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Abstract

Hydrogen: A Framework for Analyzing Software Revision Histories

Shannon D. Pattison

Supervising Professor: Dr. Matthew Fluet

Hydrogen is a framework used for analyzing software revision histories for such applica-

tions as verifying bug fixes and identifying changes that cause bugs. The framework uses a

graph representation of multiple versions of a program in a software revision history called

a multi-version interprocedural control flow graph (MVICFG). The MVICFG integrates

the control flow for multiple versions of a program into a single graph and provides a con-

venient way to represent semantic (i.e. control flow) change in a program. The MVICFG

can also reduce the storage demands for representing the control flow for multiple versions

of a program. Hydrogen implements an algorithm that uses data mined from source code

repositories to construct the MVICFG. The MVICFG is analyzed using demand driven

analysis for patch verification in multiple releases of software.
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Chapter 1

Introduction

1.1 Motivation for Hydrogen

Software aging is an observed phenomenon in software engineering where the quality of

a software system gradually degrades with time [15]. There are generally two types of

software aging. The first type is caused by the failure of software to keep up with changing

needs. The second type of aging is caused by the changes to software in the software

development lifecycle. Both can lead to rapid decline in software quality [16].

There is a need for tools that preserve or improve the quality of software to combat the

effects of software aging. For example, code changes used to fix bugs are often incorrect

and sometimes introduce new bugs. One study shows that 14.8%–24.4% of bug fixes in a

sample of large open source projects are incorrect [20]. Another problem that contributes

to software aging is the difficulty of understanding and assessing the impact of a change

in software. A recent survey shows that developers find it difficult to determine whether a

change will break code elsewhere [19]. There is also a need for better versioning systems

for software [15].

The Hydrogen framework addresses problems in software aging by analyzing change in

a key artifact in software revision histories – source code. The framework uses techniques

in static analysis to interpret the semantics of source code change to detect bugs and validate

changes that fix bugs.

The Hydrogen framework was created to analyze multiple versions of a program taken

from a software revision history. A software revision history is a sequence of program
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versions where each successive version is created by making small incremental changes

to an original version of a program. The Hydrogen framework is intended to represent a

revision history at different levels of granularity. Hydrogen can be used to represent many

versions of software where each successive version represents a small incremental change

to an original version of a program. Hydrogen can also be used to analyze a few versions

of a program where a version is a major or minor release of a program with a large amount

of change between versions. A version in Hydrogen represents change in a program and

each version is selected and assigned different meanings depending on the application of

the Hydrogen framework.

Hydrogen uses an intermediate representation of a program called a Multiple Version

Interprocedural Control Flow Graph (MVICFG). The MVICFG is a graph with relations

on the union of sequences of Control Flow Graphs (CFG) where a set of version numbers

is related to an edge in the union of the edge sets from the CFG’s. Intuitively, the MVICFG

is a set of the unions of CFG’s with each edge annotated to show what program versions

the control edges and nodes belong. Each node in the MVICFG represents a statement

common to at least one version of a program, and each edge in the MVICFG represents a

control flow transition common to at least one program version.

An important application of the Hydrogen framework is patch verification for multiple

software releases [14]. Specifically, the Hydrogen framework can be used to verify that a

patch eliminates a bug in multiple software releases without introducing any new bugs. In

other words, the framework is used to determine whether the patch is applicable to a buggy

release and simultaneously verifies the patch for all buggy releases. A demand driven, path

sensitive symbolic analysis is used on the MVICFG for detecting bugs in software changes.

The important applications of the Hydrogen framework can be summarized in the fol-

lowing list.

1. Representing control flow change: The MVICFG is a representation of control

flow changes across multiple versions of a program that impact the behavior of a
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program. This representation can be statically analyzed to assess the impact of pro-

gram changes. The MVICFG can also be used to visualize path changes in the control

flow of a program.

2. Efficient and precise change verification: Prediction of runtime behavior is done

by applying interprocedural, path-sensitive, symbolic analysis to the MVICFG to

precisely identify bugs and verify correctness of software changes. Analysis is done

along changed program paths relevant to software revisions for greater efficiency. Ef-

ficiency is also improved by caching intermediate results when analyzing successive

versions of a program in a revision history.

3. Longitudinal analysis: The MVICFG allows analysis of software change across

multiple versions of a program to discover commonalities, differences, and the pro-

gression of changes in program properties (e.g., bugs and invariants) in a revision

history.

4. Facilitating online comparisons: The MVICFG reduces the amount of control flow

graph data involved in an analysis across multiple versions of a program by elimi-

nating redundant nodes and edges common to multiple program versions. It is easier

to determine commonalities between program versions by analyzing shared nodes

and edges in the MVICFG that represent shared code across multiple versions. This

eliminates a common problem in other approaches that repeatedly analyze shared

code.

The main contribution of this thesis is a precise definition for the MVICFG and an

efficient algorithm for constructing the MVICFG from source code repositories. An appli-

cation of the MVICFG is demostrated using the Hydrogen framework to verify the correct-

ness of changes for multiple versions of a program. Thus, the MVICFG is demonstrated as

an effective data structure that can be used with new techniques in path sensitive analysis

that are used to verify the correctness of changes and help maintain a baseline of quality.
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1.2 Research Questions

The ultimate goal of the Hydrogen framework is to reduce the effects of software aging

and provide a better approach for maintaining or improving software quality in the software

development lifecycle. The research questions in this study are concerned with the potential

for using the MVICFG to support more efficient methods for achieving that goal. The

research questions addressed in this report are the following.

1. What are some general methods that can be used to efficiently translate program re-

visions to control flow changes for a large number of incremental program revisions?

2. What are some well defined representations of sequences of interprocedural control

flow graphs which would reduce storage or memory demands?

3. What data structures would improve the efficiency of path sensitive analysis across

multiple versions of a program?

4. What methods can be used for mining source code repositories to represent control

flow change over a large number of revisions in a software history?

1.3 Overview of the Hydrogen Framework

The MVICFG is used to represent both interprocedural and intraprocedural changes of a

program across multiple versions. The purpose of Hydrogen is to apply demand driven

analysis to the MVICFG for such applications as verifying bug fixes for bugs detected with

an interprocedural path sensitive analysis. Thus, it is not only important to understand

how the MVICFG represents intraprocedural changes, but it is also important to under-

stand how changes to the procedures of a program (i.e. added and deleted procedures) are

represented.1

1An overview of the MVICFG and its application to patch verification is available in section 2 of the
publication related to the study of this thesis [14]. The overview in the publication focuses on how the
MVICFG represents change within a singe procedure of a program. Section 2 in the publication also shows
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Figure 1.1: Four versions of a simple program with correct and incorrect patches for an
integer overflow.

There is one point of possible confusion to be aware of before reading on. The abbre-

viations MVCFG and MVICFG are used to discuss two types of graphs. A Multi-Version

Control Flow Graph (MVCFG) refers to the control flow graph with annotated edges used

to represent change within a single procedure. The MVICFG is easiest to understand as a

a simple example of how demand-driven, path sensitive symbolic analysis can be used on an MVICFG to
verify bug fixes. A different overview is provided in this report that will describe how the MVICFG is used
to represent both interprocedural and intraprocedural changes of a program across multiple versions.
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Figure 1.2: A high level view of the MVICFG for the four versions of the simple program
in Figure 1.1.

graph composed by connecting multiple MVCFGs. 2 This distinction will become impor-

tant in the next chapter of this thesis where the MVICFG is formally defined.

The code sample in Figure 1.1 shows a simple program with both intraprocedural and

interprocedural changes that can be represented by a multi-version interprocedural graph

(i.e. MVICFG). In this example, a simple program performs integer multiplication that

is susceptible to an integer overflow. The blocks of code in the left column of Figure 1.1

show four different versions of the start() procedure in a simple program. The right column

shows the diffs that represent the changes between the successive versions of the program.

The change in v2 incorrectly patches the integer overflow, v3 has a correct patch, and v4 is

a refactored version of the program.

The diffs in Figure 1.1 also show how procedure calls change between versions. The

2The publication with the results of this study does not make a distinction between the Multi-Version
Interprocedural Control Flow Graph (MVICFG) and the Multi-Version Control Flow Graph (MVCFG) [14].
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Figure 1.3: The MVCFG that represents all the changes within the start() procedure.

start() procedure is the top level procedure of the program which calls the other proce-

dures drop privelege(), isMultiplicationSafe(int,int), and safe multiply(int,int,int*). The

drop privelege() procedure is deleted in v4. The isMultiplicationSafe(int,int) procedure is

added in v3 on line 4 as part of the correct patch to guard against an integer overflow. The

safe multiply(int,int, int*) procedure is added in v4 to encapsulate lines 4-8 and line 9 from

v3. These procedural changes are reflected in the MVICFG for the program.

The simple program from Figure 1.1 is represented by a MVICFG described in Figure

1.2 and Figure 1.3. Figure 1.2 is a high level view of the MVICFG which shows proce-

dural changes in the program, and Figure 1.3 shows the annotated MVCFG representing

changes in the start() procedure of the program. Both graphs present different views of the

MVICFG to provide information about both interprocedural and intraprocedural changes

in the program.

The high level view in Figure 1.2 omits some details of the MVICFG to show how

changes in the call flow graph are represented as procedures are added and deleted between

versions of a program. All four procedures are represented in the MVICFG as MVCFGs
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labeled with the signature of their respective procedure. MVCFGs are connected by call

flow edges that connect call sites within a calling procedure with the start and end nodes

of the MVCFG for the called procedure. Each MVCFG in Figure 1.2 is labeled with a

range of program versions in which the procedure exists. Notice that none of the MVCFGs

for deleted procedures are ever removed from the MVICFG and are retained for a subset

of program versions. The control flow paths of deleted procedures in the MVICFG never

intersect the interprocedural paths from the versions of the program where the procedures

were removed.

The graph in Figure 1.3 presents the Multi-Version Control Flow Graph for the start()

procedure with greater detail than in Figure 1.2. The graph is a union of the control flow

graphs for each version of the start() procedure with the edges annotated with version

numbers. The version numbers indicate to which versions each control flow edge belong,

and these annotated edges are used to determine to which versions a node belongs. Edges

without annotations belong to all versions. The control flow graph for any version can

be identified simply by selecting the edges with an annotation that contains the version

number and all nodes that are incident with the selected edges. These annotations can also

be used to identify control flow changes in the start() procedure. For example, the control

flow graph for v1 is reconstructed with the nodes with indices 1, 8, and 9 and any incident

edges with an annotation containing the number 1. Also notice that nodes 1, 8, and 9 are

common to version 2. The control flow graph for version 2 also contain nodes 3, 6, and 7

that were inserted in version 2 to fix an integer overflow unsuccessfully. In version 3, nodes

1 and 3 are replaced by node 2, and node 5 is inserted before node 8. Node 2 is the correct

patch for the integer overflow.

The overview of this section is intended to present the basic idea of the Multi-Version

Interprocedural Control Flow Graph. This section also shows a simple example of how the

MVICFG can be used to represent a patch in a program that would be analyzed interproce-

durally. The next chapter presents a formal definition of the MVICFG that will be used to

define an algorithm for constructing the MVICFG.
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Chapter 2

Definition of the MVICFG

2.1 Preliminaries of the MVICFG

The following sections present a formal definition of the MVICFG using graph theory

to establish a foundation for defining the algorithms used to construct an MVICFG. The

notations and definitions in the following sections are used extensively in the definitions

and descriptions of the algorithms in chapter 3. The definitions are also used to analyze the

storage efficiency of the MVICFG and the efficiency and scalability of the algorithm used

to construct the MVICFG. 1

2.1.1 Definitions and Denotations

A graph is simple if it has no loops (i.e. an edge incident to one node) or parallel edges.

A directed graph G is an ordered pair (N,E) where N is a set of nodes and E is a set of

directed edges. The edge set E is a set of ordered pairs of nodes (u, v) where u, v ∈ N .

A graph union of two graphsG1 andG2 is a new graphG = G1∪G2 whereG is an ordered

pair (N,E) and N = N1 ∪N2 and E = E1 ∪ E2.

Given a graph G = (N,E), the number of nodes in G is denoted by |N |, and the number

of edges is denoted by |E|.

1The definition of the MVICFG in section 3 of the publication does not include the level of detail of the
definitions presented in this chapter. The definition used in the publication defines the basic elements of the
MVICFG needed to describe how the MVICFG is used in patch verification [14].
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Given two sets of nodes N1 and N2, the number of nodes in a union of sets is |N1 ∪N2| =

|N1|+ |N2| − |N1 ∩N2|.

A graph union of a sequence of graphs < G1, G2, ..., Gv > where v > 0 is the number

graphs in a sequence is defined as
v⋃

i=1

Gi = G1 ∪G2 ∪ ... ∪Gv.

A powerset P(S) of a set S is the set of all subsets of S. Given S = {x, y, z} we have

P(S) = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

A procedural program R is a set of procedures where each procedure (x, P ) ∈ R is a pair

where P is a sequence of Ii ∈ P instructions where l is the number of instructions in P

and P =< I1, I2, ..., Il > where l ≥ i > 0 and x is a unique symbol used to name P .

Each procedure P is represented by a control flow graph (CFG). The CFG is a directed

graph represented as a 4-tuple C = (N,E, S, T ) where (1) N is a set of nodes, (2) E is a

binary relation on N such that E ⊆ N ×N representing the set of all directed edges (arcs)

in C, and (3) S and T are start and terminal nodes S, T ∈ N .

Each node n in the set of nodes N corresponds to an unique instruction Ii from a procedure

P . Nodes n ∈ N are labeled in a control flow graph C with a label function nl. Given the

node n ∈ N corresponding to the instruction Ii ∈ P , the labelling function maps the node

to the index of Ii such that nl(n) = i.

The union of two control flow graphs (CFGs) is defined as follows. Let P2 be a modified

version of the procedure P1. Let C2 = (N2, E2, S2, T2) and C1 = (N1, E1, S1, T1) be

the CFGs for P2 and P1 respectively. The union C1 ∪ C2 is defined as a new flow graph

(N1 ∪ N2, E1 ∪ E2, S, T ). Given that the start and terminal nodes S and T are are always

considered equivalent and labeled the same for any flow graph, we have S = S1 = S2 and

T = T1 = T2.

The longest common subsequence (LCS) of two sequences is the longest sequence com-

mon to both sequences. For example, given two sequences TGCC and GCTA, the longest

common subsequence is GC.
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2.1.2 Multi-Version Graph

A graph union has the effect of integrating the nodes and edges from a sequence of graphs

into a single graphical representation. This makes the graph union suitable for integrating

the control flow for a sequence of CFGs. However, there is no way of distinguishing a

single graph in the sequence from the other graphs in a sequence using the resulting graph

from the graph union. The information about the graphs in the sequence is lost in the graph

union. See Figure 2.1 (a) for an example of a graph union.

The graph union is extended by mapping sets of integers to edges to identify which

edge sets the edges are members of in the original sequence of graphs. The labelling

scheme works as follows. A set containing the index of a graph in a sequence is mapped to

each edge in an edge set for each graph. An example of the edge labelling scheme can be

seen in Figure 2.1 (b).

We formally define the edge labelling scheme as follows. We construct the mapping of

edges to the graph index sets by first defining an edge labelling function. An edge labelling

function is defined for each edge set Ei such that a ∈ Ei iff αi(a) = {i}. We further extend

the αi function to include the domain of a ∈
v⋃

i=1

Ei by definition 2.1 as follows.

αi(a) =

 {i} a ∈ Ei

∅ a /∈ Ei

(2.1)

Using definition 2.1, we can construct a µ function that maps a set of graph index

numbers {i1, i2, ..., iu} ∈ P({1, 2, .., v}) to all edges in the union
v⋃

i=1

Ei. Let a ∈
v⋃

i=1

Ei be

an edge in the union of edge sets and v be the number of graphs in a sequence. We define

µv(a) = {i1, i2, ..., iu} such that µv(a) =
v⋃

i=1

αi(a).

Using the µ function from our definition, we now define the multi-version graph for a

sequence of graphs < G1, G2, ..., Gv > as the ordered tuple (
v⋃

i=1

Ni,
v⋃

i=1

Ei, µv). We denote

the multi-version graph asM in the following definition.

M = (
v⋃

i=1

Ni,

v⋃
i=1

Ei, µv) (2.2)
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(a)

(b)

Figure 2.1: (a) shows the normal graph union G1 ∪ G2, and (b) shows the graph resulting
from the extended union G1 ∪G2 with edge labels.
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Any graph Gi = (Ni, Ei) can easily be reconstructed from the multi-version graphM.

The edge set Ei is reconstructed as follows. ∀a ∈
v⋃

j=1

Ej , if i ∈ µv(a), then a ∈ Ei.

The node set Ni is reconstructed using incident edges from Ei. Given ∀m,n ∈
v⋃

j=1

Nj , if

∃a ∈ Ei such that a = (m,n) or a = (n,m), then m,n ∈ Ni.

2.1.3 Graph Sequence Reduction Rule

The goal of the multi-version graph M = (
v⋃

i=1

Ni,
v⋃

i=1

Ei, µv) is to represent < G1, G2,

..., Gv > with a fewer number of elements than the number of elements in the sequence.

While relationships
v∑

i=1

|Ni| ≥ |
v⋃

i=1

Ni| and
v∑

i=1

|Ei| ≥ |
v⋃

i=1

Ei| suggests a reduced number

of elements in the multi-version graph, we cannot assume that there is a reduction for

all sequences. We cannot ignore the contribution of Domain(µv) and Range(µv) of the

relation µv to the total number of elements inM because representing µv takes non-trivial

space. Thus, we have to count the number of elements in Domain(µv) and Range(µv) to

determine when the multi-version graph reduces the number elements in a graph sequence.

Let |Domain(µv)| denote the number of elements in Domain(µv), and |Range(µv)|

denote the number of elements in Range(µv). Also, letM be a multi-version graph. We

define the number of elements in the multi-version graph as follows.

|M| = |
v⋃

i=1

Ni|+ |
v⋃

i=1

Ei|+ |Domain(µv)|+ |Range(µv)| (2.3)

The number of elements |Domain(µv)| is straight forward. Since µv maps a set of

graph index numbers {i1, i2, ..., iu} to all edges in the union
v⋃

i=1

Ei, the number of ele-

ments |Domain(µv)| is the same as the number of edges in
v⋃

i=1

Ei. Thus, |Domain(µv)| =

|
v⋃

i=1

Ei|.

The number of elements |Range(µv)| is not so straight forward since Range(µv) ⊆

P({1, 2, ..., v}). It’s not enough to count the sets in Range(µv). It’s important to count

all the elements of the sets of graph indices in Range(µv) to count all elements in M.

Let a ∈
v⋃

i=1

Ei be an edge in M and µv(a) = {i1, i2, ..., iu} where 1 ≤ u ≤ v and
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{i1, i2, ..., iu} ∈ P({1, 2, ..., v}). Given it ∈ µv(a) where 1 ≤ t ≤ u, we know that there

is a one-to-one relationship between a ∈ Eit and it ∈ µv(a). Thus, an it ∈ µv(a) is

contributed to Range(µv) each time an edge a appears in an edge set Ei. Therefore, for all

edges in the sequence of edge sets Ei, we have |Range(µv)| = |E1| + |E2| + ... + |Ev| =
v∑

i=1

|Ei|.

Given that |Domain(µv)| = |
v⋃

i=1

Ei| and |Range(µv)| =
v∑

i=1

|Ei|, we can reformulate

definition 2.3 as follows.

|M| = |
v⋃

i=1

Ni|+
v∑

i=1

|Ei|+ 2 |
v⋃

i=1

Ei| (2.4)

Clearly the multi-version graph M is not a reduction for all sequences of graphs.

Consider < G1, G2, ..., Gv > to be a sequence of disjoint graphs. Then it holds that
v∑

i=1

|Ni| = |
v⋃

i=1

Ni| and
v∑

i=1

|Ei| = |
v⋃

i=1

Ei|. If any Gi is not trivial, then |Domain(µv)| +

|Range(µv)| > 0. Thus, given the number of elements in a sequence N =
v∑

i=1

|Ni| +
v∑

i=1

|Ei|, we have N < |M|.

Given N is the number of elements in a sequence of graphs and |M| is the number of

elements in the mult-version graph, we need N > |M| for there to be a reduction of the

elements in a sequence of graphs. Given the previous definitions, we substitute for N and

|M| to get
v∑

i=1

|Ni|+
v∑

i=1

|Ei| > |
v⋃

i=1

Ni|+
v∑

i=1

|Ei|+ 2 |
v⋃

i=1

Ei|. The inequality simplifies to

the following relationship.

v∑
i=1

|Ni| − |
v⋃

i=1

Ni| − 2 |
v⋃

i=1

Ei| > 0 (2.5)

Assuming the graphs in the sequence are simple, we can use the first theorem of graph

theory to reformulate the Principle 2.5 using the identity 2|
v⋃

i=1

Ei| =
∑

n∈
v⋃

i=1
Ni

deg(n). The

deg(n) represents the degree of a node from the graph of the union and not the degrees

from the graphs of origin. Principle 2.5 is reformulated to the following.
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v∑
i=1

|Ni| − |
v⋃

i=1

Ni| −
∑

n∈
v⋃

i=1
Ni

deg(n) > 0 (2.6)

We call the principle in 2.6 the Graph Sequence Reduction Rule. Basically, this is the

condition for the total number of elements in a sequence of graphs to be reduced by using

the multi-version graph. Intuitively, the inequality in 2.6 holds when the intersection of all

the node sets in the sequence is large and the graphs are sparse.

The principle in 2.6 can be extended to directed and non-simple graphs to make the

principle more applicable to ICFGs. Assuming an ICFG can allow loops and parallel

edges, we can use ε > 0 to represent the number of non-simple edges in a graph. Given

a sequence of directed graphs, the sum of degrees
∑

n∈
v⋃

i=1
Ni

deg(n) for undirected graphs

becomes
∑

n∈
v⋃

i=1
Ni

id(n) +
∑

n∈
v⋃

i=1
Ni

od(n). Finally, we can express the Graph Sequence Re-

duction Rule for directed non-simple graphs with the following.

v∑
i=1

|Ni| − |
v⋃

i=1

Ni| −
∑

n∈
v⋃

i=1
Ni

id(n)−
∑

n∈
v⋃

i=1
Ni

od(n) + ε > 0 (2.7)

2.2 Multi-Version Control Flow Graph

The multi-version control flow graph is defined by extending the definition of the multi-

version graph from the previous section to a sequence of CFGs. The trivial difference

between directed graphs and CFGs is the designation of the start and terminal nodes S and

T . However, the key problem with extending the definition of the multi-version graph is

related to labeled nodes in CFGs.

Before we discuss the problem with labeled nodes in CFGs, we will clarify what we

mean by an instruction. In our definition of the Multi-Version Control Flow Graph, we

are not concerned with the operational semantics of any particular programming language.
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An instruction in the context of the MVCFG is simply a string with an index for a posi-

tion within a sequence of instructions for a procedure. The presumption is that a proce-

dure in every procedural programming language is defined as a sequence of statements or

expressions which translate into a sequence of instructions. Thus, a procedure P is de-

fined as a sequence of Ii ∈ P instructions where l is the number of instructions in P and

P =< I1, I2, ..., Il > where l ≥ i > 0. We are also not concerned with how a procedure

P gets translated to a CFG. We always assume that for a given procedure P there is a

corresponding flow graph C.

Recall from section 2.1.1 the definition of a control flow graph (CFG). The CFG is a

directed graph represented as a 4-tuple C = (N,E, S, T ) where (1) N is a set of nodes, (2)

E is a binary relation on N such that E ⊆ N ×N representing the set of all directed edges

(arcs) in C, and (3) S and T are start and terminal nodes S, T ∈ N . Each node n in the

set of nodes N corresponds to an unique instruction Ii from a procedure P . Nodes n ∈ N

are labeled in a control flow graph C with a label function nl. Given the node n ∈ N

corresponding to the instruction Ii ∈ P , the labeling function maps the node to the index

of Ii such that nl(n) = i. In other words, nodes in a CFG are labeled by the index of the

instruction the node represents and not by the string representation of the instruction.

Assume we have two flow graphs C1 and C2. Although the union of the node sets

N1 ∪N2 and edge sets E1 ∪ E2 is based on the union of labeled graphs, the node labeling

functions nl1 and nl2 are not consistent between flow graphs C1 and C2 respectively. This

is because the instruction indices change between modifications from P1 to P2. For the

nodes m ∈ N1 and n ∈ N2, it is often the case that nl1(m) 6= nl2(n), but the nodes

correspond to the same instruction Ii ∈ P1 and Ij ∈ P2 where Ii = Ij . Choosing the

string representations of instructions as node labels instead of instruction indices does not

solve the problem. The string representations of instructions cannot be used to uniquely

label nodes because the same statement or expression for an instruction can be repeated in

a procedural sequence. The location of an instruction is an identifying attribute. Thus, a

new method for mapping nodes from N1 to N2 is required.
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A mapping of nodes is created between flow graphs C1 and C2 using the longest com-

mon subsequence (LCS) of instructions from the procedures P1 and P2 using the string

representation of each instruction. The LCS is used to identify which instructions remain

unchanged between P1 and P2 and which instructions were inserted and deleted to modify

P1 into P2. The nodes are mapped from N1 to N2 based on the LCS of string represen-

tations of instructions the nodes represent. A relation Φ : N → N is created between

instruction indices from P1 to P2 using the longest common subsequence. Given the Φ1

mapping from node set N1 to N2 and the nodes n1 ∈ N1 and n2 ∈ N2, we have n1 = n2 iff

Φ1(nl1(n1)) = nl2(n2).

We use the node mapping Φ to define the union of the edge sets E1 ∪ E2. Given

(m1, n1) ∈ E1 and (m2, n2) ∈ E2, we have (m1, n1) = (m2, n2) iff Φ1(nl1(m1)) =

nl2(m2) and Φ1(nl1(n1)) = nl2(n2).

Now we can use an extended definition of the multi-version graph in (2.8) that inte-

grates the control flow for all versions of a procedure. We simply extend the definition

by adding the start and terminal nodes S and T and performing the graph union for the

sequence of control flow graphs < C1, C2, ..., Cv > using the node mapping functions

< Φ1,Φ2, ...,Φv−1 > in the following definition.

M = (
v⋃

i=1

Ni,
v⋃

i=1

Ei, µv, S, T ) (2.8)

Figure 2.2 shows an example of the union for two flow graphs C1 and C2. The flow

graph C1 represents the first version of the procedure P1, and C2 represents P2 the modified

version of P1. The graphs C1 and C2 show the edges labeled with a set containing the graph

version index. For C1 and C2, the graph shows each edge in the edge sets E1 and E2 are

labeled with the sets {1} and {2} to show that αi(a) = {i} for all a ∈ Ei. The arc

labels in C1 ∪ C2 show the labels for the edge set E1 ∪ E2 where a ∈ (E1 ∪ E2) and

µ2(a) = α1(a) ∪ α2(a). We first need to understand how nodes are mapped between node

sets N1 and N2 of C1 and C2 to understand how the edge labels are created in E1 ∪ E2.
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(a)

P1 P2

1: if j < 0 then
2: print

"overflow"
3: j = ERR
4: end if
5: return j

1: if j < 0 then
2: print

"overflow"
3: j = ERR
4: else
5: drop priv()
6: s = true
7: end if
8: return j

(b)

Figure 2.2: (a) shows the code for two versions of a procedure P1 and P2 represented by C1

and C2 respectively, and (b) shows the graph resulting from the extended union operation
C1 ∪ C2.
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As mentioned previously, a node mapping between N1 and N2 is created by finding a

longest common subsequence (LCS) of instructions for P1 and P2. Figure 2.2 shows that

P2 is created by inserting an else statement at location 4 in P1. The LCS gives us the node

mapping Φ1 = {1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 7, 5 7→ 8}. Using Φ1, it is easy to determine

which edges belong to E1 ∩ E2 and which do not. The flow graph C1 ∪ C2 in figure 2.2

shows how the edge label unions are done using the node mapping Φ1. Figure 2.2 shows

µ2(a) = {1, 2} for all the edges a ∈ (E1∩E2). For all the edges a ∈ E1 and a /∈ (E1∩E2),

we have µ2(a) = {1}. For all the edges a ∈ E2 and a /∈ (E1 ∩ E2), we have µ2(a) = {2}.

The multi-version control flow graph is the method for integrating the control flow for

multiple revisions of a procedure in a software revision history. Although this is sufficient

for creating a graphical representation of change at the intraprocedural level, it is not suf-

ficient for describing change at the interprocedural level. Additional methods are needed

to construct an MVICFG that graphically represents the change in call flow for procedures

that are added or removed in software revisions. The next section defines the MVICFG,

and the next chapter describes the algorithm used to construct an MVICFG that represents

both interprocedural and intraprocedural changes.

2.3 Multi-Version Interprocedural Control Flow Graph

The definition of the Multi-Version Interprocedural Control Flow Graph (MVICFG) uses

the union operation with Interprocedural Control Flow Graphs (ICFG) and builds on the

definition of the Multi-Version Control Flow Graph (MVCFG) to represent both intrapro-

cedural and interprocedural change. The MVICFG uses MVCFGs to represent all the pro-

cedures of a program for a sequence of versions and shows how the MVCFGs are inter-

connected in a call flow. The definition of the MVCFG is extended to include call flow

information to represent both intraprocedural and interprocedural change in a procedure

for multiple versions of a program.

Only a simple defiinition of an Interprocedural Control Flow Graph (ICFG) is needed

to define a MVICFG. An ICFG is generally a graph that shows the control flow paths of a
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program which intersect multiple procedures. An ICFG not only shows all the control flow

graphs for all the procedures in a program, it also shows how procedures are interconnected

via the call flow of a program. The ICFG is essentially a set of all the control flow graphs for

a procedural program with some additional information about the call flow for a program

and a method for uniquely identifying control flow graphs by the procedure each graph

represents. In order to define the ICFG as a set CFGs, the definition of the CFG from

section 2.2 must be extended to include information about the call flow of a program.

The ICFG contains a unique CFG for every procedure in a program. The problem with

uniquely identifying a control flow graph in an inteprocedural control flow graph is sim-

ilar to the problem of uniquely identifying a procedure in a procedural program. Given

a procedural program R, it’s possible to have two different procedures P ′ and P ′′ where

both procedures have the same sequence of instructions < I1, I2, ..., Il >. However, we do

not define equality of procedures in the same way that sequences are normally considered

equal. The procedures P ′ and P ′′ are identified by the unique symbols x′ and x′′ respec-

tively. Typically, theses symbols represent the call signatures in a procedural program used

to map a sequence of instructions for a procedure to a memory location in a program. For

our purposes, we simply treat a symbol as an index number that is unique for each proce-

dure in a program. In the context of a procedural programR, the procedures P ′ and P ′′ are

paired with their respective symbols such that (x′, P ′) ∈ R and (x′′, P ′′) ∈ R. An unique

symbol represents only one procedure in R. Thus, when two procedures (x′, P ′) ∈ R and

(x′′, P ′′) ∈ R are the same, we must satisfy the condition x′ = x′′ =⇒ P ′ = P ′′. The defi-

nition of a control flow graph needs to be extended to include symbols for the same reason

two procedures in the same program require symbols. Since it is possible for two proce-

dures to have the same control flow graphs, the symbol x for the procedure (x, P ′) ∈ R

shall be included as an element in the definition of a CFG.

The definition of the CFG is also extended to include information about the call flow of a

program in an ICFG. This is done by identifying all the nodes in the CFG that represent call

instructions. Recall that for each instruction in a procedure Ii ∈ P , an instruction has two



21

properties – a position i and a string representation. The call instruction has an additional

property. The call instruction uses a symbol to identify the procedure that is called. The

assumption is that the symbol of the called procedure is part of the string representation for

the call instruction. The nodes representing call instructions are paired with the symbols

of the callees from each call instruction. Given a control graph (N,E, S, T ), the set of all

call node pairs K include each call node c ∈ N in a pair with a callee symbol x such that

(c, x) ∈ K. The set of call node pairs K is included as part of the extended definition of

the CFG.

An extended definition of a CFG is also needed to represent the call flow in an ICFG

by including a call node mapping function. Given two procedures (x, P ′), (y, P ′′) ∈ R

where P ′ calls P ′′, let C ′ be the control flow graph for procedure P ′ and C ′′ be the control

flow graph for procedure P ′′. Let K ′ be the set of pairs in C ′ where each pair (c, y) ∈ K ′

contains the symbol y of the called procedure (y, P ′′) ∈ R and a node c ∈ N ′ from the

node set N ′ of C ′ representing the call instruction I ′ ∈ P ′. The call node mapping function

γ is used to represent the call flow edge in an ICFG where γ[c] = C ′′.

The definition of an ICFG that is used to define an MVICFG is as follows. An interpro-

cedural control flow graph IC representing the procedural program R is defined as a set

of control flow graphs IC = {C1, C2, ..., Cn} where each control flow graph C ∈ IC is

represented as a 7-tuple C = (N,E, S, T,K, x, γ) where (1) N is a set of nodes, (2) E is a

binary relation on N such that E ⊆ N ×N representing the set of all directed edges (arcs)

in C, (3) S and T are start and terminal nodes S, T ∈ N , (4) K is a set of call node pairs

where all call nodes c ∈ N are paired with the symbol y representing the procedure being

called such that (c, y) ∈ K, (5) x is a symbol used to reference the procedure (x, P ) ∈ R

that C represents, and (6) γ is a call node mapping function where (c, y) ∈ K iff ∃C ′ ∈ IC

such that γ[c] = C ′.

Symbols become important when constructing the MVCFG for multiple versions of

control flow graphs in the construction of an MVICFG. Matching procedures across con-

secutive versions of a program uses the same principle of matching symbols to determine
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equality of two procedures within a single version of a program. Given two consecu-

tive versions of a procedural program R1 and R2 and two procedures (x1, P1) ∈ R1 and

(x2, P2) ∈ R2, we say that P1 and P2 represent two versions of the same procedure iff x1 =

x2. The same applies for matching CFGs between consecutive versions of an ICFG across

multiple versions of an ICFG in a sequence < IC1, IC2, ..., ICv >. Given C ′1 ∈ ICh and

C ′2 ∈ ICh+1 where C ′1 = (N ′1, E
′
1, S, T,K

′
1, x1, γ

′
1) and C ′2 = (N ′2, E

′
2, S, T,K

′
2, x2, γ

′
2), C ′1

and C ′2 are two consecutive versions iff x1 = x2.

A mapping function δ is introduced to represent the mapping of CFGs between veri-

sions of ICFGs using the symbol x from the definition of an ICFG. The δ function is

needed to construct MVCFGs that represent a chain of CFGs in a subinterval of versions

from a sequence of ICFGs. The δ function creates all the links between two subsequent

ICFGs namely IC1 and IC2. Given a symbol x that exists in both IC1 and IC2, we have

δ(x) = C where C = (N,E, S, T,K, x, γ) and C ∈ IC2.

We define δ as follows. Given the sequence of ICFGs where I =< IC1, IC2, ..., ICv >

and 1 ≤ h < v, let Sh be the set of all symbols in ICh ∈ I. Then δh is the function

δh : Sh → ICh+1 such that (∀x ∈ Sh):

δh(x) =

 (N,E, S, T,K, x, γ) : ∃C ∈ ICh+1 s.t. C = (N,E, S, T,K, x, γ)

∅ : @C ∈ ICh+1 s.t. C = (N,E, S, T,K, x, γ)
(2.9)

The δh function is used to create the sequence of CFGs represented by each MVCFG

contained in a MVICFG. The sequences of CFGs linked together using the sequence of re-

lations < δ1, δ2, ..., δv−1 > are called δ-chains, and a MVICFG contains a MVCFG for ev-

ery δ-chain from the sequence I. Every δ-chain begins with an initial C1 = (N,E, S, T,K,

x, γ) where either C1 ∈ ICh when 1 < h < v and δh−1(x) = ∅ or h = 1. The δ-chains do

not contain ∅. Thus, given the set of all symbols S for the sequence I, if a symbol x ∈ S

has more than one initial CFG whereC ′1 ∈ ICh andC ′′1 ∈ ICk such that 1 ≤ h+1 < k ≤ v,

then the CFGs belong to different δ-chains. Intuitively, this means that if a procedure ref-

erenced by symbol x is deleted, and a new procedure with the same symbol x is added in
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some subsequent version, then they will be referenced as two different procedures in the

MVICFG.

Given a set of all symbols S for the sequence I =< IC1, IC2, ..., ICv >, the δ-chains

for x ∈ S are all the sequences on the subintervals of versions [h, k] where ((h ≤ k)∧ (1 <

h∧ δh−1(x) = ∅∨h = 1)∧ (k < v∧ δk+1(x) = ∅∨k = v) . Thus, for the subinterval [h, k]

and some initial C1 ∈ ICh the δ-chain is D =< C1, δh(x), δh+1(x), ..., δk−1(x) >. The set

D(I) is the set of all possible δ-chains for a sequence I =< IC1, IC2, ..., ICv >.

Using the extended definition of the control flow graph as a member of an ICFG, we can

extend the definition of the MVCFG using the following definition. Given a sequence of

interprocedural control flow graphs I =< IC1, IC2, ..., ICv > and where v is the number

of versions of a program being represented and the set of all δ-chains D(I), we represent a

sequence of control flow graphs for a subinterval of versions as follows. Given D ∈ D(I)

on a subinterval [h, k] where 1 ≤ h ≤ k ≤ v, let M be the MVCFG that represents

D =< C1, ..., Cj > where j = k − h+ 1. We modify the definition 2.8 as follows.

M = (

j⋃
i=1

Ni,

j⋃
i=1

Ei, S, T,

j⋃
i=1

Ki, x, γ̂, µj) (2.10)

The extended definition 2.10 makes some changes to the entities in common with 2.8

from section 2.3. The unions
j⋃

i=1

Ni and
j⋃

i=1

Ei now belong to a subinterval of versions

[h, k] for the sequence of ICFGs. The symbol x is introduced for the same reason it was

introduced in the extended definition of a CFG. A new entity
j⋃

i=1

Ki is added from the

extended definition of a CFG with a subtle difference. The symbol y in the pairs (c, y) ∈
j⋃

i=1

Ki are not used to reference a CFG, but each symbol is used to reference a MVCFG

that represents the δ-chain of the CFG being called. The call node mapping function γ̂ is

similar to the call node mapping function γ for a CFG with a key difference. Call nodes

are mapped to other MVCFGs instead of the CFG for the procedure called.

The MVICFG MV = {M1,M2, ...,Mn} is a set of MVCFGs created for a se-

quence of ICFGs in the sequence I =< IC1, IC2, ..., ICv > where n is the number of

all possible δ-chains such that n = |D(I)|. The MVICFG is a set of MVCFGs used to
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represent both intraprocedural and interprocedural changes across a sequence of ICFGs

< IC1, IC2, ..., ICv > for v number of versions. The MVICFG contains an MVCFG to

represent all versions of any procedure that exists in a sequence of ICFG versions. The defi-

nitions in this section provide the elements needed to define the algorithm used to construct

an MVICFG in the next section.
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Chapter 3

Constructing the MVICFG

3.1 General Algorithm for Constructing the MVICFG

The algorithm defined in this section is an abstract definition for constructing the MVICFG

using set operations. The control flow graphs are mapped between consecutive versions of

interprocedural control flow graphs in a sequence of graph versions. A comparison routine

is used to identify which procedures are common to a pair of consecutive program versions

as well as identify any added or deleted procedures. Once the procedures between consec-

utive program versions are matched, the respective control flow graphs between ICFGs are

mapped. Node mappings between consecutive versions of control flow graphs are created

using a differencing algorithm on two procedures to find the longest common subsequence

of instructions the nodes represent. The node mapping is used to iteratively add control

flow changes for each new version using the union of node and edge sets along with a

method for annotating edges with version numbers. The benefit of defining the algorithm

in terms of set operations is that we limit the discussion to the concept of the MVICFG

without including details about using diff information from source code repositories. The

complications of using diff information from source code repositories will be discussed

later in the next sections.1

1The general algorithm for constructing an MVICFG in this section is more abstract than the algorithm
described in the publication. The general algorithm for constructing an MVICFG uses a similar approach in
section 4.1 of the publication. A key difference between the general algorithm described in this section and
the algorithm described in the publication is that the general algorithm does not use diff information from
source code repositories. The the modified algorithm in later sections adapts the general algorithm to make
use of diff information [14].
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The algorithm in this section has two parts described in Algorithm 1 and 2. Algorithm 1

takes a sequence of program versions R1, R2,...,Rv and builds the MVICFG representing

v number of versions. Algorithm 1 describes the iterative process used to incrementally

build MVCFGs for all the procedures in the sequence of program versions. The algorithm

also describes how MVCFGs are created for new procedures added in subsequent versions

of a program. Algorithm 2 is a supporting algorithm for Algorithm 1 which describes how

a longest common subsequence is used to create a node mapping and perform a union of

node and edge sets between control flow graphs.

Algorithm 1 takes the first step for constructing an MVICFG on line 3 by building

the ICFG for the first version of the procedural program R1 referred to as IC1. Lines

4-6 describe how the MVICFG is initialized from R1 by iteratively adding an MVCFG

for each CFG in IC1. The AddNewCFG procedure of the algorithm adds a new CFG to

an MVICFG on line 5 as defined on lines 21-30. This procedure is used with the initial

version of the program R1 as well as with new CFGs introduced by subsequent program

versions. The initial version of each MVCFG for each new CFG is created and added to

the MVICFG on lines 21-30. Line 22 describes how the edge set for a new CFG is labeled

using the edge labeling procedure of the algorithm LabelEdges which generates the initial

edge labeling function α1 defined in section 2.1.2 (see Appendix A for a definition of

LabelEdges). Recall that the edge labeling function is defined as α1[a] = {1}. The edge

labeling function α1 is assigned as the initial edge labeling function µ1 for the union of

edge sets in the MVCFG on line 23. After the edge labeling function is created, a new

MVCFG is created and added to the set of MVCFGs known as the MVICFG. The new

MVCFG is also added to the mapping function Γ on line 25 which will be used to retrieve

the MVCFG with the symbol x while iterating over subsequent versions of CFGs. The call

node mapping function γ̂ is also created on line 24 and initialized to NIL for each call node

in K1 on lines 26-28. The call node set K and the call node mapping function γ̂ are put in

a queue Q on line 29. The call nodes are mapped to their respective MVCFGs with γ̂ later

by dequeuing Q after all the MVCFGs are created forR1.
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Input : Sequence of program versionsR1,R2,...,Rv

Output:MV the multi-version ICFG representing v number of revisions

1 MV ← ∅
2 Q← ∅
3 IC1 ← BuildICFG (R1)
4 foreach (N,E, S, T,K, x, γ) ∈ IC1 do
5 AddNewCFG (MV,Γ, 1, N,E, S, T,K, x,Q)
6 end
7 for i ← 1 . . . v − 1 do
8 (R′,R+)← CompareProc (Ri,Ri+1)
9 foreach (x, Pi+1) ∈ R+ do

10 (Ni+1, Ei+1, S, T,Ki+1, x)← BuildCFG (x, Pi+1)
11 AddNewCFG (MV,Γ, i+ 1, Ni+1, Ei+1, S, T,Ki+1, x,Q)
12 end
13 UpdateMVICFG (Γ, Q,R′, i)
14 while Q 6= ∅ do
15 (K+, γ̂)← Dequeue (Q)
16 foreach (c, x) ∈ K+ do
17 γ̂[c]← Γ[x]
18 end
19 end
20 end

21 Procedure AddNewCFG (MV,Γ, i, N,E, S, T,K, x,Q)
22 αi ← LabelEdges (E, i)
23 µi ← αi

24 MV ←MV ∪ {(N,E, S, T,K, x, γ̂, µi)}
25 Γ[x]← (N,E, S, T,K, x, γ̂, µi)
26 foreach (c, x) ∈ K do
27 γ̂[c]← NIL
28 end
29 Enqueue (Q,K, γ̂)
30 End Procedure

Algorithm 1: General algorithm to build an MVICFG for a sequence of program versions
R1, ...,Rv
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Once the MVICFG is initialized, Algorithm 1 begins iteratively building the MVICFG

for the remaining sequence of program versions in R2, ...,Rv on lines 7-19. Each consec-

utive pair of program versionsRi andRi+1 are compared with CampareProc on line 8 to

identify both new procedures and common procedures (see Appendix A for a definition of

CompareProc). The algorithm procedure CompareProc returns a pair of sets of proce-

dures (R′,R+). The set R′ contains a 3-tuple for each of the procedures that are common

to both program versionsRi andRi+1 such that (x, Pi, Pi+1) ∈ R′ when (x, Pi) ∈ Ri and

(x, Pi+1) ∈ Ri+1. The tuples inR′ are used to create node mappings between two versions

of a procedure using a differencing algorithm. The set R+ contains the new procedures

added in version Ri+1 such that (x, Pi+1) ∈ R+ when (x, Pi+1) ∈ Ri+1 but (x, Pi) /∈ Ri.

New procedures are processed first on lines 9-12 to ensure MVCFGs for new procedures

are mapped with Γ before any call node mappings are created. A control flow graph is

created for each new procedure in R+ on line 10 using BuildCFG. The algorithm proce-

dure AddNewCFG that was used to initialize the MVICFG is used on line 11 to add an

initial MVCFG for each new procedure discovered in each successive version. Once the

set of new procedures are exhausted for version i, R′ is processed using Algorithm 2 in

UpdateMVICFG on line 13.

Algorithm 2 accepts four arguments to process the procedures that are common to ver-

sions Ri and Ri+1. The set R′ contains the procedures common to both versions which

will be compared for changes. The mapping function Γ is used to retrieve the MVCFG

created in previous versions for each procedure in R′. The queue used to add new call

nodes introduced by Pi+1 is passed as the argument Q. The fourth argument is the current

version number i used to label edges for the next iteration of the MVICFG.

The procedures in R′ are processed on lines 1-13 of Algorithm 2 where changes for

each procedure are incrementally added to each corresponding MVCFG that will represent

control flow changes between Ri and Ri+1 for all procedures common to both versions.

The first step is to find the longest common subsequence L of instructions for Pi and Pi+1

using the GenerateLCS procedure on line 2. Any of the common algorithms for finding
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Input : a list of proceduresR′ , Γ mapping of MVCFGs, Q the queue for new call nodes ,
and i for the current version

Output:MV the updated multi-version ICFG, Q the updated queue with new cal nodes

1 Procedure UpdateMVICFG (Γ, Q,R′, i)
2 foreach (x, Pi, Pi+1) ∈ R′ do
3 L← GenerateLCS (Pi, Pi+1)
4 Φi ← CreateNodeMapping (L,Pi, Pi+1)
5 (Ni+1, Ei+1, S, T,Ki+1, x)← BuildCFG (x, Pi+1)
6 αi+1 ← LabelEdges (Ei+1, i+ 1)
7 (N,E, S, T,K, x, γ̂, µi)← Γ[x]
8 UnionNodes (N,Ni+1,Φi)
9 UnionCallNodes (K,Ki+1,Φi)

10 UnionEdges (E,Ei+1,Φi, µi, αi+1)
11 K−i+1 ← IntersectCallNodes (K,Ki+1,Φi)
12 K+

i+1 ← Ki+1 −K−i+1

13 Enqueue (Q,K+
i+1, γ̂)

14 end
15 End Procedure

Algorithm 2: UpdateMVICFG procedure supports Algorithm 1 by incrementally updat-
ing MVCFGs for procedures common to both program versionsRi andRi+1.

a longest common subsequence such as Hirschberg’s algorithm used in the UNIX diff tool

can be used [10]. The longest common subsequenceL is used to generate the node mapping

Φi on line 3 necessary to perform a union of node and edge sets. See section 2.2 for more

details about the node mapping function Φi.

The next lines 4-9 update the MVCFG for Pi and Pi+1 by creating a new CFG and

performing a union with MVCFG of previous versions. Once the node mapping Φi is

created, a CFG is created for the new procedure Pi+1 on line 4 of Algorithm 2. The edge

set Ei+1 for the new CFG is labelled on line 5, and the edge labelling function αi+1 is

created. The next step is to retrieve the MVCFG from previous iterations using Γ on line

6 and add the changes from Pi+1 . The sets N,E, and K are the unions from previous

versions where t is the number of previous versions, N =
i⋃

k=i−t+1

Nk, E =
i⋃

k=i−t+1

Ek, and

K =
i⋃

k=i−t+1

Kk. The node and edge sets Ni+1, Ei+1 and Ki+1 in line 4 from the CFG of

Pi+1 are joined in union with N,E and K respectively from line 6 on lines 7-9. The union

operations all require the use of the node mapping function Φi. The union of the node sets
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N and Ni+1 is done on line 7, and the union of call node sets K and Ki+1 is done on line 8.

The union of edge sets E and Ei+1 is done on line 9 with UnionEdges which also updates

the edge labeling function µ. The UnionEdges procedure uses the node mapping function

Φi to map edges between E and Ei+1 and updates µ by union of the labels from αi+1.

The last steps for Algorithm 2 select all the new call nodes added in Pi+1 and place

them in the queue Q with the call node mapping function γ̂ for updating the call flow in

the MVICFG. This queue Q will be process in the final steps in the iteration of R2, ..,Rv

in Algorithm 1. The intersection between the call node sets K and Ki+1 is returned by

IntersectCallNodes on line 10 which uses the node mapping function Φi. The set of

intersecting nodes K−i+1 is then removed from Ki+1 to produce the set of new call nodes

K+
i+1 introduced in Pi+1. The last step on line 12 puts the set of new nodes K+

i+1 and the

call node mapping function in Q.

Once Algorithm 2 finishes processing all the procedures common to the consecutive

program versions Ri and Ri+1, the final steps of an iteration will execute on lines 14-18

in Algorithm 1. The queue of new call nodes Q and the mapping Γ will be used to update

the call node mapping functions γ̂ with the changes in the call flow represented by the

MVICFG. If Q is not empty, the pairs of new call nodes and related call mapping function

(K+, γ̂) are dequeued on line 15. Each call node and symbol pair (c, x) ∈ K+ is used with

Γ to lookup the MVCFG for the called procedure and map it to the call node c with the call

mapping function γ̂. On line 17, the MVCFG is returned by Γ[x] and stored in γ̂[c]. All

of the new call nodes added from changes inRi+1 will be mapped to a MVCFG once Q is

exhausted.

The complete MVICFG is constructed once the algorithm completely iterates over all

of the program versions in the sequence R1, ...,Rv. Algorithms 1 and 2 describe the basic

steps needed to construct an MVICFG using the definitions presented in chapter 2. The

general algorithm represents a simple form for the algorithm used to construct MVICFGs

in this study. However, the most significant drawback of this algorithm is that it is ineffi-

cient. A significant inefficiency is that the differencing algorithm and union operations are
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performed on every version of every procedure. Since a typical revision history contains

a small percent change between revisions of a program, the efficiency of the construction

algorithm would be greatly increased by limiting the use of Algorithm 2 to the procedures

that have changed (see chapter 4 for data about change in revision histories). The algo-

rithm would also reduce the storage demands of the MVICFG by using a different scheme

for labeling edges with version numbers.

The next sections describe how the general algorithm is modified to increase the al-

gorithm efficiency and reduce the storage demands for constructing the MVICFG. The

modified algorithm uses data mined from a software revision history to identify which pro-

cedures change between revisions and collect diff information by comparing source code.

The modified algorithm also uses a different scheme for labeling edges in an MVCFG.

The modified algorithm is the algorithm implemented to produce the results of the study

presented in chapter 4.

3.2 The Lazy Labelling Method

The modified algorithm used to construct a MVICFG uses an edge labelling method called

lazy labelling which reduces the storage demands of the MVICFG. The labelling scheme

used in the previous sections is the same as the method used with Multi-Version Graphs

defined in section 2.1. Labelling edges with sets of discrete version numbers is not an effi-

cient method for representing a sequence of control flow graphs. The edges in a MVCFG

always belong to a subsequence of control flow graphs for an interval of versions in a re-

vision history. Listing intermediate version numbers in a discrete set for a subsequence

of graphs does not provide anymore information than simply using a pair of numbers to

identify an interval of versions for the control flow edge. Thus, an interval annotation for

edge labelling in a MVCFG is more efficient.

The lazy labelling method is as conservative as possible by only labelling enough edges

to determine the versions for all edges and nodes in an MVICFG. Using intervals to label
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every edge in a MVICFG is not the most conservative approach. There are other opportuni-

ties for optimizing edge labels. Some edges don’t need to be labelled, especially edges that

belong to every version of an MVCFG. The set of all version numbers for an MVICFG can

be replaced by the empty set ∅ to reduce storage demands. There are no storage demands

for the ∅ because it contains no elements. The ∅ label can also be used to label edges when

the version interval for an edge can be inferred by incident edges. Path information can be

used in a control flow graph to determine the version interval of an edge. Path sensitive

analysis can be used to determine versions because all paths begin at the start node S and

end at the end node T in a control flow graph. The only edges that are important are the

ones incident with nodes where paths diverge or converge across versions. The nodes used

to mark the divergence or convergence of paths across versions are called v-branch and

v-merge nodes.

Figure 3.1 shows an example of a Multi-Version Graph that uses the lazy labelling

method. The graph G1 is the first graph in a sequence of three graphs < G1, G2, G3 >. The

three boxes in Figure 3.1 represent the Multi-Version Graphs forG1,G1∪G2, andG1∪G2∪

G3. Each box represents the Multi-Version Graph as it is constructed incrementally with

each union operation. This illustration shows how edge labels are updated with changes

from each graph so that each graph in the sequence is represented correctly.

The first box in Figure 3.1 shows the Multi-Version Graph for only one graph G1 in the

sequence< G1, G2, G3 >. No labels are required for a Multi-Version Graph that represents

a single graph in a sequence. Thus, all edges in the Multi-Version Graph forG1 are labelled

with ∅ since all the nodes and edges belong to G1 in the first increment. Consequently, any

Multi-Version Graph used to represent one version of a graph does not demand anymore

storage capacity than the graph represented. The Multi-Version Graph for G1 contains no

v-branch and v-merge nodes, and it is used as the baseline graph for the subsequent union

operations.

The edges in G1 ∪ G2 in Figure 3.1 are labelled since there are changes between G1

and G2. Node 2 becomes a v-branch node and node 5 becomes a v-merge node. The edge
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Figure 3.1: The illustration shows how the lazy labeling method works with the union of
the three graphs G1, G2 and G3. Node 2 is a v-branch node, and node 5 is v-merge node.
Only the edges that are adjacent to v-branch and v-merge nodes are labeled.

(2, 5) incident with both v-merge and v-branch nodes is labelled with< 1, 1 > since it only

belongs to G1. The edges (8, 5) and (2, 7) are new edges in G2 so they are labelled with

< 2, 2 >. The edge (2, 3) belongs to both G1 and G2 so it is labelled with ∅ as belonging

to all versions. Likewise, the edge (4, 5) incident with the v-merge node is labelled with ∅

since it belongs to both graphs.

Not all edges labelled with ∅ belong to all versions. The edge (7, 8) is a new edge in

G2, but it is still labelled with ∅. In the lazy labelling scheme, the ∅ label is used when an

explicit label is unnecessary. The version of (7, 8) would be implied by the versions of the

paths incident with the edge. Since the incident edge (2, 7) is labelled with < 2, 2 >, all

paths that include the edge (7, 8) belong to version 2. Thus, the version of (7, 8) is implicit.

The labels of the edges incident with the v-merge and v-branch nodes are updated as
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new edges and nodes are added in G1 ∪ G2 ∪ G3. The label for edge (2, 3) is changed

from ∅ to < 1, 2 > because it does not belong to G3. Likewise, the label for edge (4, 5) is

changed from ∅ to < 1, 2 >. The labels for edges (2, 7) and (8, 5) must be updated because

they belong to both G2 and G3. Thus, the labels for these edges change from < 2, 2 > to

< 2, 3 >. The new edges (2, 9) and (10, 5) are labelled with < 3, 3 > because they are

incident to v-branch and v-merge nodes. The edge (9, 10) is not labelled because it is not

necessary.

Any of the graphs G1,G2, or G3 can be reconstructed from the Multi-Version Graph

G1 ∪G2 ∪G3 using a depth first search starting at node 1. For example, the node and edge

sets N3 and E3 for graph G3 can be reconstructed as follows. The node 1 is the starting

node so it gets added to N3. There is only one incident edge (1, 2) labeled with ∅ so it

gets added to E3. Now we visit node 2 and add it to N3. Next the labels for the incident

edges (2, 3), (2, 7), and (2, 9) are checked. The edge (2, 3) is labelled with < 1, 2 > so it

is discarded. The edges (2, 7) and (2, 9) are labelled < 2, 3 > and < 3, 3 > respectively

so they are added to E3. Next we visit node 7 and add it to N3 and check the incident

edge (7, 8). The edge (7, 8) is labelled with ∅ so it is included. The node 8 is visited

and added to N3. Edge (8, 5) is labelled with < 2, 3 > so it gets included and node 5 is

visited. From here the edges (5, 6),(9, 10),and (10, 5) are added respectively along with the

incident nodes 6, 9, and 10. Completing the search we have N3 = {1, 2, 7, 8, 5, 6, 9, 10}

and E3 = {(1, 2), (7, 8), (8, 5), (5, 6), (2, 9), (9, 10), (10, 5)}. 2

The lazy labelling method provides an effective method for reducing the storage de-

mands of the MVICFG. However, the lazy labelling method negatively impacts the com-

putational complexity of the modified algorithm used to construct the MVICFG. The algo-

rithm must do extra work when creating a v-branch or v-merge nodes in the union operation

2One might point out that the information from the v-merge node in the previous example was not nec-
essary to reconstruct G3 using a depth first search beginning at the starting node. However, a MVICFG is
constructed to facilitate path sensitive analysis for change verification across multiple versions of a program.
A path sensitive analysis such as demand driven analysis raises queries at intermediate nodes of interest and
traverses the graph counter to the control flow direction in the analysis. Thus, v-merge nodes ensure that a
counter directional walk of the control flow graph is guided along the appropriate paths for the versions under
analysis.
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Input : N,E,Ei+1, µ,Φ
Output: Updated edge set E and labeling function µ

1 foreach a ∈ Ei+1 do
2 if a /∈Φ E then
3 (n1, n2)← a
4 µ[a]←< i+ 1, i+ 1 >
5 if n1 ∈Φ N ∨ n2 ∈Φ N then
6 MakeVersionNode (n1, n2, N,E,Ei+1, µ,Φ)
7 end
8 else
9 µ[a]← ∅

10 end
11 E ← E ∪ {a}
12 end
13 else
14 v ← µ[a]
15 if v 6= ∅ then
16 < i1, i >← v
17 µ[a]←< i1, i+ 1 >

18 end
19 end
20 end

Algorithm 3: This algorithm performs the union of edge sets for a MVCFG using the
lazy labeling method.

of the edge sets. Incident nodes and edges must be scanned for each new edge in a union

operation to update the version interval in the labels. The Algorithms 3 and 4 illustrate

the trade-off with computational efficiency by defining the algorithm for the lazy labelling

method used with the union operation for edge sets.

The algorithm defined Algorithm 3 shows how the union operation would be performed

on the edge sets for a CFG and a MVCFG. Algorithm 3 takes the inputs N,E,Ei+1, µ,

and Φ where (1) N =
i⋃

k=j

Nk is the set of nodes and E =
i⋃

k=j

Ek is the set of edges in

the MVCFG, (2) µ denotes the labelling function µi from the MVCFG, (3) Ei+1 is the

edge set for the next CFG in the union of the sequence of versions, and (4) Φ is the node

mapping function for versions i to i+ 1.. The output of Algorithm 3 is an updated edge set

E and labelling function µ with changes from the edge set Ei+1. Algorithm 4 defines the
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procedure MakeVersionNode that supports Algorithm 3 by creating v-branch and v-merge

nodes.

The Algorithm 3 starts by iterating over each edge in the edge set Ei+1 for the next

version of the CFG in the union of a sequence of CFGs. Each edge a ∈ Ei+1 is checked on

line 2 to find new edges from changes in version i+1. The edge set E from the MVCFG is

used to search for new edges in a /∈Φ E. The /∈Φ operator uses the node mapping function

Φ to check that the edge a ∈ Ei+1 does not exist in E.3 If the edge is not new, the edge tag

is updated on lines 14-18. The edge label is only updated when the ∅ label was not used in

version i. Thus, either the edge a is not incident to a v-merge or v-branch node, or the edge

belongs to all versions. Otherwise, the edge label < i1, i > is updated to include the next

version with the label < i1, i+ 1 > (see Appendix D for proof).

The lines 3-11 of Algorithm 3 add new edges from Ei+1 in each iteration where a new

edge is found. Each new edge is initially labelled with < i + 1, i + 1 > as it would only

belong to version i+ 1. The new edge must be checked on line 5 to find any incident nodes

that map to previous versions. If the new edge is not incident with any nodes that map

to previous versions, then the ∅ label is used instead of < i + 1, i + 1 >. Otherwise, a

v-branch or v-merge node must be created using the incident nodes. The v-branch node n1

and v-merge node n2 candidates are passed to the MakeVersionNode procedure defined

in Algorithm 4. At least one, if not both, of the nodes n1 and n2 will become incident to

labelled edges if not already. A new edge a ∈ Ei+1 is added to E once labelled correctly

and after the appropriate v-branch and v-merge nodes are created.

3Given a Φi relation defined in the definitions of section 2.2, the ∈Φ operator is defined for node sets and
edge sets as follows. Given the node sets N , Ni, and Ni+1 where Ni ⊆ N , let n be a node such that n ∈ Ni.
We say that n ∈Φ N iff ∃m ∈ Ni+1 s.t. Φi(nl(n)) = nl(m)). Furthermore, given the edge sets E, Ei, and
Ei+1 where Ei ⊆ E, let a = (n1, n2) be an edge such that a ∈ Ei. We say that a ∈Φ E iff ∃a′ ∈ Ei+1

where a′ = (m1,m2) s.t. Φi(nl(n1)) = nl(m1)) and Φi(nl(n2)) = nl(m2)).
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1 Procedure MakeVersionNode (n1, n2, N,E,Ei+1, µ,Φ)
2 if n1 ∈Φ N then
3 A← AdjOut (n1, E,Φ)
4 foreach adj ∈ A do
5 if adj /∈Φ Ei+1 then
6 v ← µ[adj]
7 if v = ∅ then
8 i1 ← FindMinVersion (n1, E, µ)
9 µ[adj]←< i1, i >

10 end
11 end
12 end
13 end
14 if n2 ∈Φ N then
15 A← AdjIn (n2, E,Φ)
16 foreach adj ∈ A do
17 if adj /∈Φ Ei+1 then
18 v ← µ[adj]
19 if v = ∅ then
20 (m1, n2)← adj
21 i1 ← FindMinVersion (m1, E, µ)
22 µ[adj]←< i1, i >

23 end
24 end
25 end
26 end
27 End Procedure

Algorithm 4: MakeVersionNode procedure used in Algorithm 3 adds v-branch or v-
merge nodes when a new edge from Ei+1 is incident with any nodes that map to previous
versions.
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The Algorithm 4 is responsible for creating a v-branch node or v-merge node when n1

or n2 map to a node in N . A v-branch node is created on lines 1-13 and a v-merge node is

created on lines 14-26. The node n1 is checked on line 2 and the node n2 is checked on line

14 to detect a mapping to a node from a previous version. Either one or both of the nodes

are used to create a v-branch or v-merge node.

When n1 is determined to be a v-branch node, a set of incident edges directed out from

node n1 ∈Φ N is collected from the MVCFG edge set E using the AdjOut procedure on

line 3. The version label for each incident edge will not be updated if the edge is common

to versions i and i+ 1. The edge is checked on line 5 to determine if the edge was removed

in version i + 1. If the edge is determined to be removed, the edge label must exclude the

version number i+1. If version label exists for the removed edge that is an interval and not

the ∅ label, than it should already have a label of the form < i1, i >. Otherwise, an explicit

edge label must be created for the removed edge. The starting version for the new edge

label is searched for using the FindMinVersion procedure. This procedure does a depth

first search opposite of the control flow to check all paths to the node n1 and determines

the minimum version where the node is reachable. The minimum version is denoted as i1,

and it is used to create the version interval < i1, i > used to label the incident edge.

When n2 is determined to be a v-merge node, the algorithm follows steps similar to

those for creating a v-branch node. The set of edges incident to n2 are labelled just like the

edges incident to a v-branch node. However, the set of incident edges are directed in toward

node n2 ∈Φ N and collected from the MVCFG edge set E using the AdjIn procedure on

line 15. Only the incident edges that have ∅ as a label are updated with a version range on

line 22. The minimum version used to label an edge for a v-merge node is found using the

adjacent node incident of the edge being labelled.

Elements of the Algorithms 4 are used to create v-branch and v-merge nodes in the

modified algorithm in section 3.3. Section 3.3 will show how information mined from

source code repositories is used with the lazy labelling method to improve the efficiency of
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the algorithm used to construct a MVICFG. Although the lazy labelling method is a trade-

off with computational complexity, the scalability of the algorithm is improved by reducing

the storage demands of the MVICFG. The use of source changes mined from source code

repositories help offset the increase in computational complexity.

3.3 Modified Algorithm for Constructing the MVICFG

The modified algorithm for constructing the MVICFG is used to incrementally build a

graph representation of the interprocedural control flow for all revisions of a program in

a software revision history. The algorithm leverages the differential information mined

from software repositories where textual differences are used in the incremental build of

the MVICFG. The differential information in this study takes the form of UNIX style diffs

generated by file comparisons using Hircshberg’s LCS algorithm [10]. The UNIX diffs

are units of code change consisting of lines of code that were inserted or deleted at a file

location in a single revision. The textual differences from source code files are used by

the modified algorithm to identify only those functions that have changed and limit the

incremental updates to only those MVCFGs that correspond to changed functions. This can

dramatically improve the performance of the algorithm by reducing the number of union

operations needed to construct the MVICFG. This is especially true for typical software

revision histories since the changes between revisions tend to impact a small percentage of

code local to only a few procedures.

The modified algorithm translates textual changes in source code into graph changes in

the control flow representation of a program. The problem with using textual changes in

source code is that not all changes effect control flow changes in a program. Changes in

source might only effect changes in white space or source code comments. Changes might

also be structural such as reordering class functions or variable declarations. Other changes

might show up that are only lexical such as variable name changes, namespace changes,

class name changes, new macro statements, etc. Even a function name or parameter name

change can be construed as an interprocederal change. A method is needed to filter out the
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Figure 3.2: The graph diff shows how the nodes corresponding to deleted statements are
not incident with all the edges related to the diff. The edge (2, 2) → (2, 3) is not incident
with any of the nodes deleted on lines 3 and 4 of v1.

information in source code files that are not relevant to the semantics of a program.

Translation of textual changes in source code into graph changes in the control flow

representation of a program must overcome other challenges besides filtering out irrelevant

lexical changes. Currently, there is no known method for translating code fragments from

code changes into the control flow edges corresponding to control flow changes related to

the code changes. Mapping code change to the corresponding added or deleted nodes in

subsequent control flow graphs is less problematic. Once the non-essential lexical changes

are filtered out, mapping program statements to control flow nodes is relatively straight

forward. Identifying the control flow edges that complement the intersection of edge sets

of subsequent control flow graphs which represent the control flow change is not straight

forward. The context of the control flow graph node changes becomes important. For

instance, the nodes corresponding to deleted statements in a program are often not incident

with the new control edges introduced by the deletion. The new control flow edges related
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Figure 3.3: The steps in the preprocessing stage for building an MVICFG from source
code mined from source code repository. The source code R1..Rv for v number of versions
is processed to generate diff information and the ICFGs IC1..ICv used to construct the
MVICFG.

to deleted program statements are often incident to nodes adjacent to the deleted nodes.

Consequently, the unchanged statements of a program outside the regions of code change

become important when constructing a MVICFG. See Figure 3.2

A preprocessing phase is used to distill the information mined from source code repos-

itories into the information needed to construct the MVICFG. Figure 3.3 illustrates the six

major steps in the preprocessing phase for constructing the MVICFG. The preprocessing

phase is executed over the entire range of revisions represented by the MVICFG. The se-

quence < R1..Rv > in Figure 3.3 represents the sequence of whole programs pulled from

a source code repository where v is the number of program revisions being represented.

Four sets of artifacts are created to support the construction of the MVICFG when the

preprocessing phase is completed. While the definition of the modified algorithm does

not explicitly depend on a preprocessing phase, the artifacts created by the preprocessing

phased are used implicitly in the subprocedures that support the modified algorithm.

The first stage of the preprocessing phase creates an index of all the source code files
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that belong to each revision of a program. The list of file names for each program revision

include all changed and unchanged files of the program. These file names are used in the

modified algorithm to group together functions with their respective textual diff informa-

tion. The grouping of functions by filename is important when creating the correct node

maps for subsequent CFGs as we will see later in the definition of the algorithm.

The next stage of the preprocessing phase shown in Figure 3.3 is the Normalize Code

stage. This stage takes the list of all code files for each program revision and runs each

code file through a code formatter and code preprocessor. The code formatter ensures that

only one program statement appears on a line for each file 4 The C compiler preprocessor is

also used in this stage to handle macro substitution for C/C++ programs. The preprocessor

ensures that changes in macro definitions are reflected in the function definitions before the

diff information for each revision is generated. The Normalize Code stage helps filter out

some of the previously mentioned lexical changes.

Once all of the source code files have been normalized, the next stage of preprocessing

parses the code in the bodies of the function definitions for comparison between program

revisions. The parse function stage indexes all the function names for each program revi-

sion, and the file name and line number for each function definition is added to a function

index. The code in the function bodies are copied to separate files to be compared using

the UNIX diff tool to generate diff information in the next stages in preprocessing.

The fourth stage in the preprocessing phase is the List New/Deleted Functions stage.

This stage does a lexicographical comparison of function names between successive ver-

sions of a program. The list of new and deleted functions is created for each revision

number to support the incremental interprocedural updates for the MVICFG in the modi-

fied algorithm. This list is used by the algorithm to determine when to add a new MVCFG

for a new function created in a revision of a program.

4For the sake of full disclosure, the code formatter was not used in the results of this study because it was
not needed for the benchmarks selected. It is a common coding practice to put a line break following each
statement in a program. While some statements will span multiple lines, the algorithm implementation in
this study includes some heuristics to select all the correct nodes for statements that span multiple lines. The
heuristics used are not included in the algorithm definition.
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The fifth stage of preprocessing generates the textual diff information used by the mod-

ified algorithm to incrementally update MVCFGs with graph changes for each program

revision. The textual diff information is generated by performing a UNIX style diff on the

normalized code for the function bodies generated by stages two and three. A list of diffs is

created for each program revision and grouped by function name. The resulting diff infor-

mation will be cleaner than the diff information generated by source code repositories such

as SVN or Git. Source code comments and white space changes will have been filtered

out by the code normalization stage. The structural diff information will be filtered out

by extracting the code for function bodies. The remaining code changes will more closely

approximate control flow changes in a program revision.

The final stage of the preprocessing phase for constructing an MVICFG is the Build

ICFGs stage. This stage generates the sequence of interprocedural control flow graphs

for the sequence of program revisions in a revision history. All the control flow graphs

for each program revision are created and stored as an artifact used by the modified algo-

rithm to build the MVICFG. The complete ICFGs for each revised program is not neces-

sary. Only the complete ICFG for the first program revision R1 is needed as the baseline

MVICFG. Partial ICFGs are generated for the remaining program revisions in the sequence

< R2, ..., Rv > which only contain CFGs for new and modified functions.

Figure 3.4 illustrates how graph diffs are connected to the baseline MVCFG from in-

cremental updates using textual diffs. The graphs v1, v2, and v3 represent three consecutive

CFGs generated in the preprocessing phase which correspond to a modified function in

three successive program revisions. The CFG for v1 represents the first version of a func-

tion so it becomes the baseline graph for the MVCFG. The textual diffs are used to identify

the line numbers of the source code revisions, and nodes that added or deleted in subsequent

revisions are selected using these line numbers. For example, the program revision v2 in-

serts three new lines of code on line 5 of the program. Thus, the nodes labelled (2.5), (3, 5),

and (3, 6) are connected to the baseline MVCFG using v-branch node (2.4) and v-merge

node (3, 9). The algorithm creates v-branch and v-merge nodes by mapping nodes adjacent
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Figure 3.4: The modified algorithm constructs an MVCFG incrementally by extracting
nodes for successive CFGs and joining them to the baseline MVICFG via edges connecting
v-branch and v-merge nodes. The red edges show how successive CFGs are joined using
graph diffs.

to inserted nodes to the baseline MVCFG from the previous revision. The red line in Figure

3.4 shows the new edges that are incident with the v-branch and v-merge nodes.

Figure 3.4 also shows how nodes are labelled using line numbers in order to map nodes

between versions. While every node in an MVCFG corresponds to a specific line number

in the source code for the statement the node represents, a line number is not enough to

accurately identify node in the node set in an MVCFG. When a node is created to represent

a statement in a program, it is labelled with the line number from the first version of the

program that introduced the statement. As lines of code are added and deleted to successive

versions of a program, the line number for the corresponding statement will change. Thus,

the node label needs to be updated when the MVCFG is updated with changes in each new

version.
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Another problem occurs with line numbers when statements are added and deleted on

the same line number across multiple versions. For example, in Figure 3.4 the node for j =

8*j; represents a statement in v1 and the node for if(isMultiplicationSafe...)

represents a different statement in v3 both of which are on line number 4. Simply labelling

both nodes with the line number 4 would be ambiguous and potentially cause incorrect

node maps during an incremental build of the MVCFG. The revision number is paired with

line numbers to keep track of the last program version the node belongs. For instance, all

of the nodes (3, 4), (3, 5), (3.6), (3.8).(3.9), and (3, 10) are current as of version 3. The

node map for the next set of updates from the program revision 4 will only map to nodes

with line numbers from version 3. Thus, the nodes (2, 4) and (2, 5) will be ignored in all

revisions beyond version 3 when building the MVCFG.

The modified algorithm builds on the gereral algorithm defined in Algorithm 1 and 2

in section 3.1 by introducing the optimizations previously discussed. Elements of the lazy

labelling algorithm are used in the modified algorithm to improve the storage efficiency of

the MVICFG. The computational complexity of the algorithm is improved by distilling the

information from source code repositories using a preprocessing algorithm. The artifacts

gererated in the preprocessing phase are used to incrementally build the MVICFG for a

sequence of program versions with fewer union operations than the general algorithm. The

Algorithms 5, 6, 7. and 8 provide a complete definition of the algorithm for constructing the

MVICFG to represent a sequence of interprocedural control flow graphs from a software

revision history.

The Algorithm 5 is the high level algorithm that builds an initial version of an MVICFG

for the original version of a program v1, and then incrementally updates it with changes for

each revision number v2, ..., vn. The interprocedural control flow graph IC1 on line 3 is

used for the baseline MVICFG, and the initialization ofMV is performed by the loop on

lines 4-6. The AddNewCFG procedure adds a new MVCFG to MV as it was defined

in Algorithm 1 of the general algorithm but with the lazy labelling method. Thus, all the

control flow edges inMV are labelled with ∅ instead of v1.
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Input : V , set of revision numbers of source code v1, v2, ... ,vn
Output: MV , the MVICFG representing n revisions

1 MV ← ∅
2 Q← ∅
3 IC1 ← BuildICFG (v1)
4 foreach C ∈ IC1 do
5 AddNewCFG (MV, C, v1,Γ, Q)
6 end
7 foreach vi, vi+1 ∈ V do
8 FuncNames = GetNewFunctions (vi+1)
9 foreach FuncName ∈ FuncNames do

10 C ← BuildCFG (FuncName, vi+1)
11 AddNewCFG (MV, C, vi+1,Γ, Q)
12 end
13 ChangedFiles = GetDiffFiles (vi, vi+1)
14 foreach FileName ∈ ChangedF iles do
15 UpdateMVCFG (FileName, vi+1,Γ, Q)
16 end
17 UpdateNewCallNodes (Γ,Q)
18 end

Algorithm 5: The modified algorithm builds an initial version of the MVICFG for v1,
and then incrementally updates it with changes for each revision numbers v2, ..., vn.

Each revision number vi ∈ V corresponds to set of textual diffs (i.e. UNIX diffs)

grouped by file and function name for all the changes between two successive versions of

a program for revisions vi and vi+1. Algorithm 5 iterates over the set of revision numbers

V and processes both interprocedural and intraprocedural updates. New functions added in

revision vi+1 are added toMV on lines 8-12. The GetNewFunctions procedure retrieves

a list of function names that were generated in the preprocessing phase. These function

names are used to retrieve the CFGs generated in the preprocessing phase for the new

functions and added toMV .

The intraprocedural updates for the changed files between versions vi and vi+1 are pro-

cessed on lines 13-16. The set changed flles are retrieved from the preprocessing phase to

process diffs grouped by file name and function. Updates are made for the group of diffs

in Algorithm 6 which defines the UpdateMVCFG procedure on line 15 of Algorithm 5.

The file name of a modified file is used in Algorithm 6 to retrieve a list of function names
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Input : FileName, vi+1, Γ, Q
Output: MVCFG with intraprocedural update related to unit

1 Procedure UpdateMVCFG (FileName, vi+1,Γ, Q)
2 DiffGroups← GetTextualDiffs (FileName, vi+1)
3 foreach (FuncName,DiffList) ∈ DiffGroups do
4 (Nvi+1 , Evi+1 , S, T,Kvi+1 , x)← BuildCFG (FuncName, vi+1)
5 Φvi ← CreateNodeMapping (FuncName,DiffList)
6 (N,E, S, T,K, x, γ̂, µ)← Γ[x]
7 foreach (pa, la, pd, ld) ∈ DiffList do
8 if la > 0 then
9 if ld > 0 then

10 DeleteCFGDiff (N,Nvi+1 , E,Evi+1 ,K,Φvi , µ, vi, vi+1, pd, ld)
11 end
12 InsertCFGDiff (N,Nvi+1 , E,Evi+1 ,Kvi+1 , Q,Φvi , µ, γ̂, vi, vi+1, pa, la)
13 end
14 else
15 DeleteCFGDiff (N,Nvi+1 , E,Evi+1 ,K,Φvi , µ, vi, vi+1, pd, ld)
16 end
17 end
18 UpdateVersions (S,E, µ, vi+1,Φvi)
19 end
20 UpdateLineNumbers (FileName,Γ, vi+1,Φvi)
21 End Procedure

Algorithm 6: The procedure updates the MVCFGs that represent the functions in a file
using the UNIX style diffs for file revisions between program versions vi and vi+1.

of changed functions generated in the preprocessing phase. The MVCFGs that represent

the changed functions in a file are updated using the UNIX style diffs from the code changes

between program versions vi and vi+1. The UNIX style diffs are retrieved on line 2, and

the diff groups are processed on lines 3-22 for each changed function. The preprocessed

CFG is retrieved with the BuildCFG procedure on line 4. The node mapping is created

using the line numbers of the diffs and the starting line number of the the function with

the CreateNodeMapping procedure using the information from the preprocessing phase.

The Γ function is used to lookup the MVCFG using the function signature x on line 6.

The loop on lines 7-20 updates an MVCFG with the textual diffs for changes in a

function. Each diff has the UNIX diff format (pa, la, pd, ld) where pa is the starting line

number for inserted lines of code, la is the number of lines inserted, pd is the starting line
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number for deleted lines of code, and ld is the number of lines deleted. If a diff does not

contain any deleted lines, both pd = 0 and ld = 0. Likewise, both pa = 0 and la = 0 when

a diff contains no inserted lines.

UNIX style diffs have three forms. Each diff is either an insert, delete, or update. An

insert type diff only adds new lines in a file change so both pd = 0 and ld = 0. On the other

hand, a delete type diff only deletes lines in a file change so both pa = 0 and la = 0. The

third type of diff is an update that inserts and deletes lines in a file change. These three types

of diffs are handled as separate cases, and each case is handled using the InsertCFGDiff

and DeleteCFGDiff procedures defined in Algorithms 7 and 8 respectively.

Both Algorithms Algorithms 7 and 8 work together and perform similar tasks. The

procedures defined by these algorithms do the work of translating textual diffs into the

nodes and edges for the related graph diff used to update the MVCFG. These algorithms

also label the edges with the correct version numbers and create the v-branch and v-merge

nodes where control flow paths diverge or converge across versions.

The Algorithm 7 defines the procedure that is used in Algorithm 6 to update an MVCFG

with a graph diff related to deleted lines of code. The BuildCFGDiff function on line 2

uses pd and ld to select the nodes and incident edges from N,E and K of the MVCFG. The

graph diff (∆Nvi ,∆Evi ,∆Kvi) correspond to the nodes related to the program statements

deleted and all edges incident to the selected nodes. The set of incident edges ∆Evi is

processed on lines 3-24 to create or update any v-branch and v-merge nodes related to the

deleted lines. The edges (n1, n2) ∈ ∆Evi that are incident with adjacent nodes such that

n1, n2 ∈ ∆Nvi do not need updating since the edges and nodes are contained in the deleted

component of the control flow graph. Only the edges that are incident with a node in Nvi+1

such that n1 ∈Φ Nvi+1
or n2 ∈Φ Nvi+1

need labels updated to mark points of convergence

or divergence across versions.5

A v-branch node is created for a node that is incident to an edge such that (n1, n2) ∈

5The ∈Φ operation is used whenever the node mapping function is required to determine when a node
from vi also belongs to vi+1.
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1 Procedure DeleteCFGDiff (N,Nvi+1 , E,Evi+1 ,K,Φvi , µ, vi, vi+1, pd, ld)
2 (∆Nvi ,∆Evi ,∆Kvi)← BuildCFGDiff (N,E,K, vi, pd, ld)
3 foreach (n1, n2) ∈ ∆Evi do
4 if n1 ∈Φ Nvi+1 then
5 MakeVBranchNode (n1, E, vi, µ)
6 Aout ← AdjOut (n1, Evi+1 ,Φvi)
7 foreach a ∈ Aout do
8 if a /∈Φ E then
9 E ← E ∪ {a}

10 µ[a]←< vi+1, vi+1 >

11 end
12 end
13 end
14 else if n2 ∈Φ Nvi+1 then
15 MakeVMergeNode (n2, E, vi, µ)
16 Ain ← AdjIn (n2, Evi+1 ,Φvi)
17 foreach a ∈ Ain do
18 if a /∈Φ E then
19 E ← E ∪ {a}
20 µ[a]←< vi+1, vi+1 >

21 end
22 end
23 end
24 end
25 End Procedure

Algorithm 7: The procedure uses a UNIX diff to update an MVCFG with a graph diff
related to deleted lines of code in vi.

∆Evi and n1 ∈Φ Nvi+1
. The v-branch nodes are created or updated for n1 on lines 4-13.

The MakeVBranchNode procedure uses the lazy labelling method to update the edges

(n1,m2) ∈ E that are incident with the node n1 (see Appendix A for a definition of

MakeVBranchNode). The incident edges are labelled for version vi when MakeVBranchN-

ode is finished updating µ. The next lines 6-12 updates the labels for any incident edges

that new in vi+1. The AdjOut procedure is used to retrieve all the edges in Evi+1
that are

incident with and directed out from n1. Any new edges a such that a /∈Φ E are added to E

and labelled with < vi+1, vi+1 > .

If (n1, n2) ∈ ∆Evi and n2 ∈Φ Nvi+1
, then a v-merge node is created or updated for
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1 Procedure InsertCFGDiff (N,Nvi+1 , E,Evi+1 ,Kvi+1 , Q,Φvi , µ, γ̂, vi, vi+1, pa, la)
2 ∆C ← BuildCFGDiff (Nvi+1 , Evi+1 ,Kvi+1 , vi+1, pa, la)
3 (∆Nvi+1 ,∆Evi+1 ,∆Kvi+1)← ∆C
4 foreach (n1, n2) ∈ ∆Evi+1 do
5 a← (n1, n2)
6 if n1 ∈Φ N then
7 MakeVBranchNode (n1, E, vi, µ)
8 µ[a]←< vi+1, vi+1 >

9 end
10 else if n2 ∈Φ N then
11 MakeVMergeNode (n2, E, vi, µ)
12 µ[a]←< vi+1, vi+1 >

13 end
14 else
15 µ[a]← ∅
16 end
17 E ← E ∪ {a}
18 end
19 N ← N ∪∆Nvi+1

20 K ← K ∪∆Kvi+1

21 Enqueue (Q,∆Kvi+1 , γ̂)
22 End Procedure

Algorithm 8: The procedure uses a UNIX style diff to update an MVCFG with a graph
diff related to inserted lines of code in vi+1.

n2. V-merge nodes are created or updated for n2 on lines 14-22. The lazy labelling method

is used to update the edges (m1, n2) ∈ E with the MakeVMergeNode procedure on line

15 (see Appendix A for a definition of MakeVMergeNode). The MakeVMergeNode

procedure updates labels with the version number vi. New edges incident with v-merge

nodes are labelled and added to E on lines 16-21.

The Algorithm 8 defines the procedure that is used in Algorithm 6 to update an MVCFG

with a graph diff related to inserted lines of code. The InsertCFGDiff procedure is used

to process the two remaining types of UNIX style diffs. The procedure is used on line 12

of Algorithm 6 to add new nodes and edges from changes related to revision vi+1. The

algorithm is used alone to process insert type diffs related to new program statements.

Otherwise, Algorithm 8 is used together with Algorithm 7 for update type diffs where
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program statements are both added and deleted with respect to the same line number.

The BuildCFGDiff function on line 2 uses pa and la to select the new nodes and

incident edges from Nvi+1
, Evi+1

, and Kvi+1
. The nodes and edges for the graph diff

∆Nvi+1
,∆Evi+1

, and ∆Kvi+1
correspond to the new program statements inserted from pro-

gram revision vi+1. Each edge in ∆Evi+1
is processed on lines 4-18 and added to the

MVCFG on line 17. If any edge (n1, n2) ∈ ∆Evi+1
is incident with a node that maps to a

node from the previous version vi such that n1 ∈Φ N or n2 ∈Φ N , then a v-branch node or

v-merge node must be updated or created. Any new edge that is incident with a v-branch

or v-merge node is labelled explicitly with < vi+1, vi+1 > on line 8 or line 12. Otherwise,

the edge is labelled with ∅. Once all edges are labelled and added to the MVCFG, the new

nodes are added on lines 19 and 20. The new call nodes are placed in a queue Q to be

updated when all the CFG diffs have been processed for vi+1.

Algorithms 7 and 8 have some overlap of incident edges that are labelled for v-branch

and v-merge nodes. It is possible for two different diffs to have incident edges that share

common v-merge or v-branch nodes. However, the overlap does not create an incorrect

MVCFG since new edges incident to v-merge or v-branch nodes are always explicitly la-

belled with < vi+1, vi+1 >. The MakeVBranchNode and MakeVMergeNode only re-

place the implicit label ∅. The node mapping Φ and maintaining the correct line number

labels for nodes becomes important when incrementally updating the MVCFG edge set E

and the edge label map µ.

After Algorithm 6 exhausts a list of diffs for a function update on lines 7-17, the re-

maining labels from previous versions must be updated. Some edges common to Ei and

Ei+1 that are not selected in diffs that were processed might have explicit labels of the form

< vj, vi > where j <= i. These labels must be updated with the correct label< vj, vi+1 >.

The procedure UpdateVersions is used to update the remaining labels. This procedure uses

a breadth first search beginning with the start node S and searches the graph for vi+1 to find

the remaining edges. An impasse is used as the method for selecting labels to update. An

impasse occurs when a breadth search visits a v-branch node or a node incident to v-merge
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node that does not have an edge directed out with a label for vi+1. All the incident edges

directed out from an impasse node with the label < vj, vi > are updated to < vj, vi+1 >.

After all the diffs for file changes have been processed on lines 3-19 in Algorithm 6, the

versioned line numbers used to label nodes must be updated to reflect the correct node line

numbers for vi+1. The UpdateVersions procedure is responsible for updating line numbers

for nodes in common to both vi and vi+1 using the node mapping function Φ. The functions

that did not have any diffs might be impacted by line number shifts caused by changes

in other functions sharing the same file. The MVCFGs corresponding to the unchanged

functions must be updated to preserve the integrity of the node mapping functions Φ. The

node line numbers for the MVCFGs representing the unchanged functions are updated

on line 20 using the UpdateLineNumbers procedure. This procedure calculates the line

number offsets created by program changes in other functions and updates the node labels

for each MVCFG with the new line numbers and revision number vi+1.

When all the file names are processed in Algorithm 5 on lines 14-16, the changes for

the MVCFGs are finalized for revision vi+1 by updating the call node mapping functions γ̂

with the new call nodes. This procedure follows the same steps on lines 14-19 in Algorithm

1. The MVICFG is complete when all revision numbers are exhausted in V .
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Chapter 4

Experimental Results

The goal of the experiments is to demonstrate that the modified algorithm for constructing

the MVICFG gererates a correct representation of a sequence of interprocedural control

flow graphs for a revision history of moderately sized programs. The efficiency and scala-

bility of the modified algorithm to construct the MVICFG is also demonstrated. The exper-

iments will also show that the MVICFG has practical applications for software verification

of changes to help combat the effects of software aging.

4.1 Experimental Design and Implementation

The Hydrogen framework is composed of three major subsystems – preprocessor, MVICFG

module, and Marple. The preprocessor is a stand alone system composed of scripts and

tools that mine software repositories for information used by the MVICFG module and

Marple. The MVICFG module is a plug-in for the MS Phoenix framework which processes

the information from the preprocessing phase and builds on MVICFG representation for a

benchmark in an experiment. The Marple tool analyzes the MVICFG to perform patch

verification. Both the MVICFG module and Marple are implemented using the June 2008

edition of Microsoft Phoenix.

The preprocessor uses a myriad of scripts and technologies to mine a software repos-

itory. Python scripts are used to implement the Index Files stage and List New/Deleted

Functions stage of the preprocessor. The Normalize Code stage is implemented with batch

scripts to run the C/C++ preprocessor from Visual Studio 8. The Parse Functions stage
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uses srcML and MS XSL to extract functions. The Generate Diffs stage is implemented

using the UNIX diff tool and batch scripts. The Build ICFGs stage generates an ICFG for

each program version and stores each ICFG as an XML file using the June 2008 edition of

Microsoft Phoenix.

There two sets of benchmarks from popular open source programs that are used to

collect data for the experimental results. The first set of 4 benchmarks used in the first

experiment contain multiple revisions and releases for the programs gzip, flex, libpng, and

ffmpeg. The second set 7 benchmarks are used in the second and third experiments contain

multiple releases of the programs tcas, schedule, printtokens, gzip, tightvnc, libpng, and

putty.

The experiment in section 4.2.1 supports the hypothesis that the amount of code change

in source code repositories is small, and the program versions in a revision history share

a large percentage of common code. The second experiment in section 4.2.2 supports the

hypothesis that the Hydrogen framework and the MVICFG will scale in time and memory

for a large number of revisions in a software revision history. The first experiment measures

the frequency of software changes to determine how well the MVICFG would scale for

a sequence of revisions from a typical revision history. The second experiment collects

data for the actual time and memory required by the Hydrogen framework to construct an

MVICFG using the modified algorithm.

The third experiment in section 4.2.3 demonstrates that path sensitive analysis can be

used to analyze the MVICFG to verify correctness of changes and address the problem

of software aging. A sample of known bugs and respective patches are selected from the

Common Vulnerability Exposure (CVE), Bugzilla, and other bug fixes discovered in source

code repositories. Data is collected to evaluate how well Hydrogen verifies a bug fix for

multiple releases and how accurately the releases impacted by the bug are detected.
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4.2 Experimental Results

4.2.1 Code Change in Source Code Repositories

Table 4.1 shows the data collected for code change in minor releases and revisions for the

benchmark programs gzip, flex, libpng, and ffmpeg. The two sections of the table titled

Revision and Release show the results for two different samples of code change from the 4

benchmarks. The data samples for code revisions under the heading Revision are the results

of a random sample of 50 single revisions from the source code repository (i.e. commits)

for each benchmark. The data samples under the Release heading show the amount of code

change for larger changes between minor releases of the software.

The random samples under the Revision section are selected by dumping a complete

list of commit numbers for all the revisions in a source code repository. A random number

generator is used to select a sample of 50 revisions to measure the amount of code change

in a typical revision. The code change is measured by extracting the code from function

definitions and using a UNIX diff utility to measure the lines of code change in a revision.

The average numbers of modified and deleted functions for a revision are listed in the M

and D columns respectively. The amount of interprocedural change is also measured in

the AI and AM columns. The AI column lists the average number of new functions in a

revision that call other functions. The AM column lists the average number of functions

added that do not call other functions. Finally, the S column shows the percentage of code

reuse in a revision. The percentage of Lines of Code (LOC) reuse for a revision between

two program versions Ri and Ri+1 is calculated by S = TLOCi−DLOCi

TLOCi
where TLOCi is the

total lines of code in Ri and DLOCi is the number of lines of code deleted in the revision

of Ri.

The samples under the Release heading are not selected randomly, but measure the code

change for all of the major and minor releases in a benchmark. The sample sizes vary for

each benchmark since the number of releases is unique. All of the columns are measured

the same as the samples of revisions. The main difference is that the change in releases



56

Table 4.1: Sample of Software Changes
Benchmark Revision Release

No. M D AI AM S No. M D AI AM S
gzip 50 0.91 0.18 0.18 0 99.5% 5 3.6 3 0.4 0 98.0%

flex 50 1 0.14 0 0.86 97.8% 28 6.75 0.57 0.71 3.57 98.0%

libpng 50 2.65 0.52 0.2 27.8 98.8% 61 11.1 2.52 0.70 10.0 98.0%

ffmpeg 50 2 0.75 0 1.33 98.0% 6 3.67 0 0 0 99.99%

involve large groups of revisions.

The results in Table 4.1 shows that code changes impact a small number of functions

and a small percentage of the code in program versions. The amount of shared code be-

tween successive program versions is an average of 98.5%. This means that the intersection

of code in a sequence of program versions is high, and the memory or storage demands of

the MVICFG would be significantly less than required for a sequence of ICFGs. The num-

ber of functions impacted by code changes also tends to be small. Thus, a path sensitive

analysis such as demand driven analysis would perform better than other techniques that

use traditional software assurance tools for verifying changes [6, 4].

4.2.2 Scalability of the MVICFG

The system used to build the MVICFG for the benchmarks in Table 4.2 has dual Intel

Xeon E5520 CPU processors running at 2.27 GHz with 12.0 GB of RAM. The system

used Windows 7 Enterprise OS 64-bit edition. The performance data is collected for the

execution of the modified algorithm and does not include the memory size and execution

times for the preprocessing phase or the demand driven analysis. 1

Table 4.2 summarizes the results for the benchmark tests of the performance of the

modified algorithm for constructing an MVICFG. The first column list the names of the

open source benchmarks used. The Versions column is the number of program versions

represented by the MVICFG. The LOC column is the number of lines of code in the first

1The results of this experiment were published in ICSE’14 paper related to this thesis [14].
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Table 4.2: Scalability of Building MVICFGs
Benchmark Versions LOC Churn ICFGs MVICFG T(s) M (MB)
tcas 40 173 6 6.6 k 476 9.5 59.7
schedule 9 412 6 2.4 k 298 5.1 58.5
printtokens 7 563 3.7 2.7 k 413 2.5 60.4
gzip 5 5.0 k 242 6.8 k 2.1 k 28.3 83.4
tightvnc 5 6.3 k 457.3 10.3 k 2.4 k 24.3 129.2
libpng 9 9.2 k 1.4 k 35.3 k 8.4 k 183.2 167.3
putty 5 34.5 k 8.2 k 28.3 k 13.3 k 2446.3 355.6

version of the benchmark. The Churn column gives the average lines of code per version

for the lines of code impacted by a source code change between revisions. The ICFGs

column is the total sum of nodes for each ICFGi where i is some version of the bench-

mark and ICFGi is an Interprocedural Control Flow Graph (ICFG) of a benchmark in the

graph union of the MVICFG. The MVICFG column is the sum of nodes in the MVICFG

representation of a benchmark. T(s) is the number of seconds it took to build the MVICFG

for a benchmark. M (MB) is the number of megabytes (MB) consumed in the peak memory

usage of the MVICFG build process.

The results show that the modified algorithm will scale for moderate sized open source

C/C++ programs with thousands of lines of code. For example, it takes about 1.5 minutes

to build an MVICFG for the libpng benchmark representing 9 releases of the program. The

results also show that the algorithm scales for a benchmark with a relatively high churn.

The results also show that the MVICFG significantly reduces the number nodes needed

to represent all the releases of libpng. The one benchmark that did not perform well was

the putty benchmark. Some factors contributed to the degraded performance. The putty

benchmark had the highest amount of churn than any of the other benchmarks. Conse-

quently, a high number of v-branch and v-merge nodes are created per function change in

this benchmark. Performance analysis of the algorithm implementation showed that the a

loss of performance was due to a high number of file read operations. Since the modified

algorithm scans nodes selected by each diff for incident edges in the ICFG files generated
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in the preprocessing phase, a high number of file read operations were a result. Thus, the

results show that the modified algorithm performs best when the amount of churn is small

between program versions.

The correctness of the MVICFG is validated by selecting parts of the MVICFG and

verifying correctness by inspection. The MVCFGs used in the patch verification in the

experiments in section 4.2.3 are verified correct by dumping the graphs to a dot graph and

a text representation. The debug information that MS Phoenix provides is extended using

two complementary dump formats (see Appendix C for more details).

4.2.3 Bug Impact and Patch Verification

The Table 4.3 shows the results for applying demand driven path sensitive analysis to the

MVICFG to verify bug patches for multiple releases of a program. The experiment is

conducted by constructing an MVCFG for a release of a program that contains a known

bug. The experiment is run on Windows 7 system with a duo core i7-2600 CPU and 16 GB

of RAM.2

The name and release number of each benchmark is listed in the Benchmark column

of the Table 4.3. The different types of bugs detected in the demand driven analysis are

listed in the Bug column. The different types of bugs that are detected are denoted by

the following (1) BO is a buffer overrun, (2) IO is an integer overflow, (3) IS is an integer

signedness bug, and (4) NP is a null pointer dereference. In the Fixed column, the result Yes

indicates that Hydrogen determines the patch fixes the bug, and No indicates that Hydrogen

determines the patch fails to fix the bug. Under the Incremental Analysis heading, the first

T(s) column shows the amount of time needed to detect the bug, and the second T(s) column

is the time taken to verify the bug fix.

The columns under the Multiversion Analysis heading shows the results of the analysis

for multiple releases of a program. The Releases column shows the total number of releases

that are analyzed including the buggy release. The Doc and Impacted columns show how

2The results of this experiment are published in the ICSE’14 paper related to this thesis [14].
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Table 4.3: Determining Bug Impact and Verifying Fixes
Benchmark Incremental Analysis Multiversion Analysis

Bug T(s) Fixed T(s) Releases Doc Impact T(s) Fixed T(s)

gzip-1.2.4 BO 0.12 Yes 0.08 4 1 4 0.13 4 0.69

libpng-1.5.14 IO 0.28 No 0.24 6 2 6 0.48 0 1.45

libpng-1.5.14 IO 0.24 Yes 0.18 6 2 6 1.45 5 1.22

tightvnc-1.3.9 IS 2.6 Yes 0 4 1 4 4.8 4 0

putty-0.55 NP 20.0 Yes 0.07 3 1 1 26.1 1 0.09

the documented number of releases impacted by the bug compares with the number of im-

pacted releases detected by the Hydrogen framework. The Fixed column shows the number

of releases that Hydrogen determines the patch successfully fixes. The T(s) columns show

the amount of time Hydrogen takes to detect the number of buggy releases and the amount

of time to verify the patch for the releases.

The Incremental Analysis demonstrates the speed with which Hydrogen can verify a

patch between a buggy release and a patched version of the release. The patch verification

is performed quickly for all types of bugs analyzed in this study. The patches for libpng-

1.5.14 on the 2nd and 3rd rows show an example of a failed attempt to fix a bug. The first

patch in the second row was documented as a correct patch even though it was later dis-

covered to be an incorrect patch. The example shows that Hydrogen successfully verified

that the first patch was incorrect while the second patch was correct.

The results under the Multiversion Analysis shows that Hydrogen was able to detect

more releases impacted by a bug than the documentation reported. A code inspection

revealed that Hydrogen correctly identifies the impacted releases that were not reported in

the documentation. Hydrogen fails to verify the patch on the 3rd row for all the impacted

releases for libpng.
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Chapter 5

Conclusions

5.1 Related Work

Several techniques are currently available for use in multi-version program analysis. Tech-

niques range in application such as software version merging, program differencing, change

classification, and regression testing [12]. The Hydrogen framework combines program

differencing techniques and demand driven analysis for bug detection and verifying bug

fixes in software changes.

Current approaches for differencing program versions use either a lexical, syntactical,

or semantic differencing approach [10, 7, 5, 17, 1, 2, 11, 13, 9]. A well known differenc-

ing technique for displaying lexical differences between files is the UNIX diff tool [10].

The UNIX diff tool uses a line-by-line comparison based on Hirshberg’s longest common

subsequence algorithm to detect textual differences between files. The UNIX diff cannot

distinguish between changes in whitespace, comment changes, or changes in code. The

modified algorithm in the Hydrogen framework leverages the differential information from

UNIX diffs by translating UNIX diffs into interprocedural control flow changes.

Another differencing approach called ChangeDistiller makes use of the abstract syntax

tree (AST) of a program with tree differencing techniques to detect syntactic and struc-

tural changes in programs [7, 5]. ChangeDistiller is used in a software evolution platform

called Evolizer to analyze and classify source code changes [8]. A similar approach called

Dex also uses a tree differencing technique for analyzing syntactic and semantic changes

[17]. The MVICFG in the Hydrogen framework is used to detect behavioral changes in
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a program related to control flow and data flow changes rather than structural changes in

code. The Hydrogen framework is complementary to ChangeDistiller and Evolizer or Dex

by extending the work for classifying bug introducing and bug fix changes.

The JDiff technique uses enhanced control flow graphs and hammocks to analyze se-

mantic change in object oriented programs [1, 2]. The technique is based on graph iso-

morphisms and uses a construct called hammocks to detect both interprocedural and in-

traprocedural changes in methods in an object oriented program. The Hydrogen frame-

work does not address changes specific to object oriented programs, but the MVICFG can

be used to detect interprocedural changes in object oriented programs that effect call flow

changes. Also, the framework in this study is not limited to graphical differences between

two versions of a program, but can be used to analyze changes across multiple versions of

a program.

Other differencing approaches can be used to detect semantic (behavioral) differences

between program versions. One tool called SemanticDiff is used to compare observable

input-output behavior[11]. A newer tool called SymDiff uses an intermediate verification

language called Boogie and symbolic analysis to approximate how syntactic changes im-

pact runtime behavior without running the program versions [13]. Hydrogen uses static

analysis to translate textual changes between multiple versions of a program into control

flow and data flow changes. The changes are analyzed using demand-driven analysis to

detect behavioral changes associated with bug detection and bug fix verification [3].

In the BUGINNINGS article [18], the authors describe a new approach to tracking and

identifying bug-introducing changes to code. The authors use program dependence graphs

to define bug regions in code using control dependences, data dependences, and call re-

lations. The Hydrogen framework uses symbolic analysis to detect change of invariance.

Symbolic analysis would also replace the text based approach in BUGINNINGS for iden-

tifying semantics changes not identified by program dependences. Hydrogen not only can

detect bug origins, but also uses demand driven analysis for detecting types of defects such

as null pointers, buffer overflows, integer overflows, etc. to verify removal in consecutive
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versions.

5.2 Future Work

The MVICFG is a general data structure that can used to analyze control flow change across

a sequence of interprocedural control flow graphs. New applications for the MVICFG need

to be explored to demonstrate the usefulness of the Hydrogen framework. One area of

investigation would explore patterns in the progression of changes in program properties

across multiple versions of a program. Patterns of invariant change or patterns of buggy

changes might be used to identify incorrect changes in a revision history. The MVICFG

would provide an effective framework for caching intermediate analysis results related to

commonalities across multiple versions of a program that would be used improve the effi-

ciency of program analysis.

More work is needed to show that the MVICFG can scale to larger benchmarks with a

higher number of revisions than demonstrated by this study. Exploring ways of improving

the algorithm for constructing the MVICFG might improve efficiency. Some problems with

the implementation were not discussed in this thesis. In particular, the challenges of using

line numbers to translate lexical diffs from the source code to graph diffs in the intermedi-

ate representation could have negatively impacted the performance of the implementation.

There might also be some opportunities to improve the efficiency of the computational ef-

ficiency of the modified algorithm. Some experiments would help determine whether the

trade-offs of the lazy labelling method with other edge labelling methods are worthwhile.

The gains in memory efficiency from the lazy labelling method might not be worth the loss

of computational efficiency that would be gained from other labelling methods.

The use of other diff techniques to create node maps might also improve the efficiency

of the algorithm to construct the MVICFG. Other differencing techniques mentioned in the

related works section might be adapted for use in the construction of the MVICFG. For

instance, the tree differencing technique used in ChangeDistiller guided by lexical diffs

mined from source code repositories might be a more efficient method for creating node
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maps [7, 5]. The graph differencing technique used in JDiff might also be used to create

an MVICFG without the use node maps [1, 2]. New algorithm definitions could be created

that would use alternative techniques for constructing the MVICFG. A comparison of these

different approaches would help develop better algorithms.

The precision of the MVICFG could also be improved. For example, the MVICFG will

often over represent control flow change by adding more nodes and edges than necessary

to accurately represent a sequence of control flow graphs. The MVICFG is constructed by

only comparing pairs of successive program versions using UNIX diffs without comparison

to other program versions. For instance, program statements might be deleted in versions

1 and 2 of a program that were added in program version 3 as part of a revert commit. The

current approach would add redundant nodes and edges in version 3 instead of labelling the

existing edges as part of a reversion.

An important contribution of this thesis are the formal definitions of the MVICFG. The

results of this thesis demonstrate the correctness of the MVICFG and the modified algo-

rithm for constructing the MVICFG. However, more evidence is needed to show that the

MVICFG and construction algorithm is correct for any sequence of program versions. For-

mal proofs of correctness are needed to prove that the MVICFG is a correct representation

of any sequence of graphs. Proofs are also needed to show that the algorithms are correct.

5.3 Final Remarks

The MVICFG that represents multiple versions of a program is constructed by the Hy-

drogen algorithm using the differential information mined from a source code repository.

The graph representation is analysed using techniques in demand driven analysis to detect

bugs and verify bug patches in software changes. The Hydrogen algorithm provides a well

defined method for constructing a graph representation of multiple versions of a program

from lexical differential information, and the experimental results show that this method

is efficient and correct. A worst case analysis for storage space required for interprocedu-

ral control flow graphs used in multi-version program analysis provides a rule determining
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how efficiently the MVICFG stores a sequence of graphs. A theoretical reduction is possi-

ble for revision histories with small incremental changes, and experimental evidence from

the benchmarks verifies that a reduction in storage space can be achieved. An experimen-

tal analysis also demonstrates the effectiveness and efficiency of bug detection and bug fix

verification using the MVICFG.

The most important contributions of this thesis are the formal definitions of the MVICFG

and the detailed definitions of the algorithms used to construct the MVICFG. The defini-

tions of this thesis are the foundation of the MVICFG and the blueprints for implementing

the algorithms needed to construct an MVICFG. The definitions can be used as a starting

point for developing better algorithms for constructing the MVICFG as well as provide the

tools needed for general proofs of correctness.



65

Bibliography

[1] T. Apiwattanapong, A. Orso, and M.J. Harrold. A differencing algorithm for object-
oriented programs. In Proc. of 19th IEEE Inter. Conf. on Automated Software Engi-
neering, pages 2–13, September 2004.

[2] T. Apiwattanapong, A. Orso, and M.J. Harrold. JDiff: A differencing technique and
tool for object-oriented programs. In Automated Software Engineering, volume 14,
pages 3–36, March 2007.

[3] Rastislav Bodı́k, Rajiv Gupta, and Mary Lou Soffa. Refining data flow information
using infeasible paths. In Proc. of 6th European Software Engineering Conf. held
jointly with 5th ACM SIGSOFT Inter. Symp. on Foundations of Software Engineering,
pages 361–377, 1997.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
program errors. In Software-Practice and Experience., pages 775–802, 2000.

[5] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. In Proc. of ACM
SIGMOD Inter. Conf. on Management of Data, pages 493–504, 1996.

[6] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program verifica-
tion in polynomial time. In Proc. of ACM SIGPLAN 2002 Conf. on Programming
Languages and Design Implementation, pages 57–68, 2002.

[7] B Fluri, M Wursch, M Pinzger, and H C Gall. Change Distilling:Tree Differenc-
ing for Fine-Grained Source Code Change Extraction. In IEEE Trans. on Software
Engineering, volume 33, pages 725–743, 2007.

[8] H C Gall, B Fluri, and M Pinzger. Change Analysis with Evolizer and ChangeDis-
tiller. In IEEE Software, volume 26, pages 26–33, 2009.



66

[9] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions of
programs. In ACM Trans. on Programming Language and Systems, volume 11, pages
345–387, 1989.

[10] James W. Hunt and M. Douglas McIlroy. An Algorithm for Differential File Compar-
ison. Technical report, Bell Laboratories, 1976.

[11] D Jackson and D A Ladd. Semantic Diff: a tool for summarizing the effects of
modifications. In Proc. on Inter. Conf. on Software Maintenance, pages 243–252,
1994.

[12] Miryung Kim and David Notkin. Program element matching for multi-version pro-
gram analyses. In Proc. of Inter. Workshop on Mining Software Repositories, pages
58–64, 2006.

[13] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
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Appendix A

Supporting Algorithms

A.1 Support for the General Algorithm

Algorithms 9 and 10 define procedures that are used by Algorithm 1 and 2.

1 Procedure LabelEdges (E, i)
2 foreach a ∈ E do
3 α[a]← {i}
4 end
5 return α
6 End Procedure

Algorithm 9: Algorithm used to label edges

1 Procedure CompareProc (Ri,Ri+1)
2 R′ ← ∅
3 R+ ← Ri+1

4 foreach (x, Pi) ∈ Ri do
5 if SymbolExists (Ri+1, x) then
6 Pi+1 ← GetProcedure (Ri+1, x)
7 R′ ← R′ ∪ {(x, Pi, Pi+1)}
8 R+ ← R+ − (x, Pi+1)

9 end
10 end
11 return (R′,R+)
12 End Procedure

Algorithm 10: Algorithm used to compare procedures of two versions of a program
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A.2 Support for the Modified Algorithm

Algorithms 11 and 12 define procedures that are used by Algorithms 7 and 8.

Input : n,E,v,µ
Output: Creates a v-branch node.

1 Procedure MakeVBranchNode (n,E,v,µ)
2 Aout ← AdjOut (n,E)
3 foreach a ∈ Aout do
4 T ← µ[a]
5 if T = ∅ then
6 vi1 ← FindMinVersion (n,E, µ)
7 µ[a]←< vi1 , v >

8 end
9 end

10 End Procedure

Algorithm 11: Creates a v-branch in the modified algorithm for building an MVICFG
using UNIX diff information.

Input : n,E,v,µ
Output: Creates a v-merge node.

1 Procedure MakeVMergeNode (n,E,v,µ)
2 Ain ← AdjIn (n,E)
3 foreach a ∈ Ain do
4 T ← µ[a]
5 if T = ∅ then
6 (m,n)← a
7 vi1 ← FindMinVersion (m,E, µ)
8 µ[a]←< vi1 , v >

9 end
10 end
11 End Procedure

Algorithm 12: Creates a v-merge in the modified algorithm for building an MVICFG
using UNIX diff information.
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Appendix B

Libpng Case Study

B.1 Overview

An important outcome of this thesis is the demonstration of the usefulness of the Hydrogen

framework. The case study for the Libpng benchmark was conducted to find interesting

patches that could be use to demonstrate the usefulness of the Hydrogen framework. The

objective of this case study was to discover opportunities for Hydrogen applications in

patch verification for current and future studies. Two random samples of bug reports are

examined, and some of the attributes for each corresponding code change in the source

code repository are catalogued. The first sample in section B.2 looks at the types of defects

that are fixed in a random sample of bug reports and the impact of the code changes used

to fix the defect. The second sample in section B.3 was examined to discover how many

defects impact multiple releases and what percentage of code patches had to be modified

to apply to multiple releases. The patches that were selected as Libpng benchmarks for use

in the results of this thesis come from this case study.

B.2 Candidate Patches for Static Verification

Total Bug Reports: 213

Total Closed Fixed Bugs: 125

Static Analyzable Bugs: 15%

The statistics above summarize the number of bugs found in the bug reporting system
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on SourceForge for the Libpng project. There are 213 tickets in the bug tracker with 16

open tickets and 197 closed tickets. Only the closed tickets are interesting for change

verification since we are interested in statically analyzing software revisions related to bug

fixes. However, not all closed tickets are interesting because some closed tickets are not

associated with changes. Some research is required to get a good approximation of closed

tickets that are related to actual changes in the Libpng repository.

There are several different statuses for closed tickets in the Libpng bug reporting sys-

tem. The statuses include closed, closed-accepted, closed-out-of-date, closed-invalid, closed-

later, closed-rejected, closed-works-for-me, closed-duplicate, closed-wont-fix, and closed-

fixed. The statuses that are clearly not related to changes in the repository are closed-

invalid, closed-rejected, closed-works-for-me, closed-duplicate, and closed-wont-fix. The

statuses closed, closed-accepted, closed-out-of-date, and closed-later appear to be used in-

frequently and are not always associated with changes in the repository. The only status

that is clearly related to changes in the repository is closed-fixed. There are 125 tickets

with the closed-fixed status.

Random sampling was used to estimate the percent of closed fixed bugs that are static

analyzable. The reports for the 125 closed-fixed bugs were exported from the bug reporting

system as an RSS document. A sample of 20 bug reports were selected from the RSS

document using a random sequence generator. There were three static analyzable bugs

found in the sample: integer overflow, buffer overflow, and null pointer. Thus, 15% of bugs

in the reporting system appear to be static analyzable.

The random sample of bug reports taken in the previous section has information about

patches that impact multiple releases. Table B.1 summarizes the bug report sample to show

which types of bugs impact multiple releases. The table shows 45% of bugs sampled had

patches that impacted multiple releases. All of the static analyzable bugs in the sample have

patches that impact multiple releases. The sample would suggest that static analyzable bugs

are more likely to effect multiple releases than other types of bugs. Further study would

be required to assess whether or not patches for buffer overruns, integer overflows, and
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Table B.1: Bug Report Sample for Libpng Benchmark
Bug ID Defect Type Impacted Releases Num of Releases Static Analyzable

203 Preprocessor 1.5.x, 1.6.x 2 False

199 Integer Overflow 1.4.x, 1.5.x 2 True

188 Specification 1.5.x, 1.6.x 2 False

179 Build 1.0.x, 1.2.x 2 False

158 Build 1.4.x 1 False

154 Text 1.4.x, 1.5.x 2 False

145 Preprocessor 1.2.x, 1.4.x 2 False

140 Preprocessor 1.2.x 1 False

133 Buffer Overrun 1.2.x, 1.4.x 2 True

129 Build 1.2.x 1 False

101 Preprocessor 1.2.x 1 False

93 Specification 1.2.x 1 False

89 Preprocessor 1.2.x 1 False

85 Build 1.2.x 1 False

81 Null Pointer 1.2.x, 1.4.x 2 True

78 Preprocessor 1.2.x, 1.4.x 2 False

76 Preprocessor 1.2.x 1 False

55 Preprocessor 1.2.x 1 False

32 ? ? ? ?

null pointers often impact multiple releases in projects that support multiple maintenance

releases.

There are many other bugs of interest that get patched in the repository that do not

appear in the bug tracking system for Libpng. Other bugs fixes can be found listed in the

CHANGES document in the Libpng project folder for each release. No explicit reasons

were found for not adding every bug to the tracking system, but there is clear evidence that

not all Libpng bugs fixes are tracked.

An example of a buffer overrun bug not found in the bug tracker but listed in the

CHANGES document was released February 27, 2012 in the 1.4.10beta01 release. The

patch for this bug impacts three different releases. The patches for each release can be seen



73

by clicking the links listed below.

• Patch 1.0.x

• Patch 1.2.48

• Patch 1.4.10

This patch was directly applicable to the three releases without any modifications to the

patch. The code effected by tho patch was essentially unchanged since the png handle sCAL

function was added in the 1.0.x release. The patch was not applicable to the first major re-

lease 0.x since the png handle sCAL function did not exist. The patch was not applicable

to the releases after 1.4.x because the statements causing the buffer overflow were replaced

by new functions added in successive releases.

An interesting feature of the bug report sample is the high frequency of bugs caused by

incorrect preprocessor definitions. Table B.1 shows that 45% of bug reports are related to

incorrect preprocessor definitions. The Libpng project relies heavily on the use of prepro-

cessor defs and conditional compilation. Issues with preprocessor defs are not discovered

unless a specific preprocessor definition is selected in the compilation. There appear to be

a large number of possible combinations for these preprocessor definitions. Unfortunately,

there is not much information about valid combinations for these preprocessor definitions.

Another challenge related to conditional compilation are patches that cut across prepro-

cessor definitions. The buffer overflow example in the previous section is an example of a

cross cutting patch. Only part of the patch is selected when the

PNG FIXED POINT SUPPORTED definition is set. This is evidence that some patches

must be tested using multiple combinations of preprocessor definitions.

This case study shows that a significant number of statically analyzable bugs impact

multiple releases. 15% of bug reports from a random sample are static analyzable, and

all of the static analyzable bugs impact multiple releases. In general, 45% of all bugs in

the sample impact multiple releases. Conditional compilation was also observed to be a

source of bug reports. The data suggests that it is difficult to detect bugs related to incorrect

http://sourceforge.net/p/libpng/code/ci/8d15fc29b0985ba2bde1d7c7c7192957e884023d/tree/pngrutil.c?diff=ddda5f01c79d4ca2fbeeb6a2fc580475b7a039b6
http://sourceforge.net/p/libpng/code/ci/d0bd02c4caf42b144fe1bec76dfbb934fd7407c2/tree/pngrutil.c?diff=660178760e60555a0e1e6a3493f932d372c130a7
http://sourceforge.net/p/libpng/code/ci/a8c319a2b281af68f7ca0e2f9a28ca57b44ceb2b/tree/pngrutil.c?diff=13f12476543c4ada693b4cb474039d5cf3389ed1
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preprocessor definitions or bugs obscured by an uncommon preprocessor definitions. There

seems to be an opportunity for better bug detection by analyzing multiple combinations of

preprocessor definitions.

B.3 Modified Patches

Sample Size: 20

Multiple Releases: 8

% Modified Patches: 37.5%

The table below gives a list of bug reports for bug fixes in Libpng. Table B.2 shows

which bug patches impact multiple releases. The ’Patch Modified’ column indicates ’True’

when the patch had to be modified to be applied to other releases. The list below summa-

rizes some observations about the patches that were applied to multiple releases.

• Bug 203 was straight forward and did not require modifications.

• Bug 199 was a difficult that required modifications between releases as well as muti-

ple attempts to correctly fix the bug.

• Bug 188 was a large and difficult patch that involved many files. The patch was

modified between releases.

• Bug 179 is a little confusing. It appears that the reverse of the patch applied to 1.0.x

is applied to 1.2.x.

• Bug 154 is a simple documentation bug.

• Bug 145 uses a common patch between releases.

• Bug 133 patch appears to be simple and applied the same in two releases.

• Bug 81 share common code at time of the patch.
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• Bug 78 – could not find the patch applied to release 1.4.x.

The results show that 37.5% of the defects that impact multiple releases used a patch

that required modification to apply the fix across all impacted releases. This could be an

opportunity for future studies to show how the Hydrogen framework would be used to

automate patch modification and verification across multiple buggy releases.

Table B.2: Bug Report Sample for Libpng Benchmark
Bug ID Defect Type Impacted Releases Patch Modified

203 Preprocessor 1.5.x, 1.6.x,1.7.x False

199 Integer Overflow 1.4.x, 1.5.x True

188 Specification 1.5.x, 1.6.x True

179 Build 1.0.x, 1.2.x True

158 Build 1.4.x False

154 Text 1.4.x, 1.5.x False

145 Preprocessor 1.2.x, 1.4.x False

140 Preprocessor 1.2.x False

133 Buffer Overrun 1.2.x, 1.4.x False

129 Build 1.2.x False

101 Preprocessor 1.2.x False

93 Specification 1.2.x False

89 Preprocessor 1.2.x False

85 Build 1.2.x False

81 Null Pointer 1.2.x, 1.4.x False

78 Preprocessor 1.2.x, 1.4.x ?

76 Preprocessor 1.2.x False

55 Preprocessor 1.2.x False

32 ? ? ?
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Appendix C

MVCFG Inspection Method

C.1 Inspection of an MVCFG

Two formats are used to manually inspect an MVCFG for correctness. One format is the dot

used to generate a PNG image file for a MVCFG that represents a function. The dot format

is not documented, but the second that extends the MS Phoenix dump format for textual

representation of flow graphs is also used in inspections. This format shows more details

than the dot format, and it is documented in the following sections. The two formats used

together are the main tools for verifying correctness and debugging the implementation.

C.2 Extended Format

The MVCFG dump format extends the MS Phoenix dump format for textual representation

of flow graphs. The new extended format adds two new elements to the textual represen-

tation - block aliases and edge version summarization. Block aliases are used to unam-

biguously identify blocks in the multi-version control flow instead of relying on the block

numbers used in the MS Phoenix dump format. The edge version summarization provides

a summary of successor edges for each block with a list of version numbers related to each

edge. The next two subsections provide details for the extended format.

C.2.1 Block Alias Format

The block alias format is a descriptive naming convention for flow graph blocks using the

function name, version number, textual diff unit number, and block number related to the
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flow graph. There are two different formats for the alias. One format is used for blocks that

belong to the initial version of the flow graph, and another format is used for blocks built

using diff information added to the flow graph in subsequent versions.

The initial version of a function unit is referred to as the base version, and the alias will

identify a flow graph block using BASE in the alias name. The following format is used

for flow graph blocks belonging to the base version.

[function name] BASE BLOCK[block number]

Every block alias is prefixed with the function name related to the flow graph. The block

number is an auto generated id unique to every block in the base version. The following

example shows an alias for a block in a flow graph for a function named main with a block

number 1 in the base version.

main BASE BLOCK1

The alias name format changes in subsequent versions to include the version number

and diff unit number to help determine when the block was added to the flow graph. The

following format is used for blocks added in subsequent versions.

[function name] V[version number] DIFF[diff unit number]

BLOCK[block number]

The following example shows an alias for a block in a flow graph for a function named

main that was added in version 2 from diff unit 1 with a block number 2.

main V2 DIFF1 BLOCK2

C.2.2 Edge Version Summary

The MS Phoenix dump format includes information about predecessor and successor blocks

using block numbers, but block numbers become ambiguous in the context of a multi-

version flow graph. The extended format adds an edge version summarization at the end of
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the textual representation for each block using block aliases to identify successor blocks.

This summarization lists all successor blocks by alias and lists the version numbers for the

successor block. An asterisk is used to identify a successor block that is included in the

control flow for all versions. The following format is used for the version summary.

[EVS] Edge Version Summary

Successor([block alias]) Version(s) [version numbers]

Successor([block alias]) Version(s) [version numbers]

...

The following edge version summarization is an example for a block that has three

successor blocks. The block main BASE 3 is a successor in only version 1. The block

main BASE 4 is a successor for all versions (i.e. versions 1,2,and 3). The block main V2

DIFF1 BLOCK2 is a successor in versions 2 and 3.

[EVS] Edge Version Summary

Successor( main BASE 3) Version(s) 1

Successor( main BASE 4) Version(s) *

Successor( main V2 DIFF1 BLOCK2) Version(s) 2,3

C.3 MVCFG Example

Three consecutive versions of a simple program are provided to show a complete example

of the textual representation for the extended flow graph dump for a multi-version flow

graph. The three basic types of textual differences that are included in this example are

insert, update, and delete. Version 2 of the program inserts 8 new lines on line number 8.

Version 3 updates one line on line number 8 and deletes lines 10 through 12.

Example 1: Simple Program (version 1)

1 # i n c l u d e < s t d i o . h>

2
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3 void main ( i n t argc , char∗ a rgv [ ] ) {

4

5 i n t i = a r g c ;

6 i n t j = i +2 ;

7 p r i n t f ( ” j : %d ” , j ) ;

8

9

10 }

Example 2: Simple Program (version 2)

1 # i n c l u d e < s t d i o . h>

2

3 void main ( i n t argc , char∗ a rgv [ ] ) {

4

5 i n t i = a r g c ;

6 i n t j = i +2 ;

7 p r i n t f ( ” j : %d ” , j ) ;

8 j = i%2 − 1 ;

9 i n t k = −a r g c ∗ 2 ;

10 j = k / j ;

11 i = k | 1 ;

12 j = i ˆ 7 ;

13 i n t l = k & j ;

14 i n t m = l >> 3 ;

15 i n t n = m << 2 ;

16 p r i n t f ( ” i : %d , j : %d , k : %d , l : %d , m: %d , n : %d ” ,

17 i , j , k , l ,m, n ) ;

18 }
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Example 3: Simple Program (version 3)

1 # i n c l u d e < s t d i o . h>

2

3 void main ( i n t argc , char∗ a rgv [ ] ) {

4

5 i n t i = a r g c ;

6 i n t j = i +2 ;

7 p r i n t f ( ” j : %d ” , j ) ;

8 j = i%3 + 1 ;

9 i n t k = −a r g c ∗ 2 ;

10 i n t l = k & j ;

11 i n t m = l >> 3 ;

12 i n t n = m << 2 ;

13 p r i n t f ( ” i : %d , j : %d , k : %d , l : %d , m: %d , n : %d ” ,

14 i , j , k , l ,m, n ) ;

15 }

MVCFG Dump Example
==== main BASE BLOCK1
==== B a s i c B l o c k 1 P r e d e c e s s o r ( ) S u c c e s s o r ( 2 ) n e x t 2 p r e 1 p o s t 8 iDom 1
df ( ) $L1 : ( r e f e r e n c e s =0)
{∗ S t a t i c T a g } , {∗NotAl i a sedTag } , {∗Undef inedTag}<1> = START main ( T )

[EVS] Edge V e r s i o n Summary
S u c c e s s o r ( main BASE BLOCK2 ) V e r s i o n ( s ) ∗

==== main BASE BLOCK2
==== B a s i c B l o c k 2 P r e d e c e s s o r ( 1 ) S u c c e s s o r ( 3 , 4 ) p r e v i o u s 1 n e x t 3 p r e 2
p o s t 7 i Dom 1 df ( )
main : ( r e f e r e n c e s =1)

a r g c <2>, tv278<3> = ENTERFUNCTION
ENTERBLOCK ScopeSymbol267
ENTERBLOCK ScopeSymbol269
ENTERBLOCK ScopeSymbol272

i <4> = ASSIGN a r g c<2>
j <5> = ADD 2 , i <4>

t 276 = CONVERT &?? C@ 05JDOGFHNB@j?3?5? $CFd?$AA@
{∗Cal lTag } = CALL∗ & p r i n t f , t276 , j <5>, {∗Cal lTag } , $L11 (EH)
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[EVS] Edge V e r s i o n Summary
S u c c e s s o r ( main BASE BLOCK3 ) V e r s i o n ( s ) 1
S u c c e s s o r ( main BASE BLOCK4 ) V e r s i o n ( s ) ∗
S u c c e s s o r ( main V2 DIFF1 BLOCK2 ) V e r s i o n ( s ) 2 ,3

==== main BASE BLOCK3
==== B a s i c B l o c k 3 P r e d e c e s s o r ( 2 ) S u c c e s s o r ( 6 ) p r e v i o u s 2 n e x t
4 p r e 3 p o s t 4 iDo m 2 df ( )

EXITBLOCK ScopeSymbol272
EXITBLOCK ScopeSymbol269
EXITBLOCK ScopeSymbol267
RETURN 0 , $L12 ( T )

[EVS] Edge V e r s i o n Summary
S u c c e s s o r ( main BASE BLOCK6 ) V e r s i o n ( s ) ∗

==== main BASE BLOCK4
==== B a s i c B l o c k 4 P r e d e c e s s o r ( 2 ) S u c c e s s o r ( 5 ) p r e v i o u s 3 n e x t 5
p r e 7 p o s t 6 iDo m 2 df ( )
$L11 : ( r e f e r e n c e s =1)

GOTO {∗ S t a t i c T a g } , $L5
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main BASE BLOCK5 ) V e r s i o n ( s ) ∗
==== main V2 DIFF1 BLOCK2
==== B a s i c B l o c k 2 P r e d e c e s s o r ( ) S u c c e s s o r ( 4 ) p r e v i o u s 1 n e x t 4

GOTO $L4
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main V2 DIFF1 BLOCK4 ) V e r s i o n ( s ) 1 ,2
S u c c e s s o r ( main V3 DIFF1 BLOCK2 ) V e r s i o n ( s ) 3

==== main BASE BLOCK6
==== B a s i c B l o c k 6 P r e d e c e s s o r ( 3 ) S u c c e s s o r ( 7 ) p r e v i o u s 5 n e x t 7
p r e 4 p o s t 3 iDo m 3 df ( )
$L12 : ( r e f e r e n c e s =1)

GOTO {∗ S t a t i c T a g } , $L3
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main BASE BLOCK7 ) V e r s i o n ( s ) ∗
==== main BASE BLOCK5
==== B a s i c B l o c k 5 P r e d e c e s s o r ( 4 ) S u c c e s s o r ( ) p r e v i o u s 4 n e x t 6
p r e 8 p o s t 5 iDom 4 df ( )
$L5 : ( r e f e r e n c e s =1)

UNWIND
==== main V2 DIFF1 BLOCK4
==== B a s i c B l o c k 4 P r e d e c e s s o r ( 2 ) S u c c e s s o r ( 5 ) p r e v i o u s 2 n e x t 5
$L4 : ( r e f e r e n c e s =1)

t268 = REMAINDER i , 2
t269 = SUBTRACT t268

j = ASSIGN t269
GOTO $L5
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[EVS] Edge V e r s i o n Summary
S u c c e s s o r ( main V2 DIFF1 BLOCK5 ) V e r s i o n ( s ) 1 ,2

==== main V3 DIFF1 BLOCK2
==== B a s i c B l o c k 2 P r e d e c e s s o r ( ) S u c c e s s o r ( ) p r e v i o u s 1 n e x t 3

t268 = REMAINDER i , 3
t269 = ADD t268 , 1

j = ASSIGN t269
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main V2 DIFF1 BLOCK5 ) V e r s i o n ( s ) 3
==== main BASE BLOCK7
==== B a s i c B l o c k 7 P r e d e c e s s o r ( 6 ) S u c c e s s o r ( 8 ) p r e v i o u s 6
n e x t 8 p r e 5 p o s t 2 iDo m 6 df ( )
$L3 : ( r e f e r e n c e s =1)

EXITFUNCTION
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main BASE BLOCK8 ) V e r s i o n ( s ) ∗
==== main V2 DIFF1 BLOCK5
==== B a s i c B l o c k 5 P r e d e c e s s o r ( 4 ) S u c c e s s o r ( 6 ) p r e v i o u s 4 n e x t 6
$L5 : ( r e f e r e n c e s =1)

t272 = NEGATE a r g c
t273 = MULTIPLY t272 , 2
k = ASSIGN t273

GOTO $L6
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main V2 DIFF1 BLOCK6 ) V e r s i o n ( s ) 1 ,2
S u c c e s s o r ( main V2 DIFF1 BLOCK7 ) V e r s i o n ( s ) 3

==== main BASE BLOCK8
==== B a s i c B l o c k 8 P r e d e c e s s o r ( 7 ) S u c c e s s o r ( ) p r e v i o u s 7
p r e 6 p o s t 1 iDom 7 df ( )
$L2 : ( r e f e r e n c e s =0)

END
==== main V2 DIFF1 BLOCK6
==== B a s i c B l o c k 6 P r e d e c e s s o r ( 5 ) S u c c e s s o r ( 7 ) p r e v i o u s 5 n e x t 7
$L6 : ( r e f e r e n c e s =1)

t275 = DIVIDE k , j
j = ASSIGN t275

t276 = BITOR k , 1
i = ASSIGN t276

t277 = BITXOR i , 7
j = ASSIGN t277

GOTO $L7
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main V2 DIFF1 BLOCK7 ) V e r s i o n ( s ) 1 ,2
==== main V2 DIFF1 BLOCK7
==== B a s i c B l o c k 7 P r e d e c e s s o r ( 6 ) S u c c e s s o r ( ) p r e v i o u s 6 n e x t 3
$L7 : ( r e f e r e n c e s =1)
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t 278 = BITAND k , j
l = ASSIGN t278

t280 = SHIFTRIGHT l , 3
m = ASSIGN t280

t282 = SHIFTLEFT m , 2
n = ASSIGN t282

t285 = CONVERT &$SG3839
{∗Cal lTag } = CALL & p r i n t f , & p r i n t f , t285 , i ,

j , k , l , m , n , {∗Cal lTag } , $L3 (EH)
[EVS] Edge V e r s i o n Summary

S u c c e s s o r ( main BASE BLOCK3 ) V e r s i o n ( s ) 2 ,3
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Appendix D

Proofs

D.1 Proof for Algorithm 3

Definitions:

Given a Φi relation defined in the definitions of section 2.2, the ∈Φ operator is defined for

node sets and edge sets as follows. Given the node sets N , Ni, and Ni+1 where Ni ⊆ N , let

n be a node such that n ∈ Ni. We say that n ∈Φ N iff ∃m ∈ Ni+1 s.t. Φi(nl(n)) = nl(m)).

Furthermore, given the edge sets E, Ei, and Ei+1 where Ei ⊆ E, let a = (n1, n2) be an

edge such that a ∈ Ei. We say that a ∈Φ E iff ∃a′ ∈ Ei+1 where a′ = (m1,m2) s.t.

Φi(nl(n1)) = nl(m1)) and Φi(nl(n2)) = nl(m2)).

Theorem

Given an edge a ∈ Ei+1 and a ∈Φ E, if µ[a] 6= ∅, then µ[a] =< i1, i > where 1 < i1 ≤ i

on line 16 of Algorithm 3.

Proof:

We know that E =
i⋃

j=1

Ej and N =
i⋃

j=1

Nj by definition. We also know that a ∈Φ E is

equivalent to a ∈ Ei since the ∈Φ operator ensures that the edge is only compared with

edges that are incident to nodes in the Φi node mapping (see Definitions above). Thus, let

a be an edge where a ∈ Ei and a ∈ Ei+1. Furthermore, given µi, let µi[a] 6= ∅. We show

that µi[a] =< i1, i > where 1 ≤ i1 ≤ i by induction.

Case (i = 0):

E = ∅ and N = ∅. When the algorithm is finished ∀a ∈ E1, we have E = E1 and

(∀a ∈ E)(µ1[a] = ∅)



85

Case (i = 1):

E = E1 from the Case (i=0) and by necessity N = N1. Let a be an edge where a ∈ E2

and a ∈ E1. From the Base Case we know that µ1[a] = ∅. Thus, it is never the case that

µ1[a] 6= ∅ when a ∈ E2 and a ∈ E1 for i = 1.

Case (i = 2):

E = E2 from the Case (i = 1) and by necessity N = N2. Let a be an edge where a ∈ E3

and a ∈ E2. Furthermore, let µ2[a] 6= ∅ and a = (n1, n2). Assume that a /∈ E1. Then

since µ2[a] 6= ∅ it must be the case that (n1 ∈ N1 ∨ n2 ∈ N1) and µ2[a] =< 2, 2 >. If

(n1 /∈ N1 ∧ n2 /∈ N1) then a ∈ E1 since µ2[a] 6= ∅. But that would imply that µ1[a] 6= ∅

which is never the case when a ∈ E2 and a ∈ E1. Therefore, it is always the case that

a /∈ E1. Therefore, if a ∈ E3 and a ∈ E2 and µ2[a] 6= ∅ then µ2[a] =< 2, 2 >.

Base Case (i = 3):

E = E3 from the Case (i = 2) and by necessity N = N3. Let a be an edge where a ∈ E4

and a ∈ E3. Furthermore, let µ3[a] 6= ∅ and a = (n1, n2). Assume that a /∈ E2. Then

since µ3[a] 6= ∅ it must be the case that (n1 ∈ N2 ∨ n2 ∈ N2) and µ3[a] =< 3, 3 >. If

(n1 /∈ N2 ∧ n2 /∈ N2) then a ∈ E2 since µ3[a] 6= ∅. Assume that a ∈ E2. Then it must

be the case that µ2[a] 6= ∅. Thus, from Case (i=2) we have that if a ∈ E3 and a ∈ E2 and

µ2[a] 6= ∅, then µ3[a] =< 2, 3 >. Therefore, if a ∈ E4 and a ∈ E3 and µ3[a] 6= ∅ then

µ3[a] =< 3, 3 > or µ3[a] =< 2, 3 >.

Case (i+1):

E = Ei from the Case (i) and by necessity N = Ni. Let a be an edge where a ∈ Ei+1 and

a ∈ Ei. Furthermore, let µi[a] 6= ∅ and a = (n1, n2). Assume that a /∈ Ei−1. Then since

µi[a] 6= ∅ it must be the case that (n1 ∈ Ni−1 ∨ n2 ∈ Ni−1) and µi[a] =< i, i >. Assume

that a ∈ Ei−1. Then it must be the case that µi−1[a] 6= ∅. Thus, from our base case we have

µi[a] =< i1, i >.
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