0, j = n+ 1, n+ 2, . . . , n+ k.
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It is important to note that

K̂(L)ij = TijkLk,

where the summation convention is used and T is the tensor defined by

Tijk = a(ϕk, ψi, ψj), for every i, j = 1, . . . , n, k = 1, . . . ,m.

For ease of computation, we approximate the components of Uh in a single

finite element space Ũh where Uh = Ũh × Ũh. Therefore, if {ψ1, . . . , ψ`} are

the basis of Ũh then the vector-valued basis of Uh can be chosen as

{ψi}ni=1 =

{[
ψ1

0

]
,

[
ψ2

0

]
, · · · ,

[
ψ`

0

]
,

[
0
ψ1

]
,

[
0
ψ2

]
, · · · ,

[
0
ψt

]}

3.2 Discrete Optimizers

In this section, we propose discrete formulations of the optimization schemes
discussed in the previous chapter.

3.2.1 Discrete Output Least Squares

We will now discretize the OLS functional as well as its first order and second
order derivatives.
We define the regularized partial OLS functional given by

JOLS(`) =
1

2
‖u(`)− z̄‖2

V + κR(`),

where z = (z̄, ẑ) is the measured data and u(`) = (ū(`), p(`)) is the solution
of the following saddle point problem:

a(`, u, v) + b(v, p) = m(v), ∀v ∈ V,
b(u, q)− c(p, q) = 0, ∀q ∈ Q.

The discretized form of the functional becomes

JOLS(L) :=
1

2
(Ū − Z̄)TM(Ū − Z̄) + κR(L),

where M ∈ Rn×n is defined by

Mij = 〈ψi, ψj〉

and U = (Ū , P ) solves the following linear system[
K̂n×n(L) BT

n×k
Bk×n −Ck×k

] [
Ū
P

]
=

[
F
0

]
. (3.4)
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3.2.1.1 Gradient Computation

We now proceed to give a gradient formula.
We first describe a direct approach.
Recall that the first-order derivative of the regularized OLS is given by

DJOLS(`)(δ`) = 〈δu, u− z̄〉+ κDR (l) (δ`), (3.5)

This derivative uses δū(`) = (δu(`), δp(`)) which is characterized as the
unique solution of the following saddle point problem:

a(`, δu, v) + b(v, δp) = −a(δ`, u, v), ∀v ∈ V
b(δu, q)− c(δp, q) = 0 ∀q ∈ Q.

The discrete formulation of the above saddle point problem is given by the
following linear system

K(L)δU = F̂ (δL), (3.6)

where F̂ ∈ Rn+k is given by

F̂ (δL) =

(
−K̂(δL)Ū

0

)
,

This can be simplified by defining the adjoint stiffness matrix A which holds
the following condition:

K̂(L)V̄ = A(V̄ )L, ∀L ∈ Rm, ∀V̄ ∈ Rn. (3.7)

This implies that

F̂ (δL) =

(
−A(Ū)(δL)

0

)
. (3.8)

And so, the gradient

∇U = [∇1U · · · ∇mU ] =

[
∇1Ū · · · ∇mŪ
∇1P · · · ∇mP

]
∈ R(k+n)×m

is computed by solving the following m linear equations

K(L)∇iU = F̂ (Ei), i = 1, ...,m, (3.9)

which is, (
K̂(L) BT

B −C

)(
∇iŪ
∇iP

)
=

(
−A(Ū)Ei

0

)
, (3.10)

where {Ei}i=1,...,m ⊂ Rm denotes the canonical basis of Rm, and ∇Ū ∈ Rk×m

denotes the matrix
∇Ū = [∇1Ū · · · ∇mŪ ],
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We follow the same notation for ∇P ∈ Rn×m.
Therefore, the discretization of (3.5) is as follows:

DJOLS(L)(δL) =
〈
δŪ , Ū − Z̄

〉
+ κ∇R (L) δL

=
(
Ū − Z̄

)T
M∇ŪδL+ κ∇R (L) δL,

We can then get an explicit form for the gradient of the regularized OLS
functional as;

∇JOLS(L) =
(
Ū − Z̄

)T
M∇Ū + κ∇R (L) . (3.11)

So in order to compute the gradient of the regularized OLS functional by
direct method, we first compute U = (Ū , P ) by solving (3.4), then ∇Ū
by solving (3.9), so that we have all the elements in place to compute the
gradient. The gradient ∇JOLS(L) is computed by using (3.11).

3.2.1.1.1 Adjoint Approach The first-order derivative by using the
first-order adjoint approach reads

DJOLS(`)(δ`) = κDR(`)(δ`) + a(δl, u, w̄), (3.12)

where ū = (u, p) is the solution to the saddle point problem (2.6) and w =
(w̄, q) is the solution to the problem (2.12), respectively.
The discrete version of these elements are the vectors U = (Ū , P ) which
solves (3.4) and W = (W̄ , Pw) which solves the linear systems below[

K̂n×n(L) BT
n×k

Bk×n −Ck×k

] [
W̄
Pw

]
=

[
M(Z̄ − Ū)

0

]
. (3.13)

Thus for the unregularized first order adjoint computation of the OLS first
order derivative in (3.12) we have

a(δL, Ū , W̄ ) = ŪTK̂(δL)W̄ = ŪTA(W̄ )δL,

where A is the adjoint stiffness matrix. Thus, we arrive at the following
discrete version of (3.12)

DJOLS(L)(δL) = κ∇R(L)(δL) + ŪTA(W̄ )δL,

This means we can get an explicit formula for the gradient of the OLS func-
tional as

∇JOLS(L) = κ∇R(L) + ŪTA(W̄ ). (3.14)

The steps then for calculating the gradient of the discrete regularized OLS
functional using the first order adjoint method involve computing U = (Ū , P ),
and W = (W̄ , Pw) by solving the systems (3.4) and (3.13) respectively. Now
we can compute the gradient, ∇JOLS(L), by using (3.14).
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3.2.1.2 Hessian Computation

We calculate the discretized second order derivative or Hessian of the regu-
larized OLS functional.

3.2.1.2.1 Hybrid Method Recall the second-order derivative of the reg-
ularized OLS

D2JOLS(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + 〈δu, δu〉+ 2a(δ`, δu, w̄).

By direct discretization, we get

∇2JOLS(L)(δL, δL) = κD2R(L)(δL, δL) +
〈
δŪ , δŪ

〉
+ 2a(δL, δŪ , W̄ )

= δLT∇2R(L)δL+ κδLT∇ŪT

M∇ŪδL
+ 2δL

T∇ŪT

K̂(δL)W̄

= δLT∇2R(L)δL+ κδLT∇ŪT

M∇ŪδL
+ 2δL

T∇ŪTA(W̄ )δL. (3.15)

From (3.15), we can get an explicit form for the Hessian.

∇2JOLS(L) = κ∇2R(L) + ∇ŪTM∇Ū + 2∇ŪTA(W̄ ). (3.16)

The steps to calculate the hessian of the regularized OLS start off with com-
puting U = (Ū , P ), and W = (W̄ , Pw), by solving the systems (3.4), and
(3.13) respectively. Then you compute ∇U = (∇Ū ,∇P ) by solving (3.9).
Finally, the hessian, ∇2JOLS(L), can be computed using (3.16).

3.2.1.2.2 Adjoint Approach The second-order derivative of the regu-
larized OLS by the second-order adjoint approach is given by

D2JOLS(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + a(δ`, u,Dw(`)(δ`))

+ a(δ`, w̄,Du(`)(δ`)).

Recall also the saddle point problem

a(`,Dw̄(`)(δ`2), v) + b(v,Dpw(`)(δ`2)) = −a(δ`2, w̄, v)− 〈Du(`)(δ`2), v̄〉 , ∀v ∈ V,
b(Dw̄(`)(δ`2), q)− c(pw(`)(δ`2), q) = 0, ∀q ∈ Q,

Now note that we need to compute Dw, and this can be done by solving the
following system of m linear equations.[

K̂n×n(L) BT
n×k

Bk×n −Ck×k

] [
∇iW̄
∇iP

]
=

[
−A(Ū)Ei −M(∇UEi)

0

]
. (3.17)
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The Hessian is thus;

∇2JOLS(L) = κ∇2R(L) +∇W̄ TA(Ū) +∇ŪTA(W̄ ). (3.18)

using the same adjoint technique used in the previous Hessian computation.
We compute the Hessian for the second-order adjoint approach by computing
U = (Ū , P ), and W = (W̄ , P ) using (3.4), and (3.13), respectively. Next,
we compute ∇U = (∇Ū ,∇P ) and ∇W = (∇W̄ ,∇Pw) by solving m linear
systems each in (3.10) and (3.17), respectively. Now, we compute the hessian,
∇2JOLS(L), using (3.18).

3.2.2 Discrete MOLS

In this section, we collect discrete formulas for the MOLS, its gradient, and
hessian.
We have

JMOLS(L) =
1

2
(Ū(L)− Z̄)TK̂(L)(Ū(L)− Z̄) + (Ū(L)− Z̄)TBT(P (L)− Ẑ)

− 1

2
(P (L)− Ẑ)TC(P (L)− Ẑ). (3.19)

Moreover,

∇JMOLS(L) = −1

2
A(Ū(L) + Z̄)T(Ū(L)− Z̄)

= −1

2
A(Ū(L))TŪ(L) +

1

2
A(Z̄)TZ̄,

∇2JMOLS(L) = ∇Ū(L)TA(∇Ū(L)) +∇P (L)TC∇P (L)

3.2.3 Discrete EOLS

We compute the discrete EOLS functional;

JEOLS(L) =
1

2
(Ū(L)− Z̄)TK̂(L)(Ū(L)− Z̄) +

1

2
(P (L)− Ẑ)TC(P (L)− Ẑ).

Moreover,

∇JEOLS(L) =
1

2

(
Ū − Z̄

)T A(Ū − Z̄) + ŪTA(W̄ (L))

∇2JEOLS(L) = 2
T∇ŪTA(Ū − Z̄) +∇ŪT

K̂(L)∇Ū +∇P T

C∇P + 2∇ŪTA(W̄ )
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3.2.4 Discrete Equation Error

We can now compute the EE functional

JEE(L) =
1

2

(
A(Ū)L+BTP − F

)T
(K +M)−1

(
A(Ū)L+BTP − F

)
+

1

2

(
BŪ − CP

)T
M−1

Q

(
BŪ − CP

)
Moreover,

∇JEE(L) = A(Ū)T (K +M)−1
(
A(Ū)L+BTP − F

)
,

∇2JEE(L) = A(Ū)T (K +M)−1
(
A(Ū)

)
.



Chapter 4

Heavy Ball with Friction
Method

4.1 Introduction

In this section, we pose our minimization problem in terms of a dynamical
system, so that differential equations based solvers can be used. Iterative
techniques are typically used to solve our minimization problem. These solu-
tions at each step of iteration can be put into a sequence, with the sequence
limiting to the minimizer of our functional. We can see this sequence as the
path of the solution to a dynamical system over artificial time, so that as
time approaches infinity, the solution to the dynamical system converges to
the minimizer. The next step is to find a suitable dynamical system that
closely models such a sequence, and this is what we explore below.

4.2 Continuous Methods

The main focus is the minimization of an objective functional J(a). This
implies that, given a suitable trajectory, a continuous method can be used
to solve the minimization problem. If the trajectory used is the continuous
gradient, then a steepest descent approach is being utilized. That is

da

dt
= −∇J(a)

a(t0) = ao (4.1)

In order to solve the minimization problem

min
Ã
J(a)
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we must solve the associated initial value problem. The trajectory of the
gradient leads us to a minimizer for the functional J(a). So

{an}n∈N → a∗ as n→∞

where
|J(a∗)| ≤ J(a) ∀a ∈ Ã

thus a∗ is a minimizer of the functional, and Ã is the set of feasible values of
a.

4.2.1 A Continuous Newton-Type Trajectory

Above, we consider, a trajectory defined solely by the gradient of the func-
tional being minimized. However, another possible trajectory considered by
Zhang, Kelley and Liao[48], is the so-called Newton’s direction defined by
both the gradient and the Hessian of the objective functional.

∇2J(a)
da

dt
= −∇J(a)

a(t0) = a0

where ∇2J(a) is the Hessian of the objective functional J(a). Thus, the
initial value problem becomes

da

dt
= −(∇2J(a))−1∇J(a)

a(t0) = a0 (4.2)

This method however can only be applied when the resulting Hessian matrix
has no singularity issues. Zhang, Kelley, and Liao proposed a compromise in
which the magnitude of the minimum eigenvalue decides what method will
be used at each step. The scheme proposed chooses between (4.1) and (4.2)
or a convex combination of both.

da

dt
= g(a)

a(t0) = ao

where

g(a) =

 −(∇2J(a))−1∇J(a) if λmin(a) > δ2

−α(a)(∇2J(a))−1∇J(a)− β(a)∇J(a) δ1 ≤ λmin(a) ≤ δ2

−∇J(a) λmin(a) < δ1
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where λmin(a) is the minimum eigenvalue of ∇2J(a), and δ2 > δ1 > 0. We
define α(a), and β(a) as follows;

α(a) =
λmin(a)− δ1

δ2 − δ1

β(a) = 1− α(a)

=
δ2 − λmin(a)

δ2 − δ1

This formulation shows that the combined trajectory is a weighted trajectory
that leans towards the gradient when λmin(a) is closer to δ1, and leans towards
the continuous Newton direction when λmin(a) is closer is to δ2.
Conditions for convergence are presented in [48]. In the simple steepest
descent gradient method, the added condition for convergence to a minimizer
of ∇J(a) is that it be Lipschitz continuous in the bounded sets of the Hilbert
Space in which it is defined. Extending this, the added requirement for
convergence here is that −(∇2J(a))−1∇J(a) be Lipschitz continuous, and
this would imply that g(a) is also Lipschitz continuous. This proof is also
provided in [48].

4.3 Heavy Ball with Friction Method

Let H be a real Hilbert space and Φ : H → R be a continuously differen-
tiable function with a Lipschitz continuous gradient on the bounded set of
H. Attouch et al. in [10] study the nonlinear dissipative dynamical system

a′′ + λa′ +∇Φ(a) = 0

In [10], and [2], Attouch and Alvarez concluded that, given the above con-
ditions, the asymptotic behavior of the solution of the dissipative dynamical
system has a trajectory that converges weakly towards a minimizer of Φ.
The system models a heavy mass (heavy ball) rolling down a trajectory
defined by Φ with the friction term between the mass and the surface of the
trajectory being λ, thus the name heavy ball with friction method. Attouch
et al.[10] derived the true form of the heavy ball with friction system as

a′′ + λa′ + g∇Φ(a) = 0

a(0) = a0 a′(0) = a′0 (4.3)

where g is some form of downward force, usually a gravitational term. How-
ever, they noted that because of the scale and scope of the minimization
problem, the physical interpretation of the model with regards to a heavy
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mass rolling down a surface, may not make direct sense, but allows for the
user to make educated guesses on the behavior of the technique.
It is important to note that, as oppose to the steepest descent techniques,
the heavy ball with friction technique is a nonlinear oscillatory technique.
It allows for oscillation in its trajectory and as a result, where the steepest
descent technique might stop at the first local minimizer it finds, (4.3) allows
for oscillation, and as such is better suited for minimization problems with
multiple local minimizers. As one might imagine, in the context of a heavy
ball rolling down a trajectory, the terms λ, and g would heavily determine
the speed at which it would roll, and its ability to handle oscillations. The
friction term λ would tend to slow it down to a certain extent, so decreasing
the term might seem like a simple solution, but it has a strictly positive
restriction. Also, if the friction is not enough, then the ball might roll past a
potential minimizer, and this is not optimal. The gravitational term g also
plays a roll with regards to the speed of the ball and its ability to handle
oscillations in a physical sense. As a result, managing the balance between
the friction and the gravitational term is key to this method.
Now (4.3) can be written as a first order system in H ×H as

A′ = S(A)

where

A′ =

[
a(t)
a′(t)

]
and S(u, v) =

[
v

−λv − g∇Φ(u)

]
All the previous assumptions of Φ are held, including boundedness from
below so that existence and uniqueness of a local solution can be proven by
the Cauchy-Lipschitz theorem for the first order initial value problem

A′ = S(A),

A(0) = A0 (4.4)

where A0 =

[
a0

a′0

]
The novel idea here is to combine the advantages of the continuous Newton-
type method, its relative speed over the continuous gradient approach, with
the improvement of convergence speed of the heavy ball with friction method.
This yield the following system from (4.3)

a′′ + αa′ + βg(a) = 0

a(0) = a0 a′(0) = a′0 (4.5)

where g(a) is as previously defined, and α, β > 0. The conditions for con-
vergence still hold in this case. Letting a′(t) = v(t), and a′(0) = v0 we can
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combine (4.4) and (4.5) to yield

A′ = S(A),

A(0) = A0

where A0 =

[
a0

v0

]
, A′ =

[
a(t)
v(t)

]
and S(a, v) =

[
v

−αv − βg(a)

]
The heavy ball with friction method is studied extensively in [2, 3, 9, 8, 10,
30]. The choice of the parameters α, and β are guided by their interpretations
in the physical model, however, the actual values used would not make sense
in that context because of the scope of the minimization problem. Educated,
but heuristic choices for the parameters are used during experimentation.
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Numerical Experiments

5.1 Introduction

In this section, we consider two examples for the elasticity problem, in which
we try to recover the parameter µ. Because we are considering an incom-
pressible body for our model, we set the value of λ = 106 in the model.
One smooth, and one piece-wise defined example are tested. For the smooth
examples, the inverse problem is solved on a 15×15 quadrangular mesh with
289 degrees of freedom.
For the piece-wise example, the inverse problem is solved on a 25× 25 quad-
rangular mesh with 729 degrees of freedom.
The stopping criteria for each problem is set as

||∇J(a)|| ≤ 10−12

Recall the elasticity problem.

−∇σ = f in Ω

u = g on Γ1

σn = h on Γ2

where

σ = 2µεu + λtr(εu)I,

εu =
1

2

(
∇u+∇uT

)
(5.1)

with Ω = (0, 1)× (0, 1), ∂Ω = Γ1∪Γ2. Dirichlet conditions hold on Γ1, which
is, for our example, the top boundary, and Neumann boundary conditions
hold on Γ2 which the rest of the boundary.
First, we will be reporting the results from testing the new computations
of the second order derivative of the OLS functional. Next, we will show
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the results from testing the heavy ball with friction(HBF) technique to solve
(5.1) using

• Modified Output Least Squares

• Energy Output Least Squares

• Equation Error

For the elasticity problem, the following examples are used to run experi-
ments and collect numerical data.

• Example 1

µ(x, y) =
(

1− .12cos(3π
√
x2 + y2

)−1

f(x, y) =
1

10

[
10 + x2

y

]
g(x, y) =

[
0
0

]
h(x, y) =

[
0.5 + x2

0

]
• Example 2

µ(x, y) =


0.2sin(πx) for {(x, y) : 0.2 ≤ x ≤ 0.4, 0.2 ≤ y ≤ 0.4}
0.5sin(πx) for {(x, y) : 0.6 ≤ x ≤ 0.8, 0.6 ≤ y ≤ 0.8}
0.3sin(πx) for {(x, y) : 0.2 ≤ x ≤ 0.4, 0.6 ≤ y ≤ 0.8}
0.1sin(πx) for {(x, y) : 0.6 ≤ x ≤ 0.8, 0.2 ≤ y ≤ 0.4}
1 otherwise

f(x, y) =

[
1 + 0.1x2

0.1y

]
g(x, y) =

[
0
0

]
h(x, y) =

[
0.5 + x2

0

]
In the following tables, all errors recorded are the L2 Errors, CG represent
the continuous newton-type first order method, HB represents the second
order heavy ball with friction method, ε is the regularization parameter, α,
and β are the parameters from the heavy ball with friction method, Iters
stands for the number of iterations, Time is measured in seconds, and λmin

is the overall minimum eigen value recorded.
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5.2 Computations using OLS

The results reported in this section are done so to test the feasibility of
the Second Order Adjoint method and the Hybrid method of Hessian
computation. We use a second order technique to solve and compare these
two methods.

Figure 5.1: Example 1 OLS Hybrid

Figure 5.2: Example 1 OLS Adjoint
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Figure 5.3: Example 2 OLS Hybrid

Figure 5.4: Example 2 OLS Adjoint

Table 5.1: OLS Numerical Results
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Method ε Iters Time (s) Error
1 OLS-H 10−6 15 45.3 4.68 · 10−3

OLS-A 10−6 15 87.9 4.68 · 10−3

2 OLS-H 10−11 44 1234.4 4.37 · 10−3

OLS-A 10−11 44 2571.5 4.37 · 10−3

5.3 Heavy Ball with Friction Method

Here we will report the results comparing the continuous newton-type
method, and the HBF method.

5.3.1 Computations using MOLS

We report the results recovered using the MOLS functional for the Elasticity
problem. We also report the parameters used, as well as the time, error and
other qualitative variables and parameters involved in each example.
For the continuous gradient method we have;

Figure 5.5: Example 1 MOLS CG
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Figure 5.6: Example 2 MOLS CG
For the heavy ball with friction method, we have;

Figure 5.7: Example 1 MOLS HB
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Figure 5.8: Example 2 MOLS HB

Table 5.2: MOLS Numerical Results

Method HC MC GC ε α β Time (s) Iters λmin

1 CG 13 0 0 10−6 - - 21.6 13 .1044
HB 9 0 0 10−6 2.02 1.02 13.8 9 .0985

2 CG 13 0 0 10−6 - - 182.0 13 .0486
HB 11 0 0 10−6 2.02 1.02 133.9 11 .0486

For example 1, the L2 Error recorded for both methods was 3.84 · 10−4. The
error for example 2, was 6.42 · 10−3.

5.3.2 Computations using EOLS

We report the results recovered using the EOLS scheme. We report the
time, error, and other qualitative variables and parameters involved in each
example
For the continuous gradient method we have;
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Figure 5.9: Example 1 EOLS CG

Figure 5.10: Example 2 EOLS CG
For the heavy ball with friction method, we have;



40 5.3. Heavy Ball with Friction Method

Figure 5.11: Example 1 EOLS HB

Figure 5.12: Example 2 EOLS HB

Table 5.3: EOLS Numerical Results
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Method HC MC GC ε α β Time (s) Iters λmin

1 CG 13 0 0 10−6 - - 20.7 13 .1044
HB 9 0 0 10−6 2.02 1.02 14.1 9 .0985

2 CG 13 0 0 10−6 - - 183.3 13 .0486
HB 11 0 0 10−6 2.02 1.02 134.4 11 .0486

For example 1, the L2 Error recorded for both methods was 3.84 · 10−4. The
error for example 2, was 6.42 · 10−3

5.3.3 Computations using Equation Error

We report the results obtained from the use of the EE functional for the
elasticity problem. We also report the time, error, and other qualitative
variables and parameters involved in each example
For the continuous gradient method we have;

Figure 5.13: Example 1 EE CG
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Figure 5.14: Example 2 EE CG
For the heavy ball with friction method, we have;

Figure 5.15: Example 1 EE HB
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Figure 5.16: Example 2 EE HB

Table 5.4: EE Numerical Results

Method HC MC GC ε α β Time (s) Iters λmin

1 CG 6 0 0 10−6 - - 1.0 6 .165
HB 5 0 0 10−6 2.02 1.02 1.0 5 .165

2 CG 6 0 0 10−6 - - 3.0 6 .0917
HB 5 0 0 10−6 2.02 1.02 2.0 5 .0917

For example 1, the L2 Error recorded for both methods was 5.27 · 10−5. The
error for example 2, was 7.82 · 10−5

5.4 Choice of Parameters for HBF

The choice of the parameters α, and β are very important when it comes to
the number of iterations that the HBF method requires for convergence. It is
important to maintain accuracy, and the choice of these parameters tend not
to alter this as long as they are within reason. The table below is an example
showing different choices of parameters and how they affect the number of
iterations required to reach a certain level of accuracy.
The table represents Example 1, using the Equation Error functional, and
Euler ODE solver.
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Table 5.5: Effect of Parameter Choice in Heavy Ball method

α β Iters Time (s)
2 2 1000 28.2

2.03 1.03 7 1.05
2.02 1.02 5 1.01

2 1 7 1.07
1 1 2557 88.2

0.6 0.1 56 2.64
0.1 0.1 10000 335.4*
0.4 0.06 73 3.74

* - This example was unable to reach required accuracy in 10000 iterations.

In all of these trial, the same level of accuracy is maintained, with the L2

Error being 5.27 · 10−5. As we can see the choice of these parameters α,
and β, are very important. For every pairing but one, this method seems
to be worse than its first order counterpart. This is why the choice of this
parameter is vital.



Chapter 6

Performance of Differential
Equations Based Solvers for
Noisy Data

6.1 Motivation

All of the optimization schemes utilized in this thesis work require data. This
data is acquired through measurements made by machines that are prone to
errors. This suggests that the data would be subject to a level of noise. As a
result, the methods proposed need to be able to handle noise appropriately.

6.2 Objective and Approach

The purpose of this chapter is to compare different differential equation
solvers, optimization techniques, and objective functionals. We consider the
scalar problem because of its simplicity. It is computationally inexpensive
compared to the elasticity problem. The differential equation techniques
being considered include:

1. Euler’s Method

2. Trapezoidal Method

3. Runge Kutta Method

4. MATLAB’s ode113 solver

The objective functionals are tested using these differential equation solvers
over varying noise levels in order to compare their robustness.
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6.3 Model Problem

To conduct our numerical testing, we will focus on the following simpler
BVP:

−∇ · (a∇u) = f in Ω (6.1)

u = 0 on ∂Ω

with Ω = (0, 1)× (0, 1), and ∂Ω representing the boundary. Now define the
space V = {v ∈ H1(Ω) : v = 0 on ∂Ω}. The variational form is defined as
follows; Find u ∈ V such that

T (a, u, v) = m(v) ∀v ∈ V (6.2)

where

T (a, u, v) =

∫
Ω

a∇u · ∇v

m(v) =

∫
Ω

f · v

We assume that constants, α, β > 0 exist, such that

T (a, u, v) ≤ α||u||||v||

T (a, u, v) ≥ β||u||2,
so that by the Lax-Milgram Lemma, the weak form is uniquely solvable. The
existence and uniqueness of a solution to (6.2) can also be attained through
the Reisz representation theorem, and the assumption that a is bounded, and
positive. It is trivial to see that T (·, ·, ·) is a trilinear map T : A×V ×V → R,
and is symmetric in its last two arguments. A is a nonempty, closed, and
convex subset of a Banach space, B. A is the set of feasible coefficients.
m : V → R is a continuous linear map.

6.4 Optimization Formulations

6.4.1 Output Least Squares

As with the elasticity problem, optimizing the Output Least Squares (OLS)
functional is the most common approach to solving inverse problems. It
employs the same idea of minimizing the norm between the solution to the
weak form, u, and some measurement of this solution, z.

JOLS(a) =
1

2
||u(a)− z||2V (6.3)
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This functional is usually highly ill-posed and in need of regularization tech-
niques to produce a well-posed version. This yields the following optimization
problem:

min
a∈A

JOLS(a) =
1

2
||u(a)− z||2V + κR(a) (6.4)

where R is the regularization functional, and κ > 0 is the regularization
parameter.
For the computation of the first derivative of the scalar OLS functional, we
use an adjoint method in order to avoid explicit computation of the derivative
of the solution map. The adjoint method depends on the following results

T (δa, u, v) = −T (a, δu, v) (6.5)

Now, Let w ∈ V solving the following

T (a, w, v) = 〈z − u, v〉 ∀v ∈ V. (6.6)

Thus,
DJOLS(a)(δa) = κDR(a)(δ) + T (δa, u, w) (6.7)

To compute the first order derivative for the regularized OLS functional, first
compute u(a) by solving (6.2), and then w by solving (6.6). Finally, the first
order derivative, DJOLS(a)(δa), can now be computed.
Proceeding as before, we have that

D2JOLS(a)(δa, δa) = κD2R(a)(δa, δa) + 〈δu, δu〉+ 2T (δa, δu, w) (6.8)

Thus to compute the second order derivative of the regularized OLS func-
tional for the scalar problem, we compute u, the usual way by solving the
weak formulation, then compute w using (6.6), and then δu, by solving (6.5).
Now we have all we need to compute D2JOLS(a)(δa, δa) using (6.8)

6.4.2 Modified Output Least Squares

The Modified Output Least Squares, (MOLS), for the scalar problem pro-
duces an even simpler functional to work with because of the simplicity of
the weak form of the scalar problem. It addresses the same issues as in the
elasticity problem.
The MOLS objective functional uses the weak form of the system as a guide,
and is as follows:

JMOLS(a) =
1

2
T (a, u(a)− z, u(a)− z) (6.9)
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where all variables are the same as in the case of the OLS scheme. Also,
as with the OLS, this functional is susceptible to ill-posedness and so reg-
ularization of some sort is introduced to combat this problem, and provide
numerical and computational stability.
The computation of the first order derivative of the MOLS functional can
be done directly without worry of the computation of the derivative of the
solution map u. Using the adjoint trick in (6.5)

DJMOLS(a)(δa) = −1

2
T (δa, u(a) + z, u(a)− z) + κDR(a)(δ)

D2JMOLS(a)(δa, δa) = T (a, δu, δu) + κD2R(a)(δa, δa)

Where δu is gotten by solving (6.5)

6.4.3 Equation Error

The EE functional is defined as follows

JEE(a) =
1

2
||e(a, z)||2V , (6.10)

with e(a, u) ∈ V such that

〈e(a, u), v〉 = T (a, u, v)−m(v) (6.11)

As with every other functional, this functional also requires a level of regu-
larization for computational stability.
An advantage of this scheme is that it is uniquely solvable in both its contin-
uous, and discrete form. It also produces a convex functional, so a minimizer
is guaranteed to be found. Lastly, this scheme is computationally inexpen-
sive compared to the other forms of the Output Least Squares schemes, as
there are no underlying variational problems to be solved. The drawback
of this method is that it relies on differentiating the data entered into the
system, and as a result, noise or errors in the data can cause the solution to
be rather inaccurate. In other words, this method is not very robust, and is
very sensitive to noise in the data.
We have

JEE(a) =
1

2
〈e(a, z), e(a, z)〉

This allows for the derivative of the functional to be

DJEE(a)(δa) = 〈e(a, z)δa, et(a, z)〉+ κDR(a)(δ) (6.12)

where
〈et(a, z), v〉 = T (a, z, v) ∀v ∈ V
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Using the knowledge applied to compute the first order derivative of the EE
functional, we can compute the second order derivative from (6.12) as

D2JEE(a)(δa, δa) = 〈et(a, z)δa, et(a, z)δa〉+ κD2R(a)(δa, δa).

The discrete counterparts of the above functionals can be obtained in com-
pletely analogous fashion.

6.5 Numerical Experiments

In this section, we explore three representative example of the scalar problem

−∇ · (a∇u) = f in Ω

u = 0 on ∂Ω
(6.13)

where Ω = (0, 1)× (0, 1), and ∂Ω represents the boundary.
We solve the inverse problem on a 15 × 15 quadrangular mesh, with 1089
degrees of freedom.
The stopping criteria is the same as with the elasticity example

||∇J(a)|| ≤ 10−12.

For the scalar problem, the following examples will be used to test the meth-
ods described in previous sections.

• Example 1

u = xy(1− x)(1− y)

a = 1 + xy2

f = 1− 6y + 2y2 − 6x+ 8xy + y3 − 12xy3 − y4 + 4xy4

+ 5xy2 − 15x2y2 + 14x2y3 + 2x2 + 2x2y + 6x3y2

• Example 2

u = x+ y − 2xy

a = 2 + sin(2πx)sin(2πy)

f = 8− 4πcos(2πx)sin(2πy)(1− x− y)− 4πsin(2πx)cos(2πy)

(1− x− y) + 4sin(2πx)sin(2πy)
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• Example 3

u = 2xy + x2y − 3x

a = 2 + sin(2πxy)

f = −(4y + 8 + 8x+ 2πcos(2πxy)(4xy + 3yx2 + 2y2

+ 2xy2 + 2x2 + x3 − 3y − 3x) + 2sin(2πxy)(y + 2 + 2x))

Here we will report the results of extensive experimentation done on the
aforementioned scalar examples with respect to noise levels, and the diffential
equation techniques previously mentioned.
For completion, we report results using the new second order derivative com-
putations of the OLS functional, as well as the HBF technique using the
MOLS, and EE functionals, using different differential equations solvers.
Lastly, we report the results from our noise study, using those differential
equation solvers.
In the following tables, all errors recorded are the L2 Errors, CG represent the
continuous newton-type first order method, HB represents the second order
heavy ball with friction method, ε is the regularization parameter, α, and β
are the parameters from the heavy ball with friction method, δ1 represents
the lower threshold for the continuous newton-type method. δ2 = 1000δ1.
Iters stands for the number of iterations, Time is measured in seconds, and
λmin is the overall minimum eigen value recorded.
With regards to Hessian computation, OLS-H refers to the hybrid computa-
tion, and OLS-A refers to the second order adjoint computation.

6.5.1 Computations using OLS

We report the results using a second order algorithm to compare the
hybrid, and second order adjoint approaches of Hessian computation. We
applied a second order continuous Newton-type approach known as the
Pseudo-transient continuation(PTC). This method is a way of implementing
the continuous newton-type method and is discussed in [48].
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Figure 6.1: Example 2 PTC OLS Hybrid

Figure 6.2: Example 2 PTC OLS Adjoint

Figure 6.3: Example 3 PTC OLS Hybrid
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Figure 6.4: Example 3 PTC OLS Adjoint

Table 6.1: Example 2 OLS PTC

Method ε Error Time iters
2 OLS-H 10−10 0.0095 740.3 14

OLS-A 10−9 0.0098 1348.7 12
3 OLS-H 10−9 0.0057 444.0 9

OLS-A 10−9 0.0057 924.7 8

6.5.2 Computations using MOLS

In this section, we report the results obtain using the Modified Output Least
Square scheme to produce the objective functional that is being minimized.
We compare the continuous newton-type method and the HBF method using
several differential equation solvers.

Example 1 - Continuous Gradient
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Figure 6.5: Example 1 Euler CG

Figure 6.6: Example 1 Trap CG

Figure 6.7: Example 1 RK CG
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Figure 6.8: Example 1 ode113 CG

Table 6.2: MOLS Example 1 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 0 80 0 10−7 10−6 46.1 80 .0021 4.01 · 10−5

Trap 0 90 0 10−7 10−6 121.8 90 .0021 4.01 · 10−5

RK 0 88 0 10−7 10−6 230.6 88 .0021 4.01 · 10−5

ode113 0 102 0 10−7 10−6 121.5 102 .0021 4.01 · 10−5

Heavy Ball with Friction method

Figure 6.9: Example 1 Euler HB
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Figure 6.10: Example 1 Trap HB

Figure 6.11: Example 1 RK HB

Figure 6.12: Example 1 ode113 HB
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Table 6.3: MOLS Example 1 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 52 6 0 0.6 0.1 10−7 34.8 58 3.89 · 10−5

Trap 57 6 0 0.6 0.11 10−7 81.9 63 4.01 · 10−5

RK 54 5 0 0.6 0.11 10−7 153.8 59 4.08 · 10−5

ode113 214 0 0 1.9 0.9 10−7 227.4 214 1.28 · 10−4

Example 2 - Continuous Gradient

Figure 6.13: Example 2 Euler CG

Figure 6.14: Example 2 Trap CG
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Figure 6.15: Example 2 RK CG

Figure 6.16: Example 2 ode113 CG

Table 6.4: MOLS Example 2 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 8 0 0 10−6 10−7 6.6 8 .0041 9.10 · 10−4

Trap 23 0 0 10−6 10−7 31.4 23 .0041 9.04 · 10−4

RK 18 0 0 10−6 10−7 51.9 18 .0041 9.07 · 10−4

ode113 146 0 0 10−6 10−7 205.9 146 .0041 9.07 · 10−4

Heavy Ball with Friction method
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Figure 6.17: Example 2 Euler HB

Figure 6.18: Example 2 Trap HB

Figure 6.19: Example 2 RK HB
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Figure 6.20: Example 2 ode113 HB

Table 6.5: MOLS Example 2 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 1 14 0 1.9 .99 10−6 10.8 15 8.85 · 10−4

Trap 1 8 0 2 2.1 10−6 14.8 9 9.11 · 10−4

RK 0 14 0 2.1 2.1 10−6 39.3 14 8.98 · 10−4

ode113 181 0 0 .59 0.1 10−7 243.7 181 4.34 · 10−4

Example 3 - Continuous Gradient

Figure 6.21: Example 3 Euler CG



60 6.5. Numerical Experiments

Figure 6.22: Example 3 Trap CG

Figure 6.23: Example 3 RK CG

Figure 6.24: Example 2 ode113 CG
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Table 6.6: MOLS Example 3 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 0 79 0 10−5 10−5 51.8 79 .0079 1.7 · 10−3

Trap 0 86 0 10−5 10−5 114.3 86 .0079 1.7 · 10−3

RK 0 84 0 10−5 10−5 224.3 84 .0079 1.7 · 10−3

ode113 0 113 0 10−5 10−5 160.7 113 .0079 1.7 · 10−3

Heavy Ball with Friction method

Figure 6.25: Example 3 Euler HB

Figure 6.26: Example 3 Trap HB
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Figure 6.27: Example 3 RK HB

Figure 6.28: Example 3 ode113 HB

Table 6.7: MOLS Example 3 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 0 49 0 2 2.7 10−5 27.9 49 1.9 · 10−3

Trap 0 25 0 2 5.5 10−5 34.4 25 1.9 · 10−3

RK 0 19 0 2 5.6 10−5 60.4 19 1.8 · 10−3

ode113 61 185 0 1.2 2.2 10−5 278.8 246 4.34 · 10−4

Note that errors were not recorded in the heavy ball tables, as they are
maintained throughout the example.
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6.5.3 Computations using Equation Error

In this section, we report the results obtained by using the Equation Error
scheme to produce the objective functional. We compare the continuous
newton-type method and the HBF method using several differential equation
solvers.

Example 1 - Continuous Gradient

Figure 6.29: Example 1 Euler CG

Figure 6.30: Example 1 Trap CG
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Figure 6.31: Example 1 RK CG

Figure 6.32: Example 1 ode113 CG

Table 6.8: EE Example 1 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 6 0 0 10−9 10−9 3.7 6 7.40 · 10−4 2.41 · 10−4

Trap 30 0 0 10−9 10−9 31.2 30 7.40 · 10−4 2.41 · 10−4

RK 21 0 0 10−9 10−9 52.0 21 7.40 · 10−4 2.41 · 10−4

ode113 123 0 0 10−9 10−9 140.1 123 7.40 · 10−4 2.41 · 10−4

Heavy Ball with Friction method
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Figure 6.33: Example 1 Euler HB

Figure 6.34: Example 1 Trap HB

Figure 6.35: Example 1 RK HB
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Figure 6.36: Example 1 ode113 HB

Table 6.9: EE Example 1 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 7 0 0 2 1 10−9 4.4 7 2.41 · 10−4

Trap 9 0 0 1.9 2 10−9 10.9 9 2.41 · 10−4

RK 17 0 0 2 1.99 10−9 48.5 17 2.41 · 10−4

ode113 107 0 0 .61 0.1 10−9 81.1 107 2.41 · 10−4

Example 2 - Continuous Gradient

Figure 6.37: Example 2 Euler CG
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Figure 6.38: Example 2 Trap CG

Figure 6.39: Example 2 RK CG

Figure 6.40: Example 2 ode113 CG
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Table 6.10: EE Example 2 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 5 0 0 10−9 10−9 4.0 5 .0014 1.8 · 10−3

Trap 22 0 0 10−9 10−9 23.6 22 .0014 1.8 · 10−3

RK 15 0 0 10−9 10−9 39.4 15 .0014 1.8 · 10−3

ode113 121 0 0 10−9 10−9 158.4 121 .0014 1.8 · 10−3

Heavy Ball with Friction method

Figure 6.41: Example 2 Euler HB

Figure 6.42: Example 2 Trap HB
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Figure 6.43: Example 2 RK HB

Figure 6.44: Example 2 ode113 HB

Table 6.11: EE Example 2 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 5 0 0 2.02 1.02 10−9 4.5 5 0.0018
Trap 7 0 0 2 2.1 10−9 11.2 7 0.0018
RK 15 0 0 1.92 1.94 10−9 39.7 15 0.0018

ode113 103 0 0 0.59 0.1 10−9 145.7 103 0.0018

Example 3 - Continuous Gradient
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Figure 6.45: Example 2 Euler CG

Figure 6.46: Example 3 Trap CG

Figure 6.47: Example 3 RK CG
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Figure 6.48: Example 3 ode113 CG

Table 6.12: EE Example 3 First Order ODE

Method HC MC GC ε δ1 Time(s) iters Error λmin

Euler 4 0 0 10−9 10−9 3.1 4 .0024 3.4 · 10−3

Trap 20 0 0 10−9 10−9 27.9 20 .0024 3.4 · 10−3

RK 14 0 0 10−9 10−9 32.2 14 .0024 3.4 · 10−3

ode113 114 0 0 10−9 10−9 141.0 114 .0024 3.4 · 10−3

Heavy Ball with Friction method

Figure 6.49: Example 3 Euler HB
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Figure 6.50: Example 3 Trap HB

Figure 6.51: Example 3 RK HB

Figure 6.52: Example 3 ode113 HB



73 6.6. A Comparative Analysis of the Noisy Data

Table 6.13: EE Example 3 Second Order ODE

Method HC MC GC α β δ1 Time(s) iters λmin

Euler 5 0 0 2.02 1.02 10−9 3.8 5 0.0034
Trap 5 0 0 2 2 10−9 7.0 5 0.0034
RK 13 0 0 2.29 1.4 10−9 35.1 13 0.0034

ode113 102 0 0 0.61 0.1 10−9 87.6 102 0.0034

Note that errors were not recorded in the heavy ball tables, as they are
maintained throughout each examples.

6.6 A Comparative Analysis of the Noisy

Data

Here, we compare the MOLS and EE schemes using several differential equa-
tion techniques. Next, we compare the functionals themselves using the same
differential equation solver. We add noise using a random number generator.
First, we solve the direct problem, which produces a result with an amount
of error. Next, we add a random number, with the appropriate magnitude
of error, to each element of the solution of the direct problem. This becomes
the noisy data that is used to solve the inverse problem.

Figure 6.53: Example 2 MOLS vs EE Noise = 10−3
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Figure 6.54: Example 2 MOLS vs EE Noise = 10−2

Figure 6.55: Example 2 MOLS vs EE Noise = 5 · 10−2

Table 6.14: Example 2 - Euler Noise Study

Scheme Noise ε Error Time (s) iters
MOLS 5 · 10−2 10−2 0.6015 7.8 7

10−2 10−4 0.1494 4.2 7
10−3 10−6 0.0733 4.7 8

EE 5 · 10−2 10−2 0.9225 5.0 6
10−2 10−4 0.2376 5.1 7
10−3 10−6 0.0900 2.7 4
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Table 6.15: Example 2 - Trapezoid Noise Study

Scheme Noise ε Error Time (s) iters
MOLS 5 · 10−2 10−2 0.6050 66.9 39

10−2 10−4 0.1453 36.9 38
10−3 10−6 0.0732 24.7 25

EE 5 · 10−2 10−2 0.9331 58.8 40
10−2 10−4 0.1453 29 37
10−3 10−6 0.0905 23.0 27

Table 6.16: Example 2 - Runge Kutta Noise Study

Scheme Noise ε Error Time (s) iters
MOLS 5 · 10−2 10−2 0.6003 73.4 20

10−2 10−4 0.1592 40.7 20
10−3 10−6 0.0675 59.7 27

EE 5 · 10−2 10−2 0.8937 68.7 21
10−2 10−4 0.2452 38.1 20
10−3 10−6 0.0948 34.2 19

Table 6.17: Example 2 - ODE113 Noise Study

Scheme Noise ε Error Time (s) iters
MOLS 5 · 10−2 10−2 0.5924 271.0 153

10−2 10−4 0.1436 140.5 131
10−3 10−6 0.0697 157.4 154

EE 5 · 10−2 10−2 0.9313 220.5 127
10−2 10−4 0.2443 96.3 117
10−3 10−6 0.0914 105.3 119
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Figure 6.56: Example 2 OLS vs. MOLS vs. EE Noise = 5 · 10−2
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Figure 6.57: Example 2 OLS vs. MOLS vs. EE Noise = 10−2
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Figure 6.58: Example 2 OLS vs. MOLS vs. EE Noise = 10−3
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Figure 6.59: Example 3 OLS vs. MOLS vs. EE Noise = 10−1
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Figure 6.60: Example 3 OLS vs. MOLS vs. EE Noise = 10−2
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Figure 6.61: Example 3 OLS vs. MOLS vs. EE Noise = 10−3
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Table 6.18: Example 2 - Scheme Comparison

Scheme Noise ε Error Time (s) iters
OLS 0.05 10−6 0.1719 29.1 5

0.01 10−7 0.0761 46.2 7
0.001 10−8 0.0229 62.1 10
0.0001 10−9 0.0078 72.8 10

MOLS 0.05 10−2 0.5982 3.9 5
0.01 10−4 0.1516 4.7 6
0.001 10−5 0.0342 4.6 6
0.0001 10−6 0.0082 5.2 7

EE 0.05 10−3 1.0246 1.3 2
0.01 10−4 0.2527 1.4 2
0.001 10−5 0.0421 1.3 2
0.0001 10−6 0.0094 1.3 2

Table 6.19: Example 3 - Scheme Comparison

Scheme Noise ε Error Time (s) iters
OLS 0.1 10−7 0.0322 58.1 10

0.01 10−7 0.0309 55.8 9
0.001 10−7 0.0311 55.5 9
0.0001 10−7 0.0311 52.6 9

MOLS 0.1 10−4 0.0411 6.2 9
0.01 10−5 0.0107 4.3 6
0.001 10−5 0.0080 4.3 6
0.0001 10−5 0.0079 4.3 6

EE 0.1 10−4 0.0441 0.85 2
0.01 10−5 0.0123 0.87 2
0.001 10−5 0.0051 0.87 2
0.0001 10−5 0.0050 0.87 2



Chapter 7

Concluding Remarks

In this thesis work, we presented a new computational method for solving
the inverse problem of parameter identification. Mixed finite element meth-
ods were applied in order to discretize and solve the problem. This method
was used in order to overcome the locking effect associated with the classi-
cal finite element methods, when applied to the elastography problem. We
develop an optimization framework for our inverse problem, and use differ-
ent schemes including the output least squares(OLS), modified output least
squares(MOLS), energy output least squares(EOLS), and equation error(EE)
schemes. We proposed the use of second order techniques to solve these op-
timization schemes, and this led to the novel computation methods for the
second order derivative of the OLS functional. We develop a hybrid, and
second order adjoint method for the computation of the second order deriva-
tive, based on the first order adjoint technique. We also provide discrete
frameworks for each optimization scheme, as well as discrete formulations of
all the required terms for optimization.
In order to solve our optimization problem, we propose the use of dynamical
systems. This is a well known application of continuous methods,and it has
been previously applied to inverse problems. However, the continuous newton
type method had only been applied once(see [44]), and the heavy ball with
friction(HBF) method has not been applied to solving optimization problems
in the context of an inverse problem. The combination of the ideas from the
continuous newton type method, and the HBF method is a new idea in the
field of optimization. We study how the parameters in the HBF method
can be used to improve convergence speed over the continuous newton type
method.
We report first, the results from testing the new OLS second order derivative
computations. A second order method for optimization is used. For com-
pleteness, we test these computations in the simpler scalar example, as well
as the more complicated elasticity problem. The hybrid method solves only
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m + 2 linear systems, as oppose to the second order adjoint method that
solves 2m + 2 linear systems. This means that even in the simpler scalar
problem, when the second order adjoint method took less iterations to reach
a solution, it took longer computational time than the hybrid method.
Next, we tested the HBF method as compared to the continuous newton
type method. In both the scalar and elasticity cases, we showed that, with
appropriately chosen parameters in the HBF method, it ensures increased
convergence speed. To illustrate the importance of this, we shows how the
choice of the parameters in the HBF method can grossly affect the conver-
gence speed of the method for better or worse. (see Table 5.5)
Lastly, we conducted a noise study comparing different differential equation
solvers. We noted that when using the MOLS, and EE schemes, the range
of errors across differential equation solvers remained about the same. This
seems to imply that the solvers has no say in the accuracy of the method.
Next, we compared the OLS, MOLS, and EE schemes. We noted that for very
little error levels, the EE scheme was the most efficient method because of its
formulation, however, as the noise levels were increased, we noted that this
method quickly became the worst method. This is because the EE scheme
requires the computation of the derivative of the data, which is very noisy.
The OLS scheme on the other hand, while slower than the other schemes,
had a smaller range of errors as the noise level increased. As a result, the
OLS method handled the noise the best. The MOLS method handled noise
a lot better than the EE technique but not as well as the OLS scheme.
The choice of the parameters in the HBF technique is a very important factor
in how the method works, and its convergence speed. As a result, this is the
direction that this thesis work points towards for further research. Extensive
study of the relationship between the parameters and the problems, and
between the parameters themselves is very important in order to improve
and increase the use of this method.
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[42] Stefan Schäffler and Hubert Warsitz. A trajectory-following method
for unconstrained optimization. Journal of Optimization Theory and
Applications, 67(1):133–140, 1990.



89 BIBLIOGRAPHY

[43] Z-J Shi. Convergence of multi-step curve search method for un-
constrained optimization. Journal of Numerical Mathematics jnma,
12(4):297–309, 2004.

[44] Corinne Teravainen. Continuous methods for elliptic inverse problems.
2014.

[45] Daniel A Tortorelli and Panagiotis Michaleris. Design sensitivity analy-
sis: overview and review. Inverse problems in Engineering, 1(1):71–105,
1994.

[46] Curtis R Vogel. Computational methods for inverse problems, volume 23.
Siam, 2002.

[47] David JN Wall, Peter Olsson, and Elijah EW Van Houten. On an inverse
problem from magnetic resonance elastic imaging. SIAM Journal on
Applied Mathematics, 71(5):1578–1605, 2011.

[48] Lei-Hong Zhang, CT Kelley, and Li-Zhi Liao. A continuous newton-type
method for unconstrained optimization. Pacific Journal of Optimiza-
tion, 4(2):259–277, 2008.


	Heavy Ball with Friction Method for the Elastography Inverse Problem
	Recommended Citation

	tmp.1443119975.pdf.QQF5S

