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Abstract

We investigate the dynamics of the human multilayer tear film, subject to a reservoir of lipid at the lids. A

numerical method is constructed to solve a one-dimensional tear film model, derived using lubrication

theory. Three choices for the open eye boundary conditions are explored including a specified lipid to mimic

a lipid reservoir, a no lipid flux boundary condition to conserve lipid initially present in the system, and

finally mixed lipid flux boundary condition which to our knowledge, has not been previously studied. For

the blinking eye, we choose to use no diffusive flux for the lipid boundary condition.
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I. Introduction

Dry eye is the leading motivation for researching the dynamics of the tear film, as approximately

3.2 million women, and 1.6 million men of age 50 or older suffer from the symptoms of dry eye

syndrome in the United States [13]. Incident rates of dry eye are expected to double from the year

2000 to 2050 [13]. Symptoms can include a stinging, burning or scratchy sensation; sensitivity

to light; blurred vision; periods of excessive tearing; and a sensation of having a foreign object

in your eye. Dry eye is classified as either "aqueous deficient dry eye," where the eye does not

produce tears properly or produces tears with improper consistency, or "evaporative dry eye,"

where the person experiences a quickened evaporation rate [17]. No cure currently exists for dry

eye syndrome, and treatments such as the use of eye drops meant to alleviate symptoms have

limited affect.

The eye is wet with a multilayer film, referred to as the tear film, consisting of a mucus layer,

aqueous layer, and lipid layer in order of appearance from the surface of the eye to the air [12].

The tear film restricts the formation of bacteria, ensures that debris is removed or repelled to

protect the surface of the eye, and acts as an optical medium [12]. Between the air and aqueous

layer is the lipid layer. Lipid is an oily, insoluble substance that acts as a surfactant, and forms the

thinnest of the three layers [7, 12]. Lowering the surface tension of the fluid they rest on, several

functions of the lipid layer include the smoothing of the aqueous layer, shielding against debris

and skin lipid, and maintaining stability of the tear film [7]. At the lid margins, lipid is supplied

to the tear film via the meibomian glands. The aqueous layer is the thickest of the multilayered

tear film, consisting of 98% water, and is commonly thought of as tears. A mucus layer covers

the eye and emits soluble mucins into the aqueous layer [23]. It was originally thought that the

mucus layer was necessary for the tear film to wet the eye [12], however the surface of the eye

itself has been found to be hydrophilic [25]. The tear fluid is pinned at the hydrophilic surface on

the lid, referred to as the grey line, and reaches a thickness of approximately 60 microns to form

the menisci near the lids [18]. Away from the menisci, the tear film lays on top of the cornea and

sclera at a thickness of approximately 3µm [16]. Volume of the tear film post blink falls between

the range of 2.3± 1.5µl, where most of the volume is located at the menisci [20].

Blinking occurs to re-wet the surface of the eye, via movement of the upper lid, and slight lower

lid motion. Partial blinks are performed, where the upper lid only travels halfway down the the

visible eye. Partial blinks tend to be performed during imaging when a person naturally blinks,

instead of being instructed to do so [16]. The eye tends to remain open for between 5 and 10
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seconds [11], where the tear film can flow tangentially along the surface of the eye, evaporate, or

penetrate into the eye [16].

Experimentally, a collection of features of the tear film dynamics has been consistently observed

when the eye is open. In what follows, we introduce some of these features to inform our

modeling efforts. Tear film break-up occurs from thinning of the aqueous layer, likely caused

by both tangential flows and evaporation. King-Smith [16] hypothesized that tangential flows

influence the system in part by hastening the thinning rate of the tear film at the lid margins,

referred to as the formation of the black line. Areas of increased lipid concentration, and lumps

in the aqueous layer also contribute to occurrences of tangential flow, however evaporation is

thought to dominate the thinning of larger areas of the tear film to cause tear film break-up

[16]. King-Smith also determined that evaporation occurs across the healthy tear film, causing

an average thinning rate of 11
60 µm/s [16]. Using this rate, we can expect a 2.5µm thick tear film

to thin completely in about 13.63 seconds. From the use of fluorescein in imaging the tear film,

it has been observed that an upward drift of the lipid opposing gravity occurs proceeding the

opening phase post-blink [16]. It has been hypothesized that the lipid layer causes surface tension

gradients to produce a Marangoni flow, where less lipid and a higher surface tension is present

near the upper lid compared to the lower lid. Upward drift of the lipid layer has been found to

occur for approximately 2 seconds post-blink [16].

In this thesis, we create a model using a combination of continuum methods and constitutive

equations, along with lubrication theory to represent the tear film. For the purpose of this study,

we include the aqueous and lipid layers, and impose either specified lipid, mixed lipid, or no lipid

flux boundary conditions for the open eye. For the blinking eye, we set the diffusive flux to zero.

The system is solved numerically for cases of both the open and blinking eye.

II. Literature Review

Much work has been done to model the dynamics of the tear film during a blink and interblink

(open eye). Braun’s review [4] summarizes the collection of one-dimensional modeling efforts

where the aqueous layer is considered a thin film of Newtonian fluid, and the lipid layer is modeled

as an insoluble surfactant. In the one-dimensional models, the aqueous and lipid dynamics are

approximated along a single line in the center of the eye running from the upper to the lower

lids. Beginning with the single fluid aqueous models, the lipid layer is treated as a boundary

as opposed to a separate layer. These models focus on capturing black line formation and tear
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film breakup [21, 25, 28]. Results point towards the capillary pressure acting as the cause of black

line formation at the menisci. Each model produces thinning at the black line reaching their set

minimum tear film thickness near 10 seconds into the simulation, which is an arguably reasonable

break up time for the tear film [4]. The lubrication models adequately approximate the shape of the

aqueous layer near the black line when comparing to the numerical solution of the incompressible

Navier-Stokes equations, and are used to maintain simplicity [29]. Effects of evaporation on the

aqueous layer were also explored, causing more rapid thinning over a longer time span [5]. Results

point towards evaporation being the main cause of large area tear film thinning and possible tear

film break up, consistent with the hypothesis put forward by King-Smith [16].

Next, we discuss the findings considering the lipid layer as a concentration sitting on the surface of

the aqueous layer [2, 10, 14]. The insoluble lipid acts as a surfactant, and undergoes advection from

the interaction with the aqueous layer. All of the following works regard the aqueous layer as a

thin film with the same material properties of water, where gravity influences evolution of the film.

The influence of evaporation on the system was also included in the studies by [10, 14].

Jones et. al. [14] proposed a model for the vertical cross-section of the eye to study the aqueous and

lipid layers; the goal of the work was to capture the experimentally observed upward drift of the

tear film after the lids have been opened. Surface tension gradients caused by lipid concentration

created surface flow, referred to as the Marangoni flow. At both lids, the tear film was pinned

at 65 microns to be consistent with observation. Aqueous flux was not allowed at either lid as

boundary conditions. For the lipid concentration, no diffusive flux was allowed at the boundaries.

It was found that the evolution of the tear film can be significantly influenced by the lipid layer

due to large surface tension gradients. In addition, it was found that the thickness profiles are

sensitive to the initial lipid concentration. The model was able to produce upward drift of the

lipid layer.

Aydemir et. al. [2] explored a similar model to Jones et. al., where different modeling choices

included allowing aqueous flux at the boundaries and controlling the surface velocity at the lids.

Flux was supplied through the space between the eye and the upper lid, and surface velocity was

set to be equal to the lid speed. Numerical solutions required an initial tear film profile with a

large volume to run for short times with a fine grid resolution. Increasing the lipid concentration

caused a more apparent Marangoni effect, where a larger surface velocity drove lipid toward the

upper lid. An overall thickening of the tear film was observed across the domain by increasing the

lipid concentration. Similar to Aydemir, we are interested in capturing the upward drift of the

lipid, as the lipid concentration is increased across the tear film.
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Deng [10] considers the aqueous and lipid dynamics in a blinking rectangular domain, rather than

the blinking one-dimensional line segment explored by Jones et. al. and Aydemir et. al. The lipid

concentration was specified, and the tear film thickness was pinned at the boundaries. Aqueous

flux was also specified at the lids. As a consequence, the surface velocity of the aqueous layer at

the boundary was different from the lid speed. The surface velocity points towards the upper lid

between blinks (the interblink period), signifying upward drift of the lipid layer. The solution

for the tear film profile is similar to the findings of Aydemir et. al. and Jones et. al., where the

volume of the tear film at the upper meniscus is much smaller compared to the volume at the

lower meniscus by the end of the interblink period; however, draining of the aqueous layer from

the upper lid occurs much more rapidly in Deng’s model from the Marangoni effect. The slope of

the lipid concentration must compensate for the specified value at the lids. As a result, more lipid

is located at the lids during the interblink period, driving the Marangoni flow towards the center

of the domain and draining the fluid at each lid. Similarly to Deng’s work, we are interested in

the presence of a lipid reservoir at each of the lids.

Figure 1: Picture capturing the possibility of the presence of a lipid reservoir near the upper lid. Lipid

concentration is higher where the picture is more white. This picture was used with permission

from Dr. King-Smith [15].

We are interested in capturing the tear film dynamics of a vertical cross section down the center

of the eye, where a lipid reservoir is present and constantly supplying lipid to the system (see
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Figure(1)). We impose the combination of a mixed or specified lipid boundary condition and

controlling surface velocity at the lids. To our knowledge, this combination of boundary conditions

has not been previously explored.

III. One Dimensional Model for the Tear Film Dynamics

III.1 Model Formation

Aqueous Dynamics

For the purpose of this study, the healthy tear film will consist of an aqueous layer and a lipid

layer [25]. Compared to the thickness of the tear film, the radius of the curvature of the eye is

large, and so it is appropriate to assume that the surface of the eye is flat when modeling the

tear film dynamics [2, 10, 14]. The fully open eye has a length of approximately 10mm. During a

partial blink, the eye closes to about 5mm. If H = 5µm is the typical thickness of the tear film,

and Le = 5mm is the length of the half open eye from the bottom to the top lid, then H << Le. It

then follows that ε = H
Le

<< 1, and thus it is appropriate to assume the lubrication approximation

[22].

Figure 2: Schematic of the tear film for the mathematical model

Let ~u′ = (v′(t′, y′, z′), w′(t′, y′, z′)) represent the velocity field, where v′ and w′ are the velocities in

the y′ and z′ directions respectively, and t′ is the time. Also let p′ denote the pressure inside of the
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tear film. Note that all primed variables in this thesis represent dimensional values. Gravity, g,

points in the negative y′ direction. The coefficients ρ and µ represent the density and viscosity of

the aqueous layer respectively.

To properly capture the behavior of the tear film, both momentum and mass must be conserved.

Beginning with the body of the aqueous layer, we are interested in conserving the momentum in

the y′ and z′ directions, expressed by the two dimensional Navier-Stokes equations

ρ

(
∂~u′

∂t′
+ (~u′ · ∇′)~u′

)
= −∇′p′ + µ

(
∇′
)2
~u′ + ρg(− ĵ), (III.1)

where ∇′ = ê2
∂

∂y′ + ê3
∂

∂z′ represents the gradient, (∇′)2 = ∇′ · ∇′ is the Laplace operator, and

ê2 along with ê3 are unit vectors for the y′ and z′ directions respectively. The right hand side is

composed of surface forces and body forces in total. Surface forces of a fluid include pressure

forces and viscous forces. In our equation, the term −∇′p′ represents the pressure forces, and

µ∇2~u′ represents the viscous force. The body force acting all over the tear film is gravity, expressed

by ρg(− ĵ). To complete the model, mass must be conserved:

∂ρ

∂t′
+∇′ · (ρ~u′) = 0.

The density does not change since the aqueous layer is assumed to be incompressible, and the

term ∂ρ
∂t′ is zero. The result is

∇′ · ~u′ = 0. (III.2)

Boundary Conditions at the Surface of the Eye

The mucus on the surface of the eye is wet by the aqueous tear film layer. Due to strong adhesive

forces, the tear film spans across the surface of the eye. The fact that the tear film remains spread

instead of clumping up demonstrates that the adhesive forces are stronger than the cohesive forces

of the tear film. From this interaction, we know that fluid at the boundary must match the velocity

of the stationary eye, which can be expressed by the no-slip condition specified by

v′(t′, y′, 0) = 0. (III.3)

In this model, it is assumed that the tear film is healthy. This implies that the salt concentration of

the tear film is low, and thus no osmosis occurs between the eye and the tear film. We impose the
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no-flux condition at the surface of the eye:

w′(t′, y′, 0) = 0. (III.4)

Boundary Conditions at the Aqueous-Lipid Interface

At any fluid-fluid interface, kinematic and dynamic conditions must be examined. In the case of

the tear film, the interface between the lipid layer and the air forms a free surface. Beginning with

the kinematic boundary condition, we incorporate the motion of the tear film at the interface by

first letting z′ = h′ (t′, y′) represent the tear film thickness. We define a vector~r such that

~r′
(
t′, y′

)
= ê2y′ + ê3h′(t′, y′),

where the interfacial velocity of the tear film is represented by

~v′I =
∂~r′

∂t′
= ê3

∂h′

∂t′
, (III.5)

and let the fluid velocity at the interface be represented by the velocity field

~v′F = ê2v′
(
t′, y′, h′

)
+ ê3w′

(
t′, y′, h′

)
. (III.6)

The evaporative mass flux of the tear film, E′, occurs directed normal to the boundary, removing

fluid from the aqueous layer. Conserving mass, we express the fluid velocity at the interface

as (
~v′I −~v′F

)
·~n′ = −E′

ρ
, (III.7)

where the dot product including the unit normal, ~n′, pointing from the tear film to the air, gives

the velocity occurring at the aqueous-lipid interface induced by fluid motion. Using an equation of

state for the evaporative mass flux derived by Ajaev [1], we determine the rate of evaporation from

temperature and pressure differences (p′0 is the reference air pressure, T′ is the fluid temperature

assumed constant at 310K, and T′0 is the air temperature assumed constant at 300K), where

CE′ = α
(

p′ − p′0
)
+
(
T′ − T′0

)
. (III.8)

When the tear film becomes thin, the pressure differences, due to the van der Waals force, can

retard evaporation. The constant α is set to turn off evaporation at a specified tear film thickness.
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From King-Smith, the average evaporation rate of the healthy tear film in an unsaturated, room

temperature environment is measured to be 11
60 µm/s [16]. This evaporation rate can be imposed

by incorporating the value into the constant C.

To calculate the unit normal, we recall that z′ = h′ (t′, y′) at the interface, and define

f ′ = z′ − h′
(
t′, y′

)
= 0.

The unit normal pointing from the tear film to the air is then

~n′ =
∇′ f ′
|| f ′|| =

(
ê2

(
−∂h′

∂y′

)
+ ê3

)((
∂h′

∂y′

)2

+ 1

)−1/2

,

and since~t′ ·~n′ = 0, the unit tangent vector can be defined for later use as

~t′ =
(

ê2 + ê3
∂h′

∂y′

)((
∂h′

∂y′

)2

+ 1

)−1/2

.

Returning to equation (III.7), we substitute the unit normal and the velocities into the kinematic

boundary condition to find

− E′

ρ

((
∂h′

∂y′

)2

+ 1

)−1/2

=
∂h′

∂t′
+ v′

(
t′, y′, h′

) ∂h′

∂y′
− w′

(
t′, y′, h′

)
. (III.9)

For the dynamic boundary condition, stresses occurring in the normal and tangential directions

must be balanced. Let T′(1) be the stresses from the air, and let T′(2) be stresses from the aqueous

and lipid layers. Recalling that z′ = h′(t′, y′), we define the total stress tensor for the interface as

T′ = T′(1) − T′(2), where

T′(1) = −p′0I,

T′(2) = −p′I + µ
(
∇′~u′ +

(
∇′~u′

)T
)

,

with I being the two dimensional identity tensor. Influences of shear stress from the air on the tear

film are assumed to be small. Both ∇′~u′ and (∇′~u′)T represent the Jacobian matrices of the surface

velocity, with T representing the transpose. Performing the tensor product between T′ and ~n′

leads to an expression for the stress at the interface when z′ = h′(t′, y′). The term ~n′ · (T′ ·~n′) will

then incorporate the total stress occurring in the normal direction on the aqueous-lipid interface.

Similarly for the tangential direction.

Continuing with the balancing of stress in the direction normal to the interface, we define γ′ as

surface tension. Multiplying the surface tension by the curvature of the interface, κ′, results in
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the pressure at any point at the interface, known as the Young-Laplace equation. Simultaneously,

the van der Waals force, Π′, points normal to the interface and holds the molecules together,

maintaining the integrity of the tear film. The van der Waals force is responsible for the pressure

caused by this interaction between the molecules. The total stress, F′, caused by the surface tension

and the van der Waals force at the interface can then be expressed by:

F′ = γ′κ′ + Π′.

To balance normal stresses, our equation becomes

~n′ · (T′ ·~n′) + F′ = 0, (III.10)

We begin by solving the tensor product:

(T′ ·~n′) =
(

ê2

(
−∂h′

∂y′

(
−p′0 + p′ − 2µ

∂v′

∂y′

)
− µ

(
∂v′

∂z′
+

∂w′

∂y′

))
+

ê3

(
∂h′

∂y′
µ

(
∂w′

∂y′
+

∂v′

∂z′

)
+

(
−p′0 + p′ − 2µ

∂w′

∂z′

)))((
∂h′

∂y′

)2

+ 1

)−1/2

.

Now the dot product to complete the first term of equation (III.10):

~n′ · (T′ ·~n′) =
(
−p′0 + p′

)
+ 2µ

(
−∂v′

∂y′

(
∂h′

∂y′

)2

− ∂w′

∂z′
+

∂h′

∂y′

(
∂v′

∂z′
+

∂w′

∂y′

))((
∂h′

∂y′

)2

+ 1

)−1

.

(III.11)

The second term of equation (III.10) just requires the calculation of the curvature, recalling again

that z′ = h′(t′, y′):

κ′(h′) =
∂2h′

∂y′2

((
∂h′

∂y′

)2

+ 1

)−3/2

,

with the total stress expressed as

F′ = γ′
(

∂2h′

∂y′2

)(
1 +

(
∂h′

∂y′

)2
)−3/2

+ Π′, (III.12)

where Π′ = A
h′3 as used by [27], with A being the Hamaker constant. This equation shows

that when the aqueous thickness becomes small, the pressure caused by the van der Waals force

becomes low. When the surrounding pressures are large, the pressure gradients will cause aqueous

flux towards the low pressure to maintain tear film integrity.

The tangential stress is calculated similarly to the normal stress, except instead of a dot product

involving the unit normal, the unit tangent ~t′ is used, yielding ~t′ · (T′ ·~n′). Motion caused by
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the change in surface tension is known as the Marangoni effect. This is expressed by the dot

product~t′ · ∇′sγ′, where ∇′s represents the gradient with respect to the surface of the tear film.

The balanced equation is then expressed as

~t′ · (T′ ·~n′) +~t′ · ∇′sγ′ = 0, (III.13)

and since we have already calculated (T′ ·~n′), we can skip to the first term in equation (III.13):

~t′ · (T′ ·~n′) = µ

(
2

∂h′

∂y′
∂v′

∂y′
− 2

∂h′

∂y′
∂w′

∂z′
+

(
∂v′

∂z′
+

∂w′

∂y′

)(
−1 +

(
∂h′

∂y′

)2
))((

∂h′

∂y′

)2

+ 1

)−1

.

(III.14)

The second term of (III.13) is then calculated beginning with the surface gradient of the surface

tension

∇′sγ′ = (I−~n′~n′) · ∇′γ′ = ∇′γ′ −~n′(~n′ · ∇′γ′),

and then the dot product with the tangential vector

−~t′ · ∇′sγ′ = −
(
~t′ · ∇′γ′ − (~t′ ·~n′)(~n′ · ∇′γ′)

)
= −~t′ · ∇′γ′

= −∂γ′

∂y′

((
∂h′

∂y′

)2

+ 1

)−1/2

. (III.15)

Lipid Dynamics

To complete the model at the aqueous-lipid interface, the lipid layer must be modeled as well.

The lipid layer is assumed to act as an insoluble surfactant on top of a moving tear film. A

linear equation of state is used to express the relationship between surface tension and lipid

concentration, expressed by as

γ′ = γ0 − RTΓ′, (III.16)

where the term R is the universal gas constant, T is the tear film temperature, Γ′ is the lipid

concentration, and γ0 is the initial surface tension of the tear film [8]. Γ′ is expressed as an amount

of lipid per area, which has the units of mol/m2 in the case of the 2D tear film. To model this

phenomena at the aqueous-lipid interface, we turn to an advective-surface diffusion equation for

surfactant transport derived by Stone [26]:

∂Γ′

∂t′
+∇′s ·

(
Γ′~u′s

)
+ Γ′

(
∇′s ·~n

) (
~u′ ·~n

)
= D∇′2s Γ′, (III.17)
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where ∇′s is the surface gradient

∇′s =
(
I−~n′~n′

)
· ∇′,

~u′s is the velocity along the surface

~u′s =
(
I−~n′~n′

)
· ~u′,

and D is the coefficient representing the surface diffusion at the interface. The term ∇′s · (Γ′~u′s)

describes the advection at the interface, where lipid motion is determined by surface flows of the

aqueous layer throughout the blink cycle. Redistribution of the lipid across new area of the tear

film is determined by Γ′ (∇′s ·~n′) (~u′ ·~n′), which for the thin tear film, is arguably small. Surface

diffusion occurs when there are changes in concentration gradients determined by D∇′2s Γ′.

Boundary Conditions at the Lower and Upper Lids

In order to allow for a more natural evolution of the lipid layer near the lids, we introduce a

mixed boundary condition controlling the amount of lipid at the boundary and the amount of

lipid leaving the system. The lipid flux ~Q′Γ along the surface is expressed as

~Q′Γ(t
′, y′) = Γ′~u′s − D∇′sΓ′.

We then dot the tangential vector with the lipid flux vector to obtain

~t′ · ~Q′Γ(t′, L′) =~t′ ·
(
Γ′~u′s

)
−~t′ · D∇′sΓ′

∣∣∣∣
y′=L′

,

−~t′ · ~Q′Γ(t′, 0) = −~t′ ·
(
Γ′~u′s

)
+~t′ · D∇′sΓ′

∣∣∣∣
y′=0

,

where the positive or negative sign of the tangential vector directs the lipid flux out of the system

through the upper or lower lid respectively.

The mixed boundary condition at each lid is given by:

Γ∗ − Γ′(t′, L′) + B
(
~t′ · ~Q′Γ(t′, L′)

)
= 0, (III.18)

Γ∗ − Γ′(t′, 0) + B
(
−~t′ · ~Q′Γ(t′, 0)

)
= 0, (III.19)

where the B of our choice has units s/m, and Γ∗ is the dimensional lipid concentration we wish to

specify at the boundary. The parameter B is used to weight the importance of the specified lipid
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boundary condition versus the flux boundary condition. We discuss the parameter more in the

next section.

The aqueous layer is pinned at the grey lines at both lids, which we express as

h′(t′, 0) = h′(t′, L′) = h′g. (III.20)

The surface velocities at the lids are assumed to be the same speed as the lid motion. We impose

this by setting the surface velocity, u′s, equal to the velocity of the lids to complete the boundary

conditions:

~u′s(t
′, L′) = ê2

dL′

dt′
, (III.21)

~u′s(t
′, 0) =~0, (III.22)

Initial Conditions

We assume the initial lipid concentration is uniform across the tear film, consistent with the

boundary conditions at the dimensional value

Γ′(0, y′) = Γ∗.

The initial tear film thickness is also expressed with a similar polynomial used by Deng [10]

h′(0, y′) = h′typ + (h′g − h′typ)(
y′

Le
− 1)2m,

where h′typ is the typical tear film thickness at the center of the cross section of the eye, h′g is the

tear film thickness at the grey lines, and m determines the order of the polynomial. The initial

volume can then be calculated by the following integral:

V′i =
∫ L′

0
h′(0, y′)dy′. (III.23)

III.2 Nondimensionalization

We use the following scales to nondimensionalize our model

y =
y′

Le
, z =

z′

H
, h =

h′

H
, ε =

H
Le

, v =
v′

V
, w =

w′

εV
, t =

t′

Le/V
, Γ =

Γ′

Γ∗
,
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p = (−p′0 + p′)
H2

µVLe
, T =

T′ − T′0
Tn

where the description and numerical value of each scale is introduced in the table below:

Scaling

Description: Value: Related Citation(s):

Typical tear film thickness H = 5× 10−6m [4, 10, 16]

Half the distance between the eyelids Le = 5× 10−3m [4, 10]

Lipid concentration Γ∗ = 4× 10−7mol/m2 [2, 6, 10]

Average lid velocity V = 0.044m/s [2, 28]

Viscosity of the aqueous layer µ = 1.3× 10−3Ns/m2 [2, 4, 10, 14]

Density of the aqueous layer ρ = 1.0× 103kg/m3 [2, 4, 10, 14]

Initial surface tension γ0 = 4.5× 10−2N/m [2, 6, 10, 14]

Coefficient of surface diffusion D = 3× 10−8m2/s [2, 4, 10, 24]

Average rate of evaporation E = 11
60 × 10−6m/s [16]

Temperature scale Tn = 10K

Aqueous Layer

Returning to the conservation of momentum (III.1), we begin with the momentum balance in the

y-direction to obtain

ρ

(
∂v′

∂t′
+ v′

∂v′

∂y′
+ w′

∂v′

∂z′

)
= −∇p′ + µ∇2v′ + ρ (−g) .

After nondimensionalization, we find(
ρVHε

µ

)(
∂v
∂t

+ v
∂v
∂y

+ w
∂v
∂z

)
= −∂p

∂y
+

(
∂2v
∂y2

(
ε2
)
+

∂2v
∂z2

)
− ρgH2

µV
.

The Reynolds number Re = ρVH
µ is 0.169. A large Reynolds number amplifies the acceleration

of the fluid to cause turbulent flows, where a smaller Reynolds number diminishes the effect of

the changes in velocity resulting in a laminar flow. We are interested in examining the leading

order equations representing the tear film. Thus, any term with an order smaller than O(ε) is

regarded as negligible. Since Re < 1, we argue that the Reynolds number has a negligible effect

on the tear film regarding the y-direction. After removing small terms and letting G = ρgH2

µV , we

13



are left with

−∂p
∂y

+
∂2v
∂z2 − G = 0.

Moving on to the conservation of momentum (III.1) in the z-direction, we recall that

ρ

(
∂w′

∂t′
+ v′

∂w′

∂y′
+ w′

∂w′

∂z′

)
= −∇p′ + µ∇2w′.

Again, nondimensionalized parameters are substituted into the equation:(
ρVHε3

µ

)(
∂w
∂t

+ v
∂w
∂y

+ w
∂w
∂z

)
= −∂p

∂z
+

(
∂2w
∂y2

(
ε4
)
+

∂2w
∂z2

(
ε2
))

.

The Reynolds number is again small, where (Re) ε3 << ε. Removing all higher order ε terms, we

obtain
∂p
∂z

= 0.

The nondimensional conservation of mass (III.2) is

∂v
∂y

+
∂w
∂z

= 0.

Boundary Conditions at the Aqueous-Lipid Interface

For the kinematic boundary condition (III.9), we again apply our nondimensionalization to

find

−E∗ (pα∗ + T) =
∂h
∂t

+ v
∂h
∂y
− w,

where E∗ = 1
CVερ , and α∗ = VLeαµ

H2 .

We continue the nondimensionalization of the dynamic boundary condition in the normal direction

(equations (III.11) and (III.12)). Here, we assume that

γ ≈ γ0,

which can be argued with the scaling, where the term containing Γ decreases the surface tension

by ε. After nondimensionalization, we let S = γ0ε3

µV and A∗ = εA
µVH2 to obtain

p = −S
∂2h
∂y2 −

A∗

h3 .
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Again, we apply the nondimensionalization to the dynamic boundary condition in the tangential

direction (equations (III.14) and (III.15)), remove terms containing higher order ε, and let Ma =

RTΓ0
µV to obtain

∂v
∂z

= −εMa
∂Γ
∂y

.

In order to understand the influence of surface tension on the tear film dynamics, we retain the

capillarity term S and the Marangoni term Ma.

Finally, we nondimensionalize the equation for the evolution of the lipid concentration (III.17)

∂Γ
∂t

+
∂

∂y
(Γvs)−

D
VLe

∂2Γ
∂y2 = 0,

where Pe = VLe
D = 7.3333× 103 is the Peclet number, 1

Pe = 1.3636× 10−4 from the above table,

and vs = v(t, y, h). Although arguably small, we choose to keep the diffusive term in our system,

in contrast to Aydemir et. al.

Boundary Conditions at the lids

The mixed boundary conditions, when nondimensionalized, become

(1− Γ(t, L)) + B∗
(

dL
dt

Γ(t, L)− 1
Pe

∂Γ
∂y

(t, L)
)
= 0 (III.24)

(1− Γ(t, 0)) + B∗
(

1
Pe

∂Γ
∂y

(t, 0)
)
= 0 (III.25)

where B∗ = BD
Le

.

The mixed boundary condition can be manipulated to explore specified lipid, and no lipid flux

conditions as well. Specifically, when B∗ = 0 we are left with a specified lipid at the upper and

lower lid boundaries, where

Γ(t, L) = 1,

Γ(t, 0) = 1,

and as B∗ grows large, the mixed boundary condition at the upper lid is expressed by

0 = lim
B∗→∞

(
1− Γ(t, L)

B∗
+

dL
dt

Γ(t, L)− 1
Pe

∂Γ
∂y

(t, L)
)
=

dL
dt

Γ(t, L)− 1
Pe

∂Γ
∂y

(t, L),
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and at the lower lid,

0 = lim
B∗→∞

(
1− Γ(t, 0)

B∗
+

(
1

Pe
∂Γ
∂y

(t, 0)
))

=

(
1

Pe
∂Γ
∂y

(t, 0)
)

,

to produce a no lipid flux boundary condition.

III.3 Governing Equations for the Tear Film Dynamics

To summarize, the leading-order equations determining the aqueous dynamics are:

− ∂p
∂y

+
∂2v
∂z2 − G = 0, (III.26)

∂p
∂z

= 0, (III.27)

∂v
∂y

+
∂w
∂z

= 0. (III.28)

At z = 0, we have:

v = 0, (III.29)

w = 0. (III.30)

At z = h, the leading order boundary conditions are:

∂v
∂z

= −εMa
∂Γ
∂y

, (III.31)

− E∗ (pα∗ + T) =
∂h
∂t

+ v
∂h
∂y
− w, (III.32)

p = −S
∂2h
∂y2 −

A∗

h3 . (III.33)

Finally, the lipid dynamics are governed by surface velocity and surface diffusion:

∂Γ
∂t

+
∂

∂y
(Γvs)−

1
Pe

∂2Γ
∂y2 = 0. (III.34)

To form the thin film equation, we return to the nondimensionalized kinematic boundary condition.

Recalling equation (III.28), we can integrate to find

−w (t, y, h) =
∫ h

0

∂v
∂y

dz,

which we substitute into equation (III.32), to obtain

− E (pα∗ + T) =
∂h
∂t

+ v (t, y, h)
∂h
∂y

+
∫ h

0

∂v
∂y

dz. (III.35)
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By the Liebniz Rule, we know that

∂

∂y

(∫ h
0 vdz

)
=
∫ h

0

∂v
∂y

dz + v (t, y, h)
∂h
∂y

,

and we substitute into equation (III.35) to find

− E (pα∗ + T) =
∂h
∂t

+
∂

∂y

(∫ h
0 vdz

)
. (III.36)

To find v, the nondimensional simplified momentum equation is solved, starting with equation

(III.26)
∂2v
∂z2 =

∂p
∂y

+ G.

With the boundary condition found from the tangential stress (III.31), we obtain

∂v
∂z

=

(
∂p
∂y

+ G
)

z−
(

∂p
∂y

+ G
)

h− εMa
∂Γ
∂y

.

The boundary condition from the no-slip condition (III.29) is then used, finding v to be

v =

(
∂p
∂y

+ G
)( z

2
− h
)

z− εMa
∂Γ
∂y

z. (III.37)

Let Q =
∫ h

0 vdz be the flux, where

Q = −h3

3

(
∂p
∂y

+ G
)
− εMa

∂Γ
∂y

h2

2
, (III.38)

which we substitute into equation (III.36) to obtain

∂h
∂t

= − ∂

∂y

(
−h3

3

(
∂p
∂y

+ G
)
− εMa

∂Γ
∂y

h2

2

)
− E∗ (pα∗ + T) . (III.39)

Thus, we must solve the coupled system of nonlinear partial differential equations,

∂h
∂t

= − ∂

∂y

(
−h3

3

(
∂p
∂y

+ G
)
− εMa

∂Γ
∂y

h2

2

)
− E∗ (pα∗ + T) , (III.40)

p(t, y) = −S
∂2h
∂y2 −

A∗

h3 , (III.41)

∂Γ
∂t

+
∂

∂y
(Γvs)−

1
Pe

∂2Γ
∂y2 = 0, (III.42)

where vs(t, y), for h(t, y), p(t, y), and Γ(t, y) on the domain 0 < y < L. Boundary conditions at

the upper lid, y = L, and lower lid, y = 0, are given by:

h (t, L) =
hg

H
,
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vs (t, L) =
dL
dt

,

h (t, 0) =
hg

H
,

vs (t, 0) = 0,

with the mixed boundary conditions for the lipid,

(1− Γ(t, L)) + B∗
(

dL
dt

Γ(t, L)− 1
Pe

∂Γ
∂y

(t, L)
)
= 0, (III.43)

(1− Γ(t, 0)) + B∗
(

1
Pe

∂Γ
∂y

(t, 0)
)
= 0. (III.44)

The nondimensionalized initial conditions are given by

h (0, y) =
htyp + (hg − htyp)

H
(y− 1)2m, (III.45)

Γ (0, y) = 1. (III.46)

IV. Numerical Method

To compute the blink, we used a similar strategy as Maki [19] by mapping our moving domain to

a fixed domain through the use of a change of variables, influenced by the Overture framework

created by Henshaw [9]. However, here we do not include overlapping grids. Instead we use

only the background grid to compute the solution of the moving system. Beginning with the

parameterization, we let 0 ≤ s ≤ 1 represent the fixed domain, and y represent the real domain,

such that:

G(t, y) = s =
y

L(t)
,

G−1(t, s) = y = sL(t).

Now we calculate the derivatives with respect to time and space on the fixed domain by letting ĥ

denote the tear film thickness:

ĥ(t, s) = h(t, G−1(t, s)).

First we find the derivative of the tear film thickness with respect to time by the chain rule:

∂h
∂t

=
∂ĥ
∂t

+
∂ĥ
∂s

∂s
∂t

, (IV.1)
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where the derivative of s with respect to time is expressed by

∂s
∂t

=
∂

∂t
(G(t, y)) =

∂

∂t

(
y

L(t)

)
=

(
−dL(t)

dt

)(
y

L(t)2

)
=

(
−dL(t)

dt

)(
s

L(t)

)
,

which we substitute into equation (IV.1), obtaining

∂h
∂t

=
∂ĥ
∂t

+
∂ĥ
∂s

(
−dL(t)

dt

)(
s

L(t)

)
.

Now derivatives with respect to space for the tear film thickness again using the chain rule:

∂h
∂y

=
∂ĥ
∂s

∂s
∂y

, (IV.2)

where the derivative of s with respect to y is

∂s
∂y

=
∂

∂y

(
y

L(t)

)
=

(
1

L(t)

)
,

which we substitute into equation (IV.2) to give

∂h
∂y

=
∂ĥ
∂s

(
1

L(t)

)
.

For the second derivative,
∂2h
∂y2 =

∂2ĥ
∂s2

(
∂s
∂y

)2
+

∂ĥ
∂s

∂2s
∂y2 ,

and we substitute the previously found derivative of s with respect to y to obtain

∂2h
∂y2 =

∂2ĥ
∂s2

(
1

L(t)

)2
.

Substitution into the tear film equation yields

∂ĥ
∂t

=
∂ĥ
∂s

(
ĥ2

L(t)

)(
∂ p̂
∂s

(
1

L(t)

)
+ G

)
+

∂2 p̂
∂s2

(
ĥ3

3L(t)2

)
+ εMa

∂2Γ̂
∂s2

(
ĥ2

2L(t)2

)
+

εMa

(
∂Γ̂
∂s

∂ĥ
∂s

)(
ĥ

L(t)2

)
− E∗ ( p̂α∗ + T) +

(
∂ĥ
∂s

dL
dt

)(
s

L(t)

)
. (IV.3)

The pressure is similarly mapped to the fixed domain to give

p̂ = −S
∂2ĥ
∂s2

(
1

L(t)2

)
− A∗

h3 (IV.4)

Lastly, we map the lipid concentration evolution onto the fixed domain to obtain

∂Γ̂
∂t

=
∂Γ̂
∂s

(
ĥ2

2L(t)

)(
∂ p̂
∂s

(
1

L(t)

)
+ G

)
+ εMa

(
∂Γ̂
∂s

)2 ĥ
L(t)2 + Γ̂

(
∂2 p̂
∂s2

)(
ĥ2

2L(t)2

)
+
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Γ̂
(

∂ p̂
∂s

(
1

L(t)

)
+ G

)(
∂ĥ
∂s

ĥ
L(t)

)
+ Γ̂εMa

(
∂2Γ̂
∂s2

ĥ
L(t)2

)
+ Γ̂εMa

(
∂Γ̂
∂s

∂ĥ
∂s

1
L(t)2

)
+

1
Pe

(
∂2Γ̂
∂s2

1
L(t)2

)
+

(
∂Γ̂
∂s

dL
dt

)(
s

L(t)

)
. (IV.5)

A method of lines was implemented to solve the mapped system. We approximated all spacial

derivatives with second order finite differences, and used the ode15s solver within MATLAB to

integrate the remaining system of ordinary differential equations forward in time.

To validate our numerical scheme, we checked whether the volume of the tear film was conserved,

which was computed by integrating the evolution equation:∫ L(t)

0

∂h
∂t

dy =
∫ L(t)

0

(
−∂Q

∂y
− E (α∗ + T)

)
dy,

which can be solved through the use of Liebniz’s rule

V (t)−V (0) =
∫ t

0

(
h (t, L (t))

dL (t)
dt
−Q (t, L (t)) + Q (t, 0)−

∫ L(t)

0
E∗ (p (t, y) α∗ + T) dy

)
dt.

dV
dt

= h (t, L(t))
dL
dt
−Q (t, L(t)) + Q (t, 0)−

∫ L(t)

0
E∗ (pα∗ + T) dy (IV.6)

The conservation of volume is evidenced by the following graphs, where we check if volume is

conserved properly for the mixed boundary conditions when the eye is open.

Figure 3: On the left is the error for the volume calculation in the case where evaporation and the Marangoni

effect are turned off. On the right, the figure displays the volume calculation error when evaporation

and the Marangoni effect are activated.

The approximate volume of the system was calculated using the trapz function within MATLAB

on the approximation of the tear film thickness, h(t, y), found from the numerical method. Error
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was found by subtracting the approximate volume from the volume found by solving equation

(IV.6). When Ma = 0 and E = 0, volume is conserved, as dV
dt = 0. Otherwise, when Ma 6= 0 and

E 6= 0, dV
dt was approximated using Euler’s method.

With evaporation and the Marangoni effect turned off, volume is successfully conserved within

the system, evidenced by the corresponding converging error plot. Evaporation will decrease

the amount of fluid in the system, and having the Marangoni effect on allows flux in and out of

the system. The error converges with these effects, however to keep the surface velocity smooth,

a high grid resolution needed to be maintained (e.g. 16383 grid points were used for the fixed

domain).

V. Numerical Solution - Open Eye

We begin our analysis with the open eye post blink, for an interblink period of 6.8 seconds when

the Marangoni effect is turned off. The thickness of the tear film at the grey line is set to reach

h′g = 65µm. At the center of the domain, the typical tear film thickness was set to be h′typ = 2.5µm.

The simulations presented throughout the thesis were run with a typical tear film thickness at

both 5µm, and 2.5µm. It was found that the relationships between thickness, lipid concentration,

and pressure did not change between these two thicknesses. We also observed that the code was

not able to integrate forward in time beyond 1 nondimensional second in the simulation with the

larger thickness due to the increased positive flux at the upper lid, causing more rapid draining

near the black line.

The order of the initial condition polynomial is m = 10 for the tear film thickness (III.45). From

the nondimensional area, we multiplied by 5µm for the tear film thickness, and 10000µm (1cm)

for the vertical cross section of the eye. In order to convert to a volume (µl), we multiply by the

long dimension of the palpebral fissure at an approximate length of 25000µm (2.5cm). The total

approximate dimensional initial volume of the system was then calculated to be 1.369µl. It is

important to mention that by using 2.5µm as the typical thickness and m = 10, there is less volume

initially present in the tear film than observed experimentally [20]. We found that decreasing the

order of polynomial resulted in a larger curvature of the tear film near the menisci, influencing the

pressure and therefore flux at the lids while increasing the initial volume of the tear film (III.23).

As a consequence of the larger positive fluxes at the lids, we couldn’t integrate forward for long

times. A uniform lipid concentration profile was enforced at the nondimensional value across the

tear film, again maintaining consistency with the boundary conditions.
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In what follows, we present an exploration of the influence of a lipid boundary condition on the

tear film dynamics by varying the parameter B∗ in the boundary condition equations (III.43) and

(III.44) to determine lipid flux. To begin, in Section V.1, we set B∗ = 0, and study the influence of

a lipid reservoir at the upper and lower lids. In Section V.2, we analyze the influence of nonzero

values of B∗ on the tear film dynamics. To our knowledge, the mixed lipid boundary condition

has not been previously studied.

V.1 Study of the Tear Film Dynamics with a Lipid Reservoir at the Lids

V.1.1 Marangoni Effect Turned Off

To begin, we set the Marangoni number equal to zero to decouple the aqueous and lipid dynamics

given by equations (III.40) and (III.42). This simplification turns off the Marangoni effect and

allows the influence of gravity and evaporation to be explored. In the following plots, the time

spacing between each curve is 1.136s.

Figure 4: Aqueous layer evolution between t = 1.14s and t = 6.82s from equation (III.40).

Figure (4) shows the evolution of the profile of the tear film when the eye remains open for 6.82

seconds. For future reference, the surface of the eye is located at z′ = 0 microns, the lower lid at

y′ = 0cm, and the upper lid at y′ = 1cm. Most tear fluid is located within the menisci near the lids,

where pressure gradients induced by surface tension cause fluid motion directed towards the lids.

The positive curvature of the tear film at the menisci generates a low pressure in comparison to

the flat film between the menisci, referred to as meniscus-induced-thinning [3]. As a result, black
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lines form near the menisci, where the tear film reaches its minimum thickness, and continues to

thin throughout the simulation. Next to the menisci, the tear film thickness increases slightly as a

capillary ridge forms due to the surface-tension-induced redistribution of fluid, as observed in

previous studies [4]. Gravity drives fluid towards the lower lid across the domain, and evaporation

continually thins the tear film. Both of these effects are most apparent in the evolution of the tear

film thickness at the center of the domain.

Figure 5: Pressure of the system between t′ = 1.14s and t′ = 6.82s from equation (III.41).

Figure 6: Aqueous flux betweeen t′ = 1.14s and t′ = 6.82s from equation (III.38).

The evolution of the pressure is shown in Figure (5). Pressure profiles do not change drastically,

as the curvature of the tear film (surface tension effect) and its thickness (van der Waals effect) do
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not greatly differ with time. In the lower pressure regions in the menisci, the pressure gradient is

evolving to the value −G. As a consequence, the flux, given by

Q = −h3

3

(
∂p
∂y

+ G
)

,

as shown in Figure (6), seems to tend towards zero as the simulation goes on. In the upper

meniscus, the positive flux indicates that capillarity-induced thinning dominates over the effect of

gravity. In the lower meniscus, the effect of gravity and capillarity-induced thinning work together

pump fluid into the lower meniscus. The flux is small but negative between the menisci due to

gravity.

Figure 7: Influence of gravity and evaporation on the tear film at t′ = 5.5s from equation (III.40).

The overall influence of gravity and evaporation on the aqueous dynamics is best summarized

in Figure (7), where the tear film thickness is shown at 5.5 seconds. With evaporation turned

on, the entire tear film thins. In the center of the domain, the tear film thickness decreases by

approximately 1 micron ( 11
60 µm/s × 5.5s). Gravity breaks the symmetry of the tear film profile

with the minimum tear film thickness still occurring in the black line region, but now at the lower

lid. In addition, gravity shifts the tear film profile towards the lower lid.
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Figure 8: Evolution of the polar lipid concentration between t′ = 1.14s and t′ = 6.82s from equation (III.42).

Figure 9: Surface velocity between t′ = 1.14s and t′ = 6.82s from equation (III.37).

The lipid dynamics, shown in Figure (8), is determined by both the surface velocity and surface

diffusion. Surface velocity, Figure (9), advects the lipid towards the lower lid, except in the upper

meniscus where the surface velocity is dominated by the capillarity-induced thinning to pull the

lipid into the upper meniscus. As the lipid begins to collect in the menisci, surface diffusion

smooths out the gradients in the lipid. The lipid dynamics do not significantly change at the

center of the domain when the Marangoni effect is turned off.
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V.1.2 Marangoni Effect Turned On

With the Marangoni number on, the equations determining the evolution of the aqueous and

lipid layers are now coupled, (III.40) and (III.42). In the simulations that follow, the influence of

evaporation and gravity remain on, and will have the same influence on the system as discussed

in the previous subsection. Recall that B∗ = 0 produces results in the presence of a lipid reservoir

at both lids. The following results show the evolution on the open eye system between 1.14s and

9.09s, again with a time spacing of 1.136s between each curve.

Figure 10: Aqueous layer between t′ = 1.14s and t′ = 9.09s from equation (III.40).

Figure 11: Pressure of the system between t′ = 1.14s and t′ = 9.09s from equation (III.41).
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Figure 12: Aqueous flux between t′ = 1.14s and t′ = 9.09s from equation (III.38).

Figure (10) shows the evolution of the tear film profile when the Marangoni effect is turned on.

As before, the tear film continuously thins at the center of the domain. Now, more fluid is present

in the lower meniscus compared to the upper meniscus. A black line still forms at the edge of the

upper meniscus near y′ = 0.95, consequently forming a capillary ridge from surface tension-driven

motion. Differently from the Ma = 0 case, the pressure (shown in Figure (11)) becomes more

negative at the upper lid, as fluid drains out of the system from the positive flux (see Figure

(12)) caused by our boundary conditions. The dynamic pressure-driven flow must counter the

Marangoni and gravity-driven flows towards the lower lid in order to satisfy the zero surface

velocity boundary condition at the upper lid. Solving the surface velocity boundary condition

(III.21) for
(

∂p
∂y + G

)
, and substituting into the expression for the flux gives us

Q(L, t) =
2hg

3
dL
dt

+ εMa
h2

g

6

(
∂Γ
∂y

)
.

Since dL
dt = 0, the flux at the upper lid is determined by the size of ∂Γ

∂y .

The volume of tear fluid continues to grow and the tear film profile bulges at the lower meniscus,

where the black line and capillary ridge formations occur but are now less pronounced at the

lower lid when comparing to the Ma = 0 results. As a consequence, the global minimum is now

in the black line near the upper lid. Capillarity and gravity collect lipid at the black line region

within the lower meniscus at the beginning of the simulation, producing a strong Marangoni flow

towards the lower lid. To satisfy the zero surface velocity boundary condition at the lower lid, the

dynamic pressure-driven flow now must counter the large flow towards the lower lid. This results
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in the tear fluid being pumped into the lower meniscus at a rate four times the size of the rate it

is being drained from the system at the upper lid. As shown in Figure (11), the pressure is now

high at the lower lid to produce the positive flux discussed above. Interestingly, this particular

boundary condition configuration creates a self-driven pump of tear fluid at the lower lid.

Figure 13: Evolution of the polar lipid concentration between t′ = 1.14s and t′ = 9.09s from equation (III.42).

Figure 14: Surface velocity between t′ = 1.14s and t′ = 9.09s from equation (III.37).

Lipid dynamics are shown in Figure (13). Near the start of the simulation, the lipid is moved

towards the lower lid across the domain, collecting at the lower lid black line. The surface velocity,

shown in Figure (14), is initially negative in the center of the domain. Over time, as the lipid

collects in the black line region, the Marangoni effect dominates the surface velocity between the
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menisci to drive lipid towards the upper lid (similar to the upward drift seen experimentally).

Additionally, Γ′ appears to be evolving towards a steady state, since ∂Γ
∂y vs + Γ ∂vs

∂y = 0. Within

the menisci, the Marangoni effect produces flows pointed towards the lower lid as described

above.

V.1.3 Varying the Marangoni Number - Parameter Study

Several authors [2, 10, 14] used the value Γ∗ = 4 × 10−7mol/m2 to express the dimensional

quantity for lipid concentration on the tear film. This value was chosen because it was thought

to appropriately represent what was calculated in previous research relating to surface tension

gradients [6]. It is important to explore alternate values of Γ∗, and therefore alternate values of

the Marangoni number in order to observe its influence on dynamics. The Marangoni number is

involved in the governing equation for the change in tear film thickness (III.40), along with the

governing equation for the change in lipid concentration (III.42). We explore the influence of the

Marangoni number on the tear film at 3.3s.

Figure 15: Influence of Ma on the aqueous layer evolution at t′ = 3.3s from equation (III.40).
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Figure 16: Influence of Ma on the aqueous flux at t′ = 3.3s from equation (III.38).

As the Marangoni number increases, the Marangoni flow becomes a more dominant effect in the

dynamics. A large positive flux is required at the lower lid to compete with the larger Marangoni

flux, causing fluid to enter the system through the lower lid. At the upper lid, fluid is drained

from the system at a faster rate as the Marangoni number increases, as seen in Figure (15).

Figure 17: Influence of Ma on the polar lipid concentration evolution at t′ = 3.3s from equation (III.42).

The flux, plotted in Figure (16), has almost doubled in size in the menisci regions as the Marangoni

number quadrupled. Dynamic pressure gradient flows at each lid must increase to compensate for

the increased Marangoni flows, along with the flow driven by gravity to satisfy the zero surface

velocity boundary condition. Black line formation then hastens at the menisci as the Marangoni
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number increases.

Figure 18: Influence of Ma on the surface velocity at t′ = 3.3s from equation (III.37).

The lipid concentration gradients across the domain become smaller (see Figure (17)), and the

surface velocity is positive over more of the domain earlier in time for larger Marangoni numbers,

as seen in Figure (18). Although the lipid concentration gradients decrease, the increasing

Marangoni number amplifies the surface tension gradients, which dominate over the pressure

gradients and gravity to produce a positive surface velocity across more of the domain.

V.2 Study of Tear Film Dynamics with Mixed Boundary Conditions

V.2.1 Mixed Boundary Condition

Running several simulations suggested that when B∗ is close to zero, results similar to the specified

lipid boundary condition will be produced. When B∗ becomes large, results similar to the no lipid

flux conditions will be produced, which will be presented in subsection V.2.2. The constant B for

equations (III.19) and (III.18) was chosen such that B∗ = 1. In the results presented below, the

other boundary conditions, initial conditions, and parameter values are the same as Section V.1.2.

Time spacing between each curve again is 1.136s.

Observing the tear film thickness during the 9.09 seconds of the evolution in Figure (19), we see

less pooling in the lower meniscus and less draining in the upper meniscus. This can been seen by

comparing the location of the black line regions in Figure (10) and Figure (19) as well as the value

of the minimum tear film thickness in those regions.
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Figure 19: Aqueous layer between t′ = 1.14s and t′ = 9.09s when B∗ = 1, from equation (III.40).

Figure 20: Pressure of the system between t′ = 1.14s and t′ = 9.09s when B∗ = 1, from equation (III.41).

Figure (20) displays the evolution of pressure, where the curvature of the tear film causes the

pressure to increase at the lower meniscus, and decrease at the upper meniscus. The values of the

pressure are now smaller, as there is less curvature at the menisci. Similar to previous results, the

pressure from the van der Waals force does not vary greatly between the menisci.

The flux produced from the utilization of the mixed boundary condition is displayed in Figure (21).

Positive fluxes are half the size of the specified lipid boundary condition (compare with Figure

(12)) within the menisci. Relaxing the control over the lipid at the boundaries allows smaller

magnitude gradients as seen in Figure (22), where lipid at the boundaries does not greatly vary
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Figure 21: Aqueous flux between t′ = 1.14s and t′ = 9.09s when B∗ = 1, from equation (III.38).

from the specified value of 4.0× 10−7mol/m2. The smaller magnitude lipid gradients within the

menisci regions produce a smaller Marangoni flow towards the lower lid. As a consequence, the

dynamic pressure gradient needed to satisfy the zero surface velocity boundary condition at the

lids is smaller, taming the positive aqueous flux at the lids.

Figure 22: Evolution of the polar lipid concentration between t′ = 1.14s and t′ = 9.09s when B∗ = 1, from

equation (III.42).

Between the menisci, the lipid concentration is again larger near the lower meniscus than the

upper, producing a positive surface tension gradient driving the Marangoni flow towards the

upper lid. This Marangoni flow towards the upper lid competes with the gravity-driven flow.

33



Figure 23: Surface velocity between t′ = 1.14s and t′ = 9.09s when B∗ = 1, from equation (III.37).

As before, in the specified lipid boundary condition, the surface velocity (shown in Figure (23))

becomes positive in the center of the domain at the later times. Eventually, the Marangoni flow

dominates the gravity-driven flow.

V.2.2 No Lipid Flux Boundary Condition

To ensure that the mixed boundary condition produced the results for no lipid flux, B∗ was set to

be 106. Again, the other boundary conditions, initial conditions, and parameter values were kept

the same, and the simulation was run for 9.09s with 1.136s between each curve.

The tear film profile (Figure (24)) remains relatively symmetric despite the influence of gravity

and the Marangoni effect, where most fluid present in the system is located within the menisci.

The black line region formation is similar to the specified lipid boundary condition with Ma = 0

when comparing Figure (4) and Figure (24).

Pressure profiles (shown in Figure (25)) do not vary greatly throughout time, determined by

the curvature and tear film thickness, which do not greatly differ as time progresses. The

dynamic pressure gradient at the menisci evolves towards −G, similarly to the specified lipid

case with Ma = 0. Although the Marangoni flow can influence the aqueous dynamics, the lipid

concentration does not greatly vary in the menisci.
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Figure 24: Aqueous layer between t′ = 1.14s and t′ = 9.09s when B∗ = 106, from equation (III.40).

Figure 25: Pressure of the system between t′ = 1.14s and t′ = 9.09s when B∗ = 106, from equation (III.41).

From the flux plots (Figure (26)), we observe that pressure gradients dominate within the menisci

to cause fluid motion directed towards the lids, similar to when the Marangoni number was

turned off for the specified lipid boundary condition. No aqueous flux at either lid occurs as a

result from the combination of zero surface velocity, and no lipid flux boundary conditions.
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Between the menisci, in the center of the domain, gravity causes a small flux towards the lower lid.

Later in time, flux decreases in amplitude, and becomes closer to zero across the entire domain.

This is because a Marangoni flow towards the upper lid is generated in the center of the domain

that competes with the gravity-driven flow.

Figure 26: Aqueous flux between t′ = 1.14s and t′ = 9.09s when B∗ = 106, from equation (III.38).

Figure 27: Evolution of the polar lipid concentration between t′ = 1.14s and t′ = 9.09s when B∗ = 106, from

equation (III.42).
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Figure 28: Surface velocity between t′ = 1.14s and t′ = 9.09s when B∗ = 106, from equation (III.37).

The evolution of the lipid concentration is shown in Figure (27). The no-lipid-flux boundary

conditions result in small lipid concentration gradients in the menisci and thus there is a very

small Marangoni flow in the menisci regions. Between the menisci, a larger lipid concentration is

located near the lower meniscus than the upper, producing a Marangoni flux towards the upper

lid. The upward drift from the Marangoni flow in the center of the domain eventually dominates

the gravity-driven flow as seen in the surface velocity plots in Figure (28). At the upper meniscus,

the positive lipid gradient produces a surface tension-driven flux towards the lower lid.

VI. Numerical Solution - Blinking Eye

In this section, we consider a partially blinking eye. The upper lid location, given by the function

y′ = L′(t′), now varies with time. We define our partial blink cycle as comprising of four different

stages: opening phase, interblink period, closing phase, and a partially closed phase. In the

opening phase, the upper lid opens up across 1
4 of the ocular surface (from y′ = 0.75cm to

y′ = 1cm) in 0.51 seconds. For the interblink period, the eye remains open for 2.9 seconds

(y′ = 1cm). During the closing phase, the upper lid travels back down 1
4 of the ocular surface

from y′ = 1cm to y′ = 0.75cm in 0.51 seconds. The blink cycle ends with a partially shut phase

where y′ = 0.75cm for 0.62 seconds. Figure(29) plots L′(t′). In comparison to a realistic partial

blink, the opening and closing phases are longer, the interblink is shorter, and the partially shut

phase is longer. Slowing down the blinking was necessary for the solution to integrate forward in

time. Otherwise, the tear film would thin significantly causing the minimum thickness to go to
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zero.

Figure 29: Plot capturing the motion of the upper lid over the duration of the simulation.

Beside the upper lid motion for previous simulations, we change the initial tear film profile so

that h′typ = 5µm instead of 2.5µm, and we used

∂Γ
∂y

∣∣∣∣
y=0

=
∂Γ
∂y

∣∣∣∣
y=L

= 0

as the lipid boundary conditions. As a consequence, initially there is more tear volume and the

lipid boundary conditions enforce a no diffusive flux condition. Furthermore, we can show that

the amount of lipid in the system is conserved through the following area calculation by first

rewriting equation (III.42)
∂Γ
∂t

+
∂

∂y
QΓ = 0, (VI.1)

where QΓ is the nondimensionalized lipid flux, and integrating equation (VI.1) with respect to y..

Using Liebniz’s rule, we find that

∂

∂t

∫ L(t)

0
Γ∂y =

∫ L(t)

0

∂Γ
∂t

∂y + Γ(t, L(t))
dL
dt

,

which we substitute back into the integrated equation (VI.1) to obtain

∂

∂t

∫ L(t)

0
Γ∂y = Γ (t, L(t))

dL
dt
−QΓ (t, L(t)) + QΓ (t, 0) ,

and since the lipid flux QΓ (t, L(t)) = Γ (t, L(t)) dL
dt at the upper lid, and QΓ (t, 0) = 0 at the lower

lid due to our boundary conditions, the lipid initially present in the system is conserved, as

∂

∂t

∫ L(t)

0
Γ∂y = 0.
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VI.1 First Opening Phase

We begin by exploring the initial opening phase of the lid motion in Figure (30). Recall, when we

enforce the surface velocity of the aqueous layer to match the lid speed, the flux at the upper lid is

given by

Q(L, t) =
2hg

3
dL
dt

+ εMa
h2

g

6
∂Γ
∂y

∣∣∣∣
y=L

.

With the no diffusive flux lipid boundary condition, the flux is proportional to the lid motion.

Note that this lipid flux boundary condition has been previously studied [14].

At the upper lid, the tear film bulges due to the flux induced by the lid motion. Pressure changes

near the upper lid according to the curvature of the tear film formed by the lid motion. Capillarity

dominates at the upper lid to produce a large positive flux. The positive flux from capillarity

and the Marangoni effect competes with gravity to create a bulge at the upper meniscus until

the upper lid reaches the maximum length of 1cm. Near the stationary lower lid, the meniscus-

induced-thinning is apparent as no tear fluid enters the system. Recall that we do not control the

aqueous flux as boundary conditions in contrast to previously studied models.

Figure 30: Tear film dynamics during the initial opening phase of the blink at t′ = 0.057s, t′ = 0.227s, and

t′ = 0.511s.
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Flux is zero at the lower lid due to the no diffusive lipid flux and zero surface velocity boundary

conditions, where the slightly negative flow within the lower meniscus contributes to the formation

of the black line. Lipid concentration forms a negative gradient across the domain due to the

surface velocity, inducing surface tension-driven Marangoni flux towards the upper lid. Next we

observe the interblink period, where we allow the tear dynamics to evolve for 2.9s.

VI.2 Interblink Period

As a consequence of the blink, the tear film evolution in the upper meniscus is different from our

previous open eye calculation (compare Figure (31) with Figures (10), (19), and (24)). During the

interblink period, the tear fluid in the upper meniscus is now traveling towards the lower lids.

The gravity-driven flow now dominates over the weaker meniscus-induced flow. In addition, the

formation of a ridge produces curvature influencing the change in pressure at the upper meniscus

to result in a larger negative flux later in time, as shown in Figure (33). Time spacing between

each line is 0.568 seconds.

Figure 31: Aqueous layer evolution over 2.9s post-blink from equation (III.40).
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Figure 32: Pressure of the system over 2.9s post-blink from equation (III.41).

Figure 33: Aqueous flux over 2.9s post-blink from equation (III.38).

Surface tension gradients dominate the fluid flow between the menisci due to the strictly negative

slope of the lipid concentration profile (Figure (34)), causing a Marangoni flux towards the upper

lid (Figure (35)). Consequently, the Marangoni effect produces a positive flux later in time,

indicating upward drift of the lipid. Continuing with the study, we initiate a blink with downward

motion of the upper lid.
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Figure 34: Evolution of the polar lipid concentration over 2.9s post-blink from equation (III.42).

Figure 35: Surface velocity over 2.9s post-blink from equation (III.37).
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VI.3 Closing Phase

The aqueous fluid near the upper meniscus is drained out of the system through the upper lid,

induced by the lid motion (Figure (36)). Fluid near the upper lid still bulges throughout the

closing cycle, although the bulge is shifted towards the lower lid due to gravity and the Marangoni

effect. Large changes in pressure are observed due to the changing curvature of the aqueous layer

from the bulge in the tear film thickness. The pressure gradients compete with gravity and the

Marangoni flux, along with the downward motion of the lid to produce the negative flux near the

upper lid. Lipid concentration maintains a negative gradient until reaching the upper meniscus.

Surface-tension-induced fluxes point towards the upper lid everywhere except within the upper

meniscus, where the large positive slope of the lipid concentration produces a negative Marangoni

flux and surface velocity.

Figure 36: Tear film dynamics during the closing phase of the blink at t′ = 3.468s, t′ = 3.638s, and t′ = 3.922s

after the interblink period.
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VI.4 Partially Closed Phase

Recall that in our blink cycle the lid stays stationary for a short time between the closing and

opening phases. The time between the closing and opening phase results in thinning of the tear

film due to evaporation, noticeably at the ridge within the upper meniscus (Figure (37)). Flux

is then influenced by the thinning ridges. Within the 0.62s period between lid motion, the flux

and surface velocity tend towards zero across the domain, and the lipid concentration advects,

producing smaller gradients and reducing the Marangoni flux. Near the upper lid, capillarity

dominates the flux, and the Marangoni effect dominates surface velocity.

Figure 37: Tear film dynamics between the closing and opening phase of the blink at t′ = 3.979s, t′ = 4.206s,

and t′ = 4.542s after the closing phase.
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VI.5 Second Opening Phase

Results of the second opening phase are similar to that of the initial opening phase. Differently,

the bulge formed from the first opening phase in the aqueous layer is apparent throughout the

lid motion, influencing the change in pressure and the flux near the upper meniscus as another

capillary ridge begins to form, as seen in Figure (38). Changes in pressure form to compensate

for all ridges near the upper meniscus, and is added to the positive surface-tension-induced

Marangoni flux to produce a dominantly positive aqueous flux until the eye is completely open.

As the lid opens, the profile of the lipid concentration forms a negative gradient across the

domain, again producing a positive Marangoni flux, which also contributes to the positive surface

velocity.

Figure 38: Tear film dynamics during the opening phase of the blink at t′ = 4.599s, t′ = 4.819s, and t′ = 5.053s

after the partially closed phase.
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VII. Discussion

VII.1 Discussion and Conclusion

The goal of this work was to determine if specifying the lipid at the lids in the mathematical

model would be sufficient in capturing the physiological lipid reservoir seen in Figure (1). In the

absence of the Marangoni effect (Ma = 0), we found the evolution of the tear film thickness on

the open eye to be qualitatively the same as the prior works [2, 5, 10, 14]. With the Marangoni

effect (Ma nonzero), the coupled system was found to be highly sensitive to the choice of lipid

boundary conditions. We explored the influences of specified lipid, mixed lipid, and no lipid flux

boundary conditions while controlling the surface velocity at the lids.

We found the specified lipid boundary condition, mimicking a lipid reservoir, created large

positive fluxes at the lids pumping aqueous tear fluid into and out of the system. By specifying

the lipid concentration at the lids, Marangoni flows were established within the menisci, which

were countered by dynamic-pressure-gradients to pump fluid into the system at the lower lid and

out of the system through the upper lid, to generate a zero surface velocity. This aqueous flux at

the lids is not present in prior modeling efforts, due to all prior works choosing to control the

aqueous flux as a boundary condition.

Using the mixed lipid boundary condition relaxed the lipid concentration gradients at the menisci,

while not greatly varying the lipid concentration at the lids to produce results for a less controlled

lipid reservoir. The large positive flux produced by the specified lipid boundary condition at the

lower lid was alleviated, and the surface velocity did not vary greatly across the domain as a

result.

Lastly, the no lipid flux boundary condition produced a symmetric like tear film profile throughout

the simulation when comparing to the specified lipid and mixed lipid boundary conditions.

Symmetry of the tear film is a result of a lacking aqueous flux occurring at the lids produced by

the relationship between the zero surface velocity and zero lipid flux boundary conditions. Since

the Marangoni effect was present in the simulation, the profile for the surface velocity is similar to

the other explored boundary conditions, but the smaller lipid concentration gradients produced a

smaller Marangoni flux for the capillary driven flux to compete with at the menisci, resulting in a

less positive surface velocity.

For the specified lipid boundary condition, we found that increasing the Marangoni number
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through the increasing of the lipid concentration across the domain caused more upward drift

of the lipid, consistent with experiment and other mathematical models. Furthermore, the lipid

concentration is highly mobile within the first second of the simulations, and drifts upward later

in time for all choices of boundary condition. The black line formation is slightly slower in the

model than in reality for all explored boundary conditions. Due to the difficulties in imaging

the tear film dynamics at the lids, the proper choice for set of boundary conditions we explored

remains unclear. We understand that there is not an unlimited supply of aqueous fluid beneath

the lids, so the specified lipid boundary condition may not necessarily be realistic for the open

eye.

Results for the blinking eye were found to be sensitive to the aqueous flux at the boundary.

Specifically, we were not able to run a complete simulation of the open phase of the blink cycle

with either the specified lipid boundary condition or the mixed lipid boundary condition. In these

cases, too much aqueous fluid is pumped out of the system at the upper lid causing the tear film

to thin rapidly and break up. These results suggest the need to control the aqueous flux at the

boundary but more exploration is needed.

VII.2 Future Work

As seen in this thesis, the boundary conditions have a drastic effect on the evolution of the tear film.

To work towards a complete understanding of the tear film model, more boundary conditions need

to be explored. In this thesis, we introduced a mixed lipid boundary condition, which allowed us

to explore both a specified lipid boundary condition, and no lipid flux boundary condition as well.

Further work is needed to understand how this mixed lipid boundary condition influences the

dynamics during the blink cycle. In addition, in this thesis, for the aqueous evolution equation,

we chose to control the surface velocity and pin the tear film thickness at the lids. As discussed in

the literature review, most prior works control the aqueous flux into the system and pin the tear

film thickness. Therefore, it would be interesting to explore a mixed aqueous boundary condition

including the surface velocity and aqueous flux.

At the end of the simulations where mixed lipid boundary conditions are applied, ε ∂h
∂y is ap-

proximately 0.28 in the upper meniscus. Considering the large slopes of the tear film profile

and generally large gradients near the menisci, we cannot ensure that lubrication theory is valid

from our solutions. Prior literature has also raised concerns about the validity of lubrication

theory. An option to progress would be to regard the terms including epsilon as large to solve
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the incompressible Navier-Stokes model without removing terms, similar to work by Zubkov

[29], but using our boundary conditions for the open eye. Zubkov found that differences occur

within the menisci, where the directions of flow differ in the lubrication model compared with

flows predicted from the incompressible Navier-Stokes equations [29]. Including all terms of the

Navier-Stokes would require a more robust code, and the results would be complex.

Lipid concentration profiles of our solutions (seen in Figures (13), (22), and (27)) hint at the

presence of a boundary layer-type structure, where much of the solution response structure lies in

the vicinity of the domain edges. Performing a study on these regions will elucidate the complex

solutions found within the menisci for all choices of boundary conditions in this thesis. From

the analysis, it may be possible to identify an underlying similarity solution structure, since

many solution profiles appear to have a self similar character. This local analysis is necessary

to understand the physics occurring within the menisci, but also may lead to a solution whose

limit may allow us to identify self-consistent boundary conditions on the lubrication flow (via

asymptotic matching), valid away from these edge regions.
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IX. Appendix

Rochester Institute of Technology Mail GREGORY BARRON <gab1232@g.rit.edu>

Picture for thesis

2 messages

Gregory Barron (RIT Student) <gab1232@rit.edu>Tue, Aug 25, 2015 at 7:45 AM

To: king-smith.1@osu.edu

Dr. King-Smith,

This is Greg, one of Dr. Maki’s students studying tear film dynamics - we

ended up meeting at the ARVO eye conference this year.
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I was wondering if you would be willing to allow me to use picture 5b

(in your attached paper below) in my master’s thesis on tear film dynamics.

The picture hints towards a lipid reservoir, and it would help the reader

understand what I’m trying to capture with my math model.

It would really tie together my introduction.

Thanks for your time,

-Greg

KingSmithEtal_IOVS09_lipidmovemt(2).pdf

410K

King-Smith, Peter <king-smith.1@osu.edu>Tue, Aug 25, 2015 at 8:51 AM

To: "Gregory Barron (RIT Student)" <gab1232@rit.edu>

Cc: "King-Smith, Peter" <king-smith.1@osu.edu>

Good to hear from you! Yes, you are welcome to use the figure.

Best wishes,

Ewen

________________________________________

From: Gregory Barron (RIT Student) [gab1232@rit.edu]

Sent: Tuesday, August 25, 2015 7:45 AM

To: King-Smith, Peter

Subject: Picture for thesis

[Quoted text hidden]
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