
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-2015

Power Analysis Attacks on Keccak Power Analysis Attacks on Keccak

Xuan D. Tran

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Tran, Xuan D., "Power Analysis Attacks on Keccak" (2015). Thesis. Rochester Institute of Technology.
Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8802?utm_source=repository.rit.edu%2Ftheses%2F8802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Power Analysis Attacks on Keccak
by

Xuan D. Tran

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science

in Computer Engineering

Supervised by

Dr. Marcin Łukowiak and Dr. Stanisław P. Radziszowski
Department of Computer Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

June 2015

Approved by:

Dr. Marcin Łukowiak, Associate Professor
Thesis Advisor, Department of Computer Engineering

Dr. Stanisław P. Radziszowski, Professor
Committee Member, Department of Computer Science

Dr. Dhireesha Kudithipudi, Associate Professor
Committee Member, Department of Computer Engineering

ii

Dedication

@ Iesu Confido In Te @

Obedientia et Pax @ Totus Tuus

And He said, “What is impossible for human beings is possible for God.” (Luke 18:27)

To my mom, for her constant love and support.

iii

Acknowledgments

I would like to express my deepest appreciation to all countless faculty, staff and friends,

who provided me the possibility to complete this work. A special gratitude I give to my

thesis advisors, Dr. Marcin Łukowiak and Dr. Stanisław P. Radziszowski for their continual

guidance, suggestion and help to coordinate this work. Thank you for your patience to

endure me for four long years. I would like to thank Dr. Dhireesha Kudithipudi for taking

time out of her busy schedule to serve as a committee member. A special thanks goes

to Dr. Manuel Lopez, who helped me with certain advanced mathematical concepts in

some of my grad classes that were not only useful for my thesis but also for work-related.

Furthermore, I would also like to acknowledge with much appreciation the crucial role

of Nidhin Pattaniyil for algorithm consultation, James Thesing for Synopsys power trace

discussion and guidance and, finally, James Evanko for reviewing and commenting on this

thesis document.

iv

Abstract

Power Analysis Attacks on Keccak

Xuan D. Tran

Supervising Professors: Dr. Marcin Łukowiak and Dr. Stanisław P. Radziszowski

Cryptographic hash functions are used in everyday applications from ensuring data in-

tegrity, to authentication and digital signatures. The current secure hash standards (SHS)

defined by the National Institute of Standards and Technology (NIST) are: SHA-1, SHA-

224, SHA-256, SHA-384 and SHA-512. Breaking MD5, threats to SHA-1 and the emer-

gence of new cryptanalysis techniques, led NIST to call for the creation of a new hash

function, namely SHA-3, that will replace (or complement) the current SHS. There were

64 submissions initially in 2007 and by the last round, there were only five candidates left.

On October 2, 2012, NIST announced Keccak as the winner of the SHA-3 competition.

On May 28, 2014, NIST announced the publication of ”Draft FIPS 202: SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions” with a 90-day public com-

ment period. As of today, the SHA-3 standardization document is waiting to be finalized

and submitted to the Secretary of Commerce for approval.

Side Channel Attacks (SCA) exploit weaknesses in implementations of cryptographic

functions resulting from unintended inputs and outputs such as operation timing, electro-

magnetic radiation, thermal/acoustic emanations and power consumption to break cryp-

tographic systems with no known weaknesses in the algorithm’s mathematical structure.

Power Analysis Attack (PAA) is a type of SCA that exploits the relationship between the

power consumption and secret key (secret part of input to some cryptographic process) in-

formation during the cryptographic device normal operation. PAA can be further divided

into three categories: Simple Power Analysis (SPA), Differential Power Analysis (DPA)

and Correlation Power Analysis (CPA). PAA was first introduced in 1998 and mostly fo-

cused on symmetric-key block cipher Data Encryption Standard (DES). Most recently this

v

technique has been applied to cryptographic hash functions.

Keccak is built on sponge construction, and it provides a new Message Authentication

Code (MAC) function called MAC-Keccak. The focus of this thesis is to apply the power

analysis attacks that use CPA technique to extract the key from the MAC-Keccak. So far

there are attacks of physical hardware implementations of MAC-Keccak using FPGA de-

velopment boards, but there has been no side channel vulnerability assessment of the hard-

ware implementations using simulated power consumption waveforms. Compared to phys-

ical power extraction, circuit simulation significantly reduces the complexity of mounting

a power attack, provides quicker feedback during the implementation/study of a crypto-

graphic device and ultimately reduces the cost of testing and experimentation. An attack

framework was developed and applied to the Keccak high-speed core hardware design from

the SHA-3 competition using gate-level circuit simulation. The framework is written in a

modular fashion to be flexible to attack both physical and power traces of AES, MAC-

Keccak and future crypto systems. The Keccak hardware design is synthesized with the

Synopsys 130-nm CMOS standard cell library. Simulated instantaneous power consump-

tion waveforms are generated with Synopsys PrimeTime PX. 1-bit, 2-bit, 4-bit, 8-bit, and

16-bit CPA selection function key guess size attacks are performed on the waveforms to

compare/analyze the optimization and computation effort/performance of successful key

extraction on MAC-Keccak using 40 byte key size that fits the whole bottom plane of

the 3D Keccak state. The research shows the larger the selection function key guess size

used, the better the signal-to-noise-ratio (SNR), therefore requiring fewer numbers of traces

needed to be applied to retrieve key but suffer from higher computation time. Compared to

larger selection function key guess size, smaller key guess size has lower SNR that requires

higher number of applied traces for successful key extraction and utilizes less computa-

tional time. The research also explores and analyzes the attempted method of attacking

the second plane of the 3D Keccak state where the key expands beyond 40 bytes using the

successful approach against the bottom plane.

vi

Contents

Dedication . ii

Acknowledgments . iii

Abstract . iv

1 Introduction . 1
1.1 Cryptographic Hash Functions . 1
1.2 SHA-3 Competition . 2
1.3 Contributions . 4

2 Background . 6
2.1 Keccak Hash Function . 6

2.1.1 Theta Transformation . 9
2.1.2 Rho Transformation . 11
2.1.3 Pi Transformation . 12
2.1.4 Chi Transformation . 14
2.1.5 Iota Transformation . 15
2.1.6 Keccak and Sponge Construction 17
2.1.7 FIPS 202 “SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions” . 21
2.2 Security Analysis of SHA-3 . 23
2.3 HMAC and MAC-Keccak . 25
2.4 Side-Channel Attacks . 26
2.5 Power Analysis Attacks . 27

2.5.1 Power Leakage Models . 29
2.5.2 Attack Methodology . 30
2.5.3 Simple Power Analysis . 32
2.5.4 Differential Power Analysis . 33
2.5.5 Correlation Power Analysis . 37

vii

3 Previous Work . 39

4 Keccak Hardware Architecture . 54

5 Simulation and Attack Frameworks . 66
5.1 Simulation Framework . 66

5.1.1 Synthesis . 71
5.1.2 Power Simulation . 74

5.2 Attack Framework . 79
5.2.1 Algorithm Design . 81

6 Results and Analysis . 111

7 Conclusions and Future Work . 134
7.1 Conclusions . 134
7.2 Future Work . 135

Bibliography . 138

viii

List of Tables

1.1 Characteristics of five finalists [1]. 3

2.1 Keccak-p permutation widths and related quantities [2]. 7
2.2 Offsets of ρ [2]. 12
2.3 The round constants RC[ir] [2]. 17
2.4 Security strengths of SHA-1, SHA-2, and SHA-3 functions [3]. 24

ix

List of Figures

2.1 Parts of the state array, organized by dimension [2]. 7
2.2 Keccak hash algorithm and the padding rules [4]. 8
2.3 θ applied to a single bit [2]. 10
2.4 ρ applied to the lanes for b = 200. x = y = 0 is depicted at the center of

the slices [2]. 12
2.5 π applied to a single slice. x = y = 0 is depicted at the center of the slice [2]. 13
2.6 χ applied to a single row [2]. 15
2.7 The sponge construction: Z = Sponge[f , pad, r](M,d) [5][3]. 19
2.8 Traditional cryptographic assumptions [6]. 26
2.9 Information available to be exploited by SCA [6]. 27
2.10 Idle consumption (left), charging (middle), discharging (right) [7] [8]. . . . 29
2.11 SPA trace showing DES algorithm’s initial permutation, 16 rounds, and

final permutation [6]. 33
2.12 Differential power analysis overview [9]. 36
2.13 DPA attacks with incorrect key guess [10]. 36
2.14 DPA attacks with correct key guess [10]. 36

3.1 Ken Smith’s thesis: ASIC top-level simulation flow [9]. 41
3.2 Garrett Smith’s thesis: modified ASIC top-level simulation flow [7]. 42
3.3 AES round 10 CPA attack using Hamming distance model [11]. 43
3.4 Xilinx Spartan-3E FPGA block diagram [12]. 44
3.5 CPA platform setup using FPGA development board [12]. 44
3.6 Waveform acquisition software class structure [12]. 45
3.7 HMAC-Whirlpool where both K and m are one block long[13]. 47
3.8 Target of selection function for power analysis attacks [13]. 47
3.9 The difference between the CPA of AES, HMAC, and MAC-Keccak [14]. . 50
3.10 Success rate of different key length case studies [14]. 51
3.11 Success rate based on model 1 [15]. 53

4.1 The high-speed core with one round per clock cycle [16]. 56
4.2 The high-speed core with one round per clock cycle [16]. 60

x

4.3 The high-speed core test bench state machine [16]. 61
4.4 Input file, keccak in.txt, used by the test bench to feed the messages in the

file into the Keccak high-speed core for hashing. A single message block
of 1024 bits in the file consists of 16 rows where each row, represented in
hex, is 8 bytes. A row corresponds to a single lane in the Keccak state. . . . 62

4.5 Output file, keccak out.txt, created by the test bench to store the hashed
output messages corresponding to the input messages in keccak in.txt. The
length of each hashed output message is 256 bits, represented by 4 rows in
the output file where each row, expressed in hex, is 8 bytes. 63

4.6 Simulation waveforms for hashing a block message of 1024 bits looking at
all 24 rounds of Keccak. 65

4.7 Simulation waveforms for hashing a block message of 1024 bits looking at
first 2 rounds of Keccak. 65

5.1 ASIC top-level simulation flow [9]. 67
5.2 Global script for coordinating HDL compilation, generating power simula-

tion traces, and zipping artifacts for software attack. 69
5.3 Makefile for simulated power trace generation. 70
5.4 Hardware synthesis and simulation executable generation flow. 72
5.5 Hardware synthesis script for the Keccak design. 73
5.6 Simulation and power modeling flow. 75
5.7 Simulation executable commands. 76
5.8 PrimeTime PX simulation script for the Keccak design. 78
5.9 Simulation timestamps with input messages for Keccak high-speed core

with 24 rounds. 79
5.10 Top level class diagram of the attack framework. 81
5.11 θ step, θ1, and θ2 [14]. 82
5.12 Front view of the Keccak state with 5 key lanes and 11 lanes of message data. 83
5.13 Top view of the Keccak state, 1st plane using Key1. Each cell is a byte. . . 83
5.14 MAC-Keccak selection function target for one unknown key piece [14]. . . 84
5.15 Correlation power analysis overview. 86
5.16 Simple power analysis of power trace #007 using Key1 with 24 rounds of

Keccak. 87
5.17 Simple power analysis of power trace #007 using Key1 with 2 rounds of

Keccak. 88
5.18 Top view of the Keccak state, attack target of 1 key byte of Key1 on the 1st

plane. Each cell is a byte. 89

xi

5.19 CPA time domain - 24 rounds of Keccak using 20K traces with Key1. . . . 90
5.20 CPA time domain - 2 rounds of Keccak using 20K traces with Key1. 90
5.21 CPA time domain - examining the supposed “correct” key byte guess value

for 24 rounds of Keccak using 20K traces that used Key1. 91
5.22 CPA time domain - examining the wrong key byte guess value for 24

rounds of Keccak using 20K traces that used Key1. 91
5.23 CPA time domain - examining the supposed “correct” key byte guess value

for 2 rounds of Keccak using 20K traces that used Key1. 91
5.24 CPA time domain - examining the wrong key byte guess value for 2 rounds

of Keccak using 20K traces that used Key1. 91
5.25 CPA predicted the wrong key value for Key Piece 7 using 24 rounds of

Keccak. 93
5.26 CPA predicted the wrong key value for Key Piece 7 using 2 rounds of Keccak. 93
5.27 CPA time domain - 24 rounds of Keccak using 200K traces with Key1. . . . 94
5.28 CPA time domain - 2 rounds of Keccak using 200K traces with Key1. . . . 95
5.29 CPA time domain - examining the correct key byte guess value for 24

rounds of Keccak using 200K traces that used Key1. 96
5.30 CPA time domain - examining the wrong key byte guess value for 24

rounds of Keccak using 200K traces that used Key1. 96
5.31 CPA time domain - examining the correct key byte guess value for 2 rounds

of Keccak using 200K traces that used Key1. 97
5.32 CPA time domain - examining the wrong key byte guess value for 2 rounds

of Keccak using 200K traces that used Key1. 97
5.33 CPA predicted the correct key value for Key Piece 7 using 24 rounds of

Keccak. 98
5.34 CPA predicted the correct key value for Key Piece 7 using 2 rounds of

Keccak. 98
5.35 Top view of the Keccak state, 1st plane using Key2. Each cell is a byte. . . 99
5.36 Front view of the Keccak state with 10 key lanes and 6 lanes of message data.100
5.37 Top view of the Keccak state, 1st and 2nd planes. Each cell is a byte. 101
5.38 MAC-Keccak selection function target for two unknown key pieces [14]. . . 103
5.39 Assuming the 2nd key plane is part of the message and attempting to re-

cover the 1st key plane. 103
5.40 Top view of the Keccak state, 1st and 2nd planes. Attacking the 1st plane

key lane (red outline) by using the 2nd plane key lane (yellow outline) as
part of the message. Each cell is a byte. 104

xii

5.41 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first
plane from 8-bit CPA selection function key guess size. Partial key pieces
are in bytes and represented as hex values. 106

5.42 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first
plane from 4-bit CPA selection function key guess size, targeting the first 4
key bytes of lane 1. Partial key pieces are in bytes and represented as hex
values. 106

5.43 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first
plane from 4-bit CPA selection function key guess size, targeting the last 4
key bytes of lane 1. Partial key pieces are in bytes and represented as hex
values. 107

5.44 Assuming the 1st key plane is part of the message and attempting to recover
the 2nd key plane. 107

5.45 Top view of the Keccak state, 1st and 2nd planes. Attacking the 2nd plane
key lane (red outline) by using the 1st plane key lane (yellow outline) as
part of the message. Each cell is a byte. 108

5.46 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the sec-
ond plane from 8-bit CPA selection function key guess size. Partial key
pieces are in bytes and represented as hex values. 109

5.47 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the sec-
ond plane from 4-bit CPA selection function key guess size, targeting the
first 4 key bytes of lane 1. Partial key pieces are in bytes and represented
as hex values. 109

5.48 Top-8 correlation values of partial key pieces of Key1 in lane 1 of the sec-
ond plane from 4-bit CPA selection function key guess size, targeting the
last 4 key bytes of lane 1. Partial key pieces are in bytes and represented as
hex values. 110

6.1 Top view of the Keccak state, attack target of 1 key lane of Key1 on the 1st
plane. Each cell is a byte. 112

6.2 Success rates of 1-bit CPA selection function key guess size attacking 8
key bytes using 24 rounds of Keccak. 112

6.3 Success rates of 1-bit CPA selection function key guess size attacking 8
key bytes using 2 rounds of Keccak. 112

6.4 Success rates of 2-bit CPA selection function key guess size attacking 8
key bytes using 24 rounds of Keccak. 113

xiii

6.5 Success rates of 2-bit CPA selection function key guess size attacking 8
key bytes using 2 rounds of Keccak. 113

6.6 Success rates of 4-bit CPA selection function key guess size attacking 8
key bytes using 24 rounds of Keccak. 113

6.7 Success rates of 4-bit CPA selection function key guess size attacking 8
key bytes using 2 rounds of Keccak. 113

6.8 Success rates of 8-bit CPA selection function key guess size attacking 8
key bytes using 24 rounds of Keccak. 114

6.9 Success rates of 8-bit CPA selection function key guess size attacking 8
key bytes using 2 rounds of Keccak. 114

6.10 Success rates of 16-bit CPA selection function key guess size attacking 8
key bytes using 24 rounds of Keccak. 114

6.11 Success rates of 16-bit CPA selection function key guess size attacking 8
key bytes using 2 rounds of Keccak. 114

6.12 Success rates where the correct key is ranked first according to the corre-
lation result for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function
key guess sizes when attacking 8 key bytes using 24 rounds of Keccak. . . . 116

6.13 Success rates where the correct key is ranked first according to the corre-
lation result for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function
key guess sizes when attacking 8 key bytes using 2 rounds of Keccak. . . . 116

6.14 Runtime of 1-bit, 2-bit, 4-bit, and 8-bit CPA selection function key guess
sizes using 24 rounds of Keccak. 117

6.15 Runtime of 1-bit, 2-bit, 4-bit, and 8-bit CPA selection function key guess
sizes using 2 rounds of Keccak. 117

6.16 Runtime of 16-bit CPA selection function key guess size using 24 rounds
of Keccak. 118

6.17 Runtime of 16-bit CPA selection function key guess size using 2 rounds of
Keccak. 118

6.18 Cumulative runtime of 1-bit, 2-bit, 4-bit, and 8-bit CPA selection function
key guess sizes using 24 rounds of Keccak. 119

6.19 Cumulative runtime of 1-bit, 2-bit, 4-bit, and 8-bit CPA selection function
key guess sizes using 2 rounds of Keccak. 119

6.20 Cumulative runtime of 16-bit CPA selection function key guess size using
24 rounds of Keccak. 119

6.21 Cumulative runtime of 16-bit CPA selection function key guess size using
2 rounds of Keccak. 119

xiv

6.22 Success rate based on model 1 [15]. 120
6.23 Success rates of 8-bit CPA selection function key guess size attacking 40

key bytes using 24 rounds of Keccak. 121
6.24 Success rates of 8-bit CPA selection function key guess size attacking 40

key bytes using 2 rounds of Keccak. 122
6.25 Runtime of 8-bit CPA selection function key guess size using 24 rounds of

Keccak. 123
6.26 Runtime of 8-bit CPA selection function key guess size using 2 rounds of

Keccak. 123
6.27 Cumulative runtime of 8-bit CPA selection function key guess size using

24 rounds of Keccak. 123
6.28 Cumulative runtime of 8-bit CPA selection function key guess size using 2

rounds of Keccak. 123
6.29 Recovered 35 of 40 key bytes of Key1 using 8-bit CPA selection function

key guess size. 124
6.30 Top-8 correlation values of partial key pieces of Key1 in lane 3 of the bot-

tom plane. Partial key pieces are in bytes and represented as hex values. . . 125
6.31 Top-8 correlation values of partial key pieces of Key1 in lane 4 of the bot-

tom plane. Partial key pieces are in bytes and represented as hex values. . . 125
6.32 Top view of the Keccak state, attack target of 1 key lane of Key2 on the 1st

plane. Each cell is a byte. 126
6.33 Success rates of 1-bit CPA selection function key guess size attacking 8

key bytes using 2 rounds of Keccak. 126
6.34 Success rates of 2-bit CPA selection function key guess size attacking 8

key bytes using 2 rounds of Keccak. 126
6.35 Success rates of 4-bit CPA selection function key guess size attacking 8

key bytes using 2 rounds of Keccak. 127
6.36 Success rates of 8-bit CPA selection function key guess size attacking 8

key bytes using 2 rounds of Keccak. 127
6.37 Success rates of 16-bit CPA selection function key guess size attacking 8

key bytes using 2 rounds of Keccak. 127
6.38 Success rates of the correct key that is ranked as top guess according to

the correlation result for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection
function key guess sizes attacking 8 key bytes using 2 rounds of Keccak. . . 129

6.39 Runtime of 1-bit, 2-bit, 4-bit and 8-bit CPA selection function key guess
sizes using 2 rounds of Keccak. 129

xv

6.40 Cumulative runtime of 1-bit, 2-bit, 4-bit and 8-bit CPA selection function
key guess sizes using 2 rounds of Keccak. 129

6.41 Runtime of 16-bit CPA selection function key guess size using 2 rounds of
Keccak. 130

6.42 Cumulative runtime of 16-bit CPA selection function key guess size using
2 rounds of Keccak. 130

6.43 Success rates of 8-bit CPA selection function key guess size attacking 40
key bytes using 2 rounds of Keccak. 131

6.44 Runtime of 8-bit CPA selection function key guess size using 2 rounds of
Keccak. 132

6.45 Cumulative runtime of 8-bit CPA selection function key guess size using 2
rounds of Keccak. 132

6.46 Recovered 38 of 40 key bytes of Key2 using 8-bit CPA selection function
key guess size. 132

6.47 Top-8 correlation values of partial key pieces of Key2 in lane 4 of the bot-
tom plane. Partial key pieces are in bytes and represented as hex values. . . 133

1

Chapter 1

Introduction

1.1 Cryptographic Hash Functions

The purpose of a cryptographic hash function is to provide the assurance of data integrity.

It is used in password authentication, digital signatures and other protocols. The hash

function is used to construct a short digital fingerprint of some data also known as the

message digest. Therefore, if the data is altered, the digital fingerprint is no longer valid.

Regardless if the data is left in an insecure place, the integrity of the data can be checked

from time to time by recomputing the fingerprint quickly and verifying it has not changed.

An ideal cryptographic hash function is a one-way hash function that maps an arbitrary-

length input message M to a fixed-length output hash H(M)

H : {0, 1}∗ → {0, 1}m (1.1)

such that the following properties hold:

• One-way, or preimage resistance: Given a hash H(M), it is infeasible to find the

message M.

• Second preimage resistance, or weak collision resistance: Given a message M1,

it is infeasible to find another message M2 such that H(M1) = H(M2).

• Collision resistance, or strong collision resistance: It is infeasible to find two

messages M1 and M2 such that H(M1) = H(M2).

Since the hash function can take an arbitrary-length input, it has to be fast, use little memory

to produce the message digest, and be able to operate in stream mode.

2

There are two main usages of hash functions. The first category deals with taking an

arbitrary-length input and then producing the message digest. An example of this would

be the computer would hash the user input password to verify if it matches with the stored

secret hashed value to authenticate the user’s credentials. The second category is the keyed

hash function often used in a message authentication code (MAC), where the key is, for

example, prepended or appended to the data to be hashed. Since the data is hashed with

the secret key, the message digest of the keyed hash function does not have to be securely

stored away as with the previous category. The keyed hash function will be discussed in

more detail later in the thesis.

1.2 SHA-3 Competition

There are many well known hash functions used by industries and government agencies.

MD5 is a well known hash function that was designed by Ron Rivest in 1992. In the mid

1990s, NIST published SHA-0 and SHA-1, and then in 2001 published SHA-2 hash family

functions: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256.

The current Secure Hash Standard (SHS), that is a set of cryptographically secure hash

algorithms (SHA) specified by NIST, specifies in document FIPS 180-4 the seven secure

hash functions for government agencies to use comprised of SHA-1 and SHA-2 hash family

function. With the practical and successful attacks on the MD5 hash function to find a

collision in a few seconds and recent theoretical attacks on SHA-1 with 263 operations

versus brute force 280 operations, NIST worries it is a matter of time before SHA-1 will

be broken with the advent of faster supercomputers and better cryptanalysis techniques.

Due to SHA-2 having similar algorithms as SHA-1, a successful attack on SHA-1 can also

mean a security threat for SHA-2. This led NIST to call for the creation of a new standard

cryptographic hash function, SHA-3, that will replace (or complement) the current SHS.

On November 2, 2007 NIST announced the public competition for the design of the

SHA-3 hash algorithm in the Federal Register Notice. By October 31, 2008, NIST received

64 entries from cryptographers around the world and by December that year, it was nar-

rowed down to 51 first round candidates. By the second round in July 2009, there were only

3

14 candidates, and only five finalists - BLAKE, Grøstl, JH, Keccak and Skein in December

2010 advanced to the third and final round [17]. The characteristics of the five remain-

ing candidates regarding their designs, compression functions, and utilized cipher pieces

are summarized in Table 1.1. For each round NIST hosted a conference to obtain public

feedback. In addition, comments were sent to NIST and the public hash forum. Numerous

papers were published in leading cryptographic journals and conferences regarding crypt-

analysis and performance of remaining candidates. Finally after five years of carefully nar-

rowing down the candidates, reviewing the public comments, and with final internal review,

NIST announced Keccak as the winner of the SHA-3 cryptographic hash algorithm com-

petition on October 2, 2012. On May 28, 2014, NIST announced the publication of “Draft

FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions”

with a 90-day public comment period. As of today, the SHA-3 standardization document

is waiting to be finalized and submitted to the Secretary of Commerce for approval.

BLAKE Grøstl JH Keccak Skein
Design:
Merkle-Damgård X X X
Sponge X X
Compression Function:
Not block cipher based X
Block cipher based, Davies-Meyer X
Block cipher based, Matyas-Meyer-Oseas X
Used cipher pieces:
AES X
ChaCha X
Threefish X

Table 1.1: Characteristics of five finalists [1].

4

1.3 Contributions

The main contribution of this research is to explore and analyze the performance of power

analysis attacks on hardware implementation of the Keccak hash function in a MAC-

Keccak configuration, which utilizes one and two Keccak plane long keys, from generated

simulated power traces using variable bit CPA attack selection function key guess sizes to

extract the secret key. The work demonstrates the feasibility of applying the practical n-bit

CPA attack against MAC-Keccak implementation using gate-level circuit simulated power

consumption waveforms. An itemized list of specific contributions is listed here:

• Develop a standardized, easy to maintain and re-usable framework for performing

simulated and physical trace power analysis attacks to facilitate the design and testing

of crypto devices.

• Reproduce existing simulated power analysis attacks in [9] and [7] and physical

power analysis attack in [12] on AES-128 to validate implemented framework.

• The first to apply side channel vulnerability assessment of the hardware implementa-

tion using gate-level circuit simulated power consumption waveforms from Synopsys

EDA tools.

– Develop, synthesize and simulate Keccak hardware implementation with a 130-

nm CMOS standard cell library.

– Create advantage over physical power extraction in terms of quicker feedback

during the implementation/study of a cryptographic device and which ultimately

reduces the cost of testing and experimentation.

• Investigation of 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit CPA selection function key guess

size attack performance:

– Compare and analyze the optimization of n-bit CPA selection function key guess

size and computation time performance of successful key extraction on MAC-

Keccak that uses one Keccak plane (40 bytes) long key by analyzing signal-to-

noise-ratio (SNR) and number of applied traces.

5

– Explore and analyze method of attacking key expansion into the second plane of

the 3D Keccak state.

The rest of the document is organized as follows: Chapter 2 discusses, in detail, the

Keccak hash function, different side channel attacks and in depth discussions of the differ-

ent types of power analysis attacks. The related works to this thesis are presented in Chapter

3. Chapter 4 discusses the Keccak high-speed core hardware design from the SHA-3 com-

petition that is utilized in this thesis. Simulation and attack frameworks are discussed in

Chapter 5. The results are discussed and analyzed in Chapter 6. Finally, the conclusion and

some ideas for future work are presented in Chapter 7.

6

Chapter 2

Background

2.1 Keccak Hash Function

Keccak is a new hash function selected by NIST as the winner of the SHA-3 competition in

2012 to be the next SHA-3 standard. The current SHA-1 and SHA-2 secure hash standards

defined in FIPS 180-4 were designed based on the Merkle-Damgård construction. As the

underlying hash algorithm for SHA-3 and unlike its predecessors, Keccak was designed

on the Sponge construction which means it could accept arbitrary length messages and

generate digests of any desired sizes. The following are the main features of the Keccak

function:

• The internal state-size for the Keccak-p[b, nr] permutation is comprised of b bits,

where b is the fixed length of the strings that are permuted, called the width of the

permutation and nr is known as the number of rounds. The permutation is defined for

any b ∈ {25, 50, 100, 200, 400, 800, 1600} and any positive integer nr. The variable b

can be considered to be a 5 × 5 × w array of bits, where w = 2l, b = 5 × 5 × 2l,

and l ∈ [0 : 6]. The seven possible values for b, w, and l that are defined for the

Keccak permutations are noted in Table 2.1. By default, l = 6 and so the internal

state has b = 1600 bits. A visualization of the parts of the state array for the Keccak

permutation in terms of sheets, planes, slices, rows, columns, and lanes using the case

b = 200 with w = 8 are illustrated in Figure 2.1. The messages are filled into the 3D

array state from left to right beginning at the bottom plane and then proceeding into

the upper planes.

7

b 25 50 100 200 400 800 1600
w 1 2 4 8 16 32 64
` 0 1 2 3 4 5 6

Table 2.1: Keccak-p permutation widths and related quantities [2].

Figure 2.1: Parts of the state array, organized by dimension [2].

8

• The rate r defines the number of message bits that the sponge absorbs iteratively in

every run, i.e. input block. Thus, the bit rate r determines the implementation speed.

• The capacity c is the number of zero bits that get appended to every r bits of the

message to form the input state. Therefore, the state-size is the sum of the rate and

capacity (b = r + c) as can be seen in Figure 2.2. The capacity c determines the

security length such that the Keccak implementation with smaller r values absorbs

more input blocks where each block has a smaller piece of information of the whole

message to be hashed which is much more secure than implementation with larger r

values. The tradeoff between smaller r with larger c values and larger r with smaller

c values is security for speed, and vice versa.

Figure 2.2: Keccak hash algorithm and the padding rules [4].

• Finally, the last configurable parameter of the Keccak function is the output length

which is the size of the required digest in bits.

The rate, capacity and output length can vary depending on the security requirements. In

the NIST round 3 submission, the designers proposed the rate r of 1152, 1088, 832, or 576

(144, 136, 104 and 72 bytes) for 224, 256, 384 and 512-bit hash sizes, respectively [2].

For the arbitrary length digest output, the default rate r = 1024, capacity c = 576 and the

internal state size of b = 1600 bits. The Keccak function consists of nr = 12 + 2l rounds

9

of five sequential transformations, where the number of rounds depends on the value l used

to define the state size. A single round of Keccak is defined as

R = ι ◦ χ ◦ π ◦ ρ ◦ θ(Input). (2.1)

The following sections will take a more detailed view of each transformation from the al-

gorithmic perspective using pseudo-code. For more formal descriptions and mathematical

explanations of each transformation, the reader is invited to read the Keccak reference spec-

ifications in [2]. The algorithm for each transformation takes a state array, denoted by A,

as an input and returns an updated state array, denoted by A′, as the output [3]. The size

of the state is omitted from the notation as it is understood b is always specified when the

transformations are invoked.

2.1.1 Theta Transformation

The θ transformation is responsible for diffusion. It is a binary linear XOR operation with

11 inputs and a single output. As depicted in Figure 2.3, for every bit in the output state, it

is the resulting XOR between itself and two intermediate bits produced by its two neighbor

columns. The two intermediate bits are the resulting parity of the two columns from the

XOR operation. The summation symbol, Σ, in Figure 2.3 denotes the parity from the XOR

sum of all the bits in the column. The following shows the mathematic notation for the θ

transformation along with the algorithm pseudo code implementation in Algorithm 1. From

Algorithm 1 that is described in the Keccak reference document of [2], the efficient way

to implement the θ transformation is to compute it over two successive phases. The first

phase is to calculate the parity of each column, called θplane, which is Step 1 in Algorithm

1. The second phase consists of Steps 2 and 3 for calculating the remaining part of the θ

transformation such that the two steps compute the XOR between every bit of the state and

the two parity bits of θplane. By calculating the θplane first, it speeds up the calculation of the

θ transformation versus the naive way of recalculating the parity bits of the two adjacent

10

columns for every output bit.

θ : a[x][y][z] ← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1]

or equivalently

a[x][y][z] = a[x][y][z]⊕ (⊕4
y′=0a[x− 1][y′][z])⊕ (⊕4

y′=0a[x+ 1][y′][z − 1])

Algorithm 1: θ(A) [2] [3]

Input: state array A

Output: state array A′

Steps:

1. For all pairs (x, y) such that 0 ≤ x < 5 and 0 ≤ z < w, let

C[x, z] = A[x, 0, z]⊕ A[x, 1, z]⊕ A[x, 2, z]⊕ A[x, 3, z]⊕ A[x, 4, z].

2. For all pairs (x, y) such that 0 ≤ x < 5 and 0 ≤ z < w, let

D[x, z] = C[(x− 1) mod 5, z]⊕ C[(x+ 1) mod 5, (z − 1) mod w].

3. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5 and 0 ≤ z < w, let

A′[x, y, z] = A[x, y, z]⊕D[x, z].

Figure 2.3: θ applied to a single bit [2].

11

2.1.2 Rho Transformation

The ρ transformation is a binary rotation over each lane of the state. It is the rotation of the

bits of each lane by a specific length known as the offset which depends on the fixed x and

y coordinates of the state. For each bit in the lane, the z coordinate is modified by adding

the offset, modulo by the lane sizew. The ρ transformation is a simple permutation over the

bits of the state that is viewed as inter-slice dispersion. The following shows the mathematic

notation for the ρ transformation along with the algorithm pseudo code implementation in

Algorithm 2.

ρ : a[x][y][z] ← a[x][y][z − (t+ 1)(t+ 2)/2],

with t satisfying 0 ≤ t < 24 and

0 1

2 3

t1

0

 =

x
y

 in GF(5)2× 2,

or t = −1 if x = y = 0

Algorithm 2: ρ(A) [2] [3]

Input: state array A

Output: state array A′

Steps:

1. For all z such that 0 ≤ z < w, let A′[0, 0, z] = A[0, 0, z].

2. Let (x, y) = (1, 0).

3. For t from 0 to 23:

a. For all z such that 0 ≤ z < w, let A′[x, y, z] = A[x, y, (z − (t+ 1)(t+ 2)/2) mod w].

b. Let (x, y) = (y, (2x+ 3y) mod 5).

4. Return A′.

The calculation of the offsets for each lane can be seen from Step 3a in Algorithm 2.

Using the internal state block size b = 200 bits with the lane size of w = 8 bits as an

example, Table 2.2 lists the offsets for each lane that result from the computation in Step

3a. Figure 2.4 illustrates the effect of applying the offsets for each lane. Notice the labeling

12

convention for the x and y coordinates from Figure 2.4 correspond to the rows and columns

in Table 2.2 such that the lane A[0, 0] is in the middle of the sheet, and the lane A[2, 3] is

bottom right of the sheet [3]. The black dot in each lane indicates the bit whose z coordinate

is 0, and the shaded cube indicates the position of that bit after the execution of ρ. The other

bits of the lane shift by the same offset, and the shift is circular resulting from the offset

reduced modulo by the lane size [3].

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Table 2.2: Offsets of ρ [2].

Figure 2.4: ρ applied to the lanes for b = 200. x = y = 0 is depicted at the center of the slices [2].

2.1.3 Pi Transformation

Similar to the ρ transformation as a simple permutation over the bits of the state, the π

transformation is known for disturbing the slice horizontal and vertical alignment. The

transformation shuffles every row of lanes to a corresponding column. The following shows

the mathematical notation for the π transformation along with the algorithm pseudo code

implementation in Algorithm 3. The π transformation rearranges the positions of the lanes

for any slice as illustrated in Figure 2.5. The rearrangement of the positions of the lanes

result from the computation of a mathematical equation in Step 1 of Algorithm 3. The

13

convention for the labeling of the x and y coordinates is the same as that of the offset Table

2.2 of the ρ transformation, where the bit with coordinates x = y = 0 is depicted at the

center of the slice.

π : a[x][y] ← a[x′][y′], with

x
y

 =

0 1

2 3

x′
y′



Algorithm 3: π(A) [2] [3]

Input: state array A

Output: state array A′

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let

A′[x, y, z] = A[(x+ 3y) mod 5, x, z].

2. Return A′.

Figure 2.5: π applied to a single slice. x = y = 0 is depicted at the center of the slice [2].

14

2.1.4 Chi Transformation

The χ transformation is a non-linear operation that utilizes mixed XOR, AND, and NOT

binary operations. Every bit of the output state is from the XOR between itself and the AND

between one neighboring bit and the NOT of another neighboring bit in its row as illustrated

in Figure 2.6. The output bit is flipped if its two adjacent bits along the x-axis are 0 and 1 in

that order. The following shows the mathematical notation for the χ transformation along

with the algorithm pseudo code implementation in Algorithm 4. From Step 1 of Algorithm

4, the dot on the right side of the equation indicates integer multiplication and in this case,

is equivalent to the intended boolean AND operation [3]. Also from Step 1, the purpose of

XORing with 1 is equivalent to a binary not operation.

χ : a[x] ← a[x] + (a[x+ 1] + 1)a[x+ 2], or

a[x][y][z] = a[x][y][z]⊕ (a[x+ 1][y][z] · a[x+ 2][y][z])

Algorithm 4: χ(A) [2] [3]

Input: state array A

Output: state array A′

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let

A′[x, y, z] = A[x, y, z]⊕ ((A[(x+ 1) mod 5, y, z]⊕ 1) · A[(x+ 2) mod 5, y, z]).

2. Return A′.

15

Figure 2.6: χ applied to a single row [2].

2.1.5 Iota Transformation

The ι transformation is a linear operation that XORs the bits of the first lane of the bottom

plane (lane in origin) with a round-dependent constant that is associated with and depends

on the round index, ir, as seen below. The other 24 lanes are not affected by the ι transfor-

mation. Without ι transformation, the round mapping would be symmetric and all rounds

would be the same.

ι : a ← a+ RC[ir]

From the pseudo code of the ι transformation in Algorithm 6, the round constant denoted

by RC is generated from the usage of the parameter ir in Step 3 that determines `+1 bits of

a lane to be used for the round constant calculation. Each of these `+ 1 bits is generated by

a function denoted by rc in Algorithm 5, which is based on a linear feedback shift register

(LFSR) [3].

16

Algorithm 5: rc(t) [2] [3]

Input: integer t

Output: bit rc(t)

Steps:

1. If t mod 255 = 0, return 1.

2. Let R = 10000000.

3. For i from 1 to t mod 255, let:

a. R = 0||R;

b. R[0] = R[0] +R[8];

c. R[4] = R[4] +R[8];

d. R[5] = R[5] +R[8];

e. R[6] = R[6] +R[8];

f. R = Trunc8[R].

4. Return R[0].

Algorithm 6: ι(A, ir)

Input: state array A, round index ir

Output: state array A′

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w,

let A′[x, y, z] = A[x, y, z].

2. Let RC = 0w.

3. For j from 0 to `, let RC[2j − 1] = rc(j + 7ir).

4. For all z such that 0 ≤ z < w, let A′ = [0, 0, z] = A′[0, 0, z]⊕RC[z].

5. Return A′.

The round constants RC[i] can be implemented as a lookup table and are given in Table

2.3 below for the maximum lane size of w = 64 bits. For smaller sizes, they are simply

truncated. The mathematical formula can be found in [2], and the pseudo code is in Step 3

of Algorithm 6.

17

RC[0] = 0x0000000000000001 RC[12] = 0x000000008000808B
RC[1] = 0x0000000000008082 RC[13] = 0x800000000000008B
RC[2] = 0x800000000000808A RC[14] = 0x8000000000008089
RC[3] = 0x8000000080008000 RC[15] = 0x8000000000008003
RC[4] = 0x000000000000808B RC[16] = 0x8000000000008002
RC[5] = 0x0000000080000001 RC[17] = 0x8000000000000080
RC[6] = 0x8000000080008081 RC[18] = 0x000000000000800A
RC[7] = 0x8000000000008009 RC[19] = 0x800000008000000A
RC[8] = 0x000000000000008A RC[20] = 0x8000000080008081
RC[9] = 0x0000000000000088 RC[21] = 0x8000000000008080
RC[10] = 0x0000000080008009 RC[22] = 0x0000000080000001
RC[11] = 0x000000008000000A RC[23] = 0x8000000080008008

Table 2.3: The round constants RC[ir] [2].

2.1.6 Keccak and Sponge Construction

As discussed earlier, the Keccak-p[b, nr] permutation consists of nr iterations of Rnd, as

specified in Algorithm 7, where given a state array A and a round index ir, the round

function Rnd is the transformation that results from applying the operations θ, ρ, π, χ and

ι, in that order, as illustrated below:

Rnd(A, ir) = ι(χ(π(ρ(π(A)))), ir).

Algorithm 7: Keccak-p[b, nr](S) [3]

Input: string S of length b, number of rounds nr

Output: string S ′ of length b

Steps:

1. Convert S into a state array, A.

2. For ir from 2`+ 12− nr to 2`+ 12− 1, let A = Rnd(A, ir).

3. Convert A into a string S ′ of length b.

4. Return S ′.

As defined in the Keccak reference of [2], the special case of the Keccak-p family where

nr = 12 + 2` is known as the Keccak-f family of permutations and is precisely defined in

Equation (2.2). Therefore, the six SHA-3 functions that use the underlying Keccak-f [1600]

18

permutation are equivalent to the Keccak-p[1600, 24] permutation.

Keccak-f [b] = Keccak-p[b, nr]

= Keccak-p[b, 12 + 2`]
(2.2)

The rounds of Keccak-f [b] are indexed from 0 to 11 + 2`. A result of the indexing

within Step 2 of Algorithm 7 is that the rounds of Keccak-p[b, nr] match the last rounds

of Keccak-f [b], or vice versa. As an example, Keccak-p[1600, 19] is equivalent to the last

19 rounds of Keccak-f [1600]. Also, Keccak-f [1600] is equivalent to the last 24 rounds of

Keccak-p[1600, 30]; in this case, the preceding rounds for Keccak-p[1600, 30] are indexed

by the integers from -6 to -1 [3].

Thus far, the discussion has been about the parameters and five operations of a Keccak

single round at the low level. From the high level, the hash function operates in three steps:

from initializing the hash function, to reading the arbitrary input (i.e. absorbing) and then

producing the digest (i.e. squeezing), as can be seen in Figure 2.7. Due to the absorbing

and squeezing steps, Keccak is a family of functions of sponge construction. A closer look

at the sponge construction shows that it consists of the following three components: an un-

derlying function of fixed-length strings denoted by f , a parameter called the rate denoted

by r and a padding rule denoted by pad [3]. From these three components, Algorithm 8

is the pseudo code of the Sponge[f, pad, r] function where M is the input message to the

sponge function, d is the desired length of the output in bits and the width b is determined

by the choice of f [3]. The following will discuss the three high level steps of a hash

function using a sponge construction.

• Initialization and Padding

Initialization of the function is achieved by setting the initial state to all zeros. Then,

follow by padding the input message which appends a number of bits such that the

total length is a multiple of the rate. The mandatory padding starts with ‘1’, adds 0’s

in between, and ends with ‘1’; therefore, the minimum pad is 2 and the maximum

length is (r + 1). The pseudo code of the padding rule for the Keccak functions can

be found in Algorithm 9. Note that * in the function name “pad10*1” of Algorithm

19

9 indicates the 0 bit is either omitted or repeated as necessary in order to produce an

output string of the desired length.

• Absorbing

In an analogy of a sponge, the function absorbs at a positive integer rate of r bits and

is appended with a positive number of capacity bits, denoted by c, of zeros to fit the

state size perfectly. Thus, the state consists of b = r + c bits. The bits in the state are

arranged in the 3D array (5× 5× 2l) starting from x = 0, y = 0, z = 0. Essentially,

the bits fill the bottom plane of the 3D array first, then move up the array in the z

direction, then x direction and then y direction. The input of the hash function is the

XOR of the new read in 3D message array with the previous state. This absorbing

process continues for every block of message bits until there is no input message to

process.

• Squeezing

Finally, the function squeezes the first d bits, denoted by Truncd, of the output state,

and this is the number of digest bits defined by the security requirements. The output

can be regarded as an infinite string whose computation, in practice, is halted after

the desired number of output bits is produced [3].

Figure 2.7: The sponge construction: Z = Sponge[f , pad, r](M,d) [5][3].

20

Algorithm 8: Sponge[f , pad, r](M,d) [2] [3]

Input: string M , non-negative integer d

Output: string Z such that len(Z) = d

Steps:

1. Let P = M ||pad(r, len(M)).

2. Let n = len(P)/r.

3. Let c = b− r.

4. Let P0, ..., Pn−1 be the unique sequence of strings of length r such that P = P0||...||Pn−1.

5. Let S = 0b.

6. For i from 0 to n− 1, let S = f(S ⊕ (Pi||0c)).

7. Let Z be the empty string.

8. Let Z = Z||Truncr(S).

9. If d ≤ |Z|, then return Truncd(Z); else continue.

10. Let S = f(S), and continue with Step 8.

Algorithm 9: pad10*1(x,m) [2] [3]

Input: positive integer x, non-negative integer m

Output: string z such that m+ len(Z) is a positive multiple of x

Steps:

1. Let j = (−m− 2) mod x.

2. Return 1||0j||1.

The standardization of the SHA-3 functions requires the internal state of the Keccak

permutation to be 1600 bits; therefore, in the restricted case of b = 1600, the Keccak family

is denoted by Keccak[c]. The SHA-3 function names are nothing more than aliases for dif-

ferent usage instances of Keccak[c], such as SHA3-512(M) = Keccak[1024] (M ||01, 512)

where c = 1024. The choice of c, in this case, determines the r value. The technical

expression of the Keccak[c] in terms of the sponge construction using specific Keccak-p

permutation with parameters, M , message and, d, output length is defined in Equation

21

(2.3).

Keccak[c](M,d) = Sponge[Keccak-p[1600, 24], pad10*1, 1600− c](M,d) (2.3)

2.1.7 FIPS 202 “SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions”

This standard specifies the Secure Hash Algorithm-3 (SHA-3) family of functions on binary

data. Each of the SHA-3 functions is based on an instance of the Keccak algorithm that

NIST selected as the winner of the SHA-3 Cryptographic Hash Algorithm Competition.

This standard also specifies the Keccak-p family of mathematical permutations (including

the permutation that underlies Keccak) which can serve as the main components of addi-

tional cryptographic functions that may be specified in the future [3].

The Keccak-p permutations were designed to be suitable main components for a va-

riety of cryptographic functions, including keyed functions for authentication and/or en-

cryption. The SHA-3 family consists of four cryptographic hash functions called SHA3-

224, SHA3-256, SHA3-384, and SHA3-512, and two extendable-output functions (XOFs)

called SHAKE128 and SHAKE256 as can be seen below where these six functions share

the same sponge construction and are known as sponge functions. The six SHA-3 functions

use the same permutation as the main component in the sponge construction and, therefore,

can be considered as modes of operation of the Keccak-p[1600, 24] permutation [3]. The

permutation operates on a Keccak state of 1600 bits with 24 rounds where each round

consists of a sequence of five transformations: θ, ρ, π, χ and ι as defined in the previous

sections.

SHA-3 Hash Functions
SHA3-224(M) = Keccak[448](M ||01, 224)

SHA3-256(M) = Keccak[512](M ||01, 256)

SHA3-384(M) = Keccak[768](M ||01, 384)

SHA3-512(M) = Keccak[1024](M ||01, 512)

SHA-3 Extendable-Output Functions

22

RawSHAKE128(M,d) = Keccak[256](M ||11, d)

RawSHAKE256(M,d) = Keccak[512](M ||11, d)

SHAKE128(M,d) = RawSHAKE128(M ||11, d) = Keccak[256](M ||1111, d)

SHAKE256(M,d) = RawSHAKE256(M ||11, d) = Keccak[512](M ||1111, d)

The numeric suffix of the four SHA-3 which hash functions indicates the fixed length

of the digest such as SHA3-512 produces 512-bit digests. Due to the four SHA-3 hash

functions having fundamentally different design principles, implementation and perfor-

mance characteristics to the SHA-1 and SHA-2 families in FIPS 180-4 standard, they can

be viewed as the supplement to the existing hash standard in FIPS 180-4. The advantage of

the different design principles between SHA-3 and the hashes in FIPS 180-4 provides re-

silience against future advances in hash function analysis. The four SHA-3 hash functions

differ slightly from the instances of Keccak in the SHA-3 competition by the concatenation

of the two additional bits at the end of the messages. The purpose of this is to differ-

entiate the SHA-3 hash functions from the SHA-3 XOFs and future new variants of the

SHA-3 functions. The SHA3 standard defines this as domain separation. Overall, the hash

functions are defined from the Keccak[c] function by appending two bits, i.e. 01, to the

message as mentioned before and by specifying the length of the output [3]. For example,

Keccak[1024](M ||01, 512) is the technical representation of SHA3-512 that has the capac-

ity of 1024 bits with 01 appended to the messages, 24 rounds of Keccak where each round

has five transformations and with 512-bit output digest. Notice, in each case, the capacity

is double the digest length, i.e. c = 2d.

The extendable-output format (XOF) is a function on binary data in which the out-

put can be extended to any desired length [3] [2]. The two SHA-3 XOFs, SHAKE128

and SHAKE256, are defined from two intermediate functions, RawSHAKE128(M ||11, d)

and RawSHAKE256(M ||11, d), which are defined from the Keccak[c] function. SHAKE

stands for Secure Hash Algorithm Keccak. The input message is denoted by M and the

output length is denoted by d. The bits 11 are appended to the message to support domain

23

separation and also for compatibility with the Sakura coding scheme that uses tree hash-

ing to compute and update the digest in parallel, efficiently, for long messages [3]. The

suffixes of SHAKE128 and SHAKE256 indicate the security strength of the extendable-

output function that they can generally support. SHAKE128 and SHAKE256 are the first

XOFs that NIST has standardized and the approved uses of XOFs will be specified in NIST

Special Publications [3].

2.2 Security Analysis of SHA-3

This section is a brief and high level summary of the security of the SHA-3 family of

hash and extendable output functions. Since each of the SHA-3 functions is based on

an instance of the Keccak algorithm that uses the sponge construction, the SHA-3 family

inherits the security properties of the Keccak design and the sponge construction. The

detailed analysis of the security properties of Keccak can be found in [2] along with the

security properties of sponge construction in [5]. The six SHA-3 functions are designed to

provide special properties, such as resistance to preimage, second preimage, and collision

attacks. Extra security considerations need to be focused on the XOFs as these generate

closely related outputs. The level of resistance of these three types of attacks for SHA-

1, SHA-2 and SHA-3 is summarized in Table 2.4. From the table, regarding the security

strength against second preimage attacks on a message M , the function L(M) is defined as

dlog2(len(M)/B)e, where B is the block length of the function, i.e. 512 bits for SHA-1,

SHA-224, and SHA-256, and 1024 bits for SHA-512 [3].

As supplements to the SHA-2 functions, the four SHA-3 hash functions are designed to

provide resistance against preimage, second preimage, and collision attacks which equals

or exceeds the resistance that the corresponding SHA-2 functions provide. These SHA-3

functions are also designed to resist other attacks, such as length-extension attacks, that

would be resisted by a random function of the same output length, providing security

strength up to the hash function’s output length in bits, when possible [3].

XOFs are a new kind of cryptographic primitive that allows the flexibility to produce

outputs with any desired length. These functions have the potential for generating related

24

Function Output Size Security Strengths in Bits
Collision Preimage 2nd Premimage

SHA-1 160 < 80 160 160− L(M)

SHA-224 224 112 224 min(224, 256− L(M))
SHA-512/224 224 112 224 224
SHA-256 256 128 256 256− L(M)

SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512− L(M)

SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512
SHAKE128 d min(d2 , 128) ≥ min(d, 128) min(d, 128)
SHAKE256 d min(d2 , 256) ≥ min(d, 256) min(d, 256)

Table 2.4: Security strengths of SHA-1, SHA-2, and SHA-3 functions [3].

outputs that designers of security applications, protocols or systems may not expect of hash

functions. From the design perspective, the output length for an XOF does not affect the

bits that it produces such that the output length is not a necessary input to the function. The

output of the XOFs can be seen as an infinite string, and it is up to the user to invoke the

function to compute the desired number of initial bits of that string. XOFs act as a hash

function when processing input and behave as a stream function when producing output.

When an XOF uses the same common message to produce two different output lengths, the

two outputs are closely related to one another such that the longer output is an extension of

the shorter output. As an example, given any message M and any positive integers d and

e, Truncd(SHAKE256(M,d + e)) is identical to SHAKE256(M,d), where Truncd is the

string comprised of the first d bits of the passed in string parameter. The characteristic of

using a common message to produce similar output with XOFs would never be exhibited

with SHA-1, SHA-2, or SHA-3 hash functions when the hash functions of each family

share identical structure. Therefore, development of any application, protocol, or system

using an XOF needs to keep in mind the important security consideration of the XOF

function due to its closely related output generation. SHAKE128 and SHAKE256 of SHA-

3 are designed to resist preimage, second preimage, collision attacks and other attacks that

25

would be resisted by a random function of the requested output length up to the security

strength of 128 and 256 bits respectively. A random function whose output length is d bits

cannot provide more than d bits of security against preimage and second preimage attacks

and d/2 bits of security against collision attacks. As noted in Table 2.4, SHAKE128 and

SHAKE256 will provide less than 128 and 256 bits of security, respectively, when d is

sufficiently small [3].

2.3 HMAC and MAC-Keccak

A widely known MAC construction is the keyed-hash message authentication code (HMAC)

that uses the cryptographic hash function in combination with a secret key [18]. With a se-

cure HMAC implementation, it be must computationally infeasible for an adversary to

forge a valid HMAC without the secret key, nor should it be feasible for the attacker to re-

trieve any information about the key. The HMAC is used to verify both the origin and data

integrity of a message. The popularity of HMAC usage is due to its provable security and

efficiency, given the underlying hash function is secure [19]. The HMAC algorithm accepts

an arbitrary length message M and a secret key K and produces a fixed-length digest as

follows:

HMAC(K,M) = H((K ⊕ opad) ‖ H((K ⊕ ipad) ‖M)) (2.4)

where H is a cryptographic hash function, K is a secret key padded to right with extra

zeros until it matches with the input block size of the hash function, or the hash of the

original key if it’s longer than the block size, M is the message to be authenticated, ipad

is the inner padding (0x3636...3636) and opad is the outer padding (0x5c5c...5c5c), both

having the length of one block [18]. HMAC can be seen as a hash within a hash. The

inner hash function HMAC construction takes the key variant (K ⊕ ipad) that is the same

size as the input block and prepends the message and hashes the resulting block. The outer

hash function of the HMAC prepends the digest of the inner hash function with another key

variant (K ⊕ opad) and produces the HMAC digest. The need of the output key padding

in the outer hash is to eliminate some security vulnerabilities related to returning the hash

26

state directly as the output. With the FIPS PUB 198 standardization usage of HMACs,

there have been no successful attacks on HMAC-SHA1 because the outer application of the

hash function masks the intermediate result of the internal hash. Unlike Merkle-Damgård

construction, the output of the sponge constructions only reveal a small part of the final

state. Hence, it is believed that Keccak is protected, by design, of such vulnerabilities.

The designers of Keccak have recommended to use the direct MAC construction with the

Keccak, i.e. MAC-Keccak, output length smaller than the capacity [5].

MAC(K,M) = H(K ‖M) (2.5)

The secret key used in an HMAC is a clear target for adversaries to attack through tradi-

tional mathematical analysis or exploitation of side channels. In the Previous Work section,

there will be more in depth discussion of the work in [4] by Taha et al. on the use of SCA

on MAC-Keccak to obtain the key and how key length plays a role.

2.4 Side-Channel Attacks

The classical cryptanalysis perception of the cryptosystem operates on a set of inputs to

produce some output and other information about the key is not available as in Figure 2.8.

With this simplified view, the cryptanalytic methods attempt to exploit the algorithm by

identifying weaknesses in its mathematical structure such as with linear and differential

cryptanalysis [20].

Figure 2.8: Traditional cryptographic assumptions [6].

When such a cryptographic algorithm is implemented on a physical device, it leaks

some unintended information through what is known as side channels. There are several

27

observable characteristics that can create side channels for potential information leakages

such as power consumption, electromagnetic radiation, operation timing and others in Fig-

ure 2.9. Side Channel Attacks (SCA) have been developed to exploit these side channels

on the physical cryptosystem implementation to extract secret information.

Figure 2.9: Information available to be exploited by SCA [6].

2.5 Power Analysis Attacks

One of the most powerful and best known side channel attacks is the Power Analysis At-

tack (PAA). It exploits the power consumptions of cryptographic devices to reveal the secret

data used in cryptographic computations. When performing PAA, the attacker attempts to

identify a relationship between the changing internal state of the cryptographic device and

its measured power consumption. In order for this relation to be meaningful to the ex-

traction of the secret data, an intermediate state must be identified that depends upon the

secret data to be extracted [21] [7]. Power attacks represent a serious threat to unprotected

cryptographic devices, given that they may be performed in a non-invasive manner using

relatively cheap and easily obtained measurement equipment [6].

Source of Power Analysis

Prior to executing any power attack, the attacker needs to define a leakage model to predict

28

the power consumption of the device under attack. In order to create an accurate model,

one requires to know the technology used to synthesize a particular device and to under-

stand how power is consumed in a typical circuit. Most modern cryptographic devices are

implemented using complementary metal oxide semiconductor (CMOS) logic. The total

power consumption of a CMOS circuit is the sum of the static power and dynamic power

[8] as can be seen in Equation 2.6 and with an illustrated example of a CMOS inverter in

Figure 2.10.

Ptotal = Pstat + Pdyn

= Pstat + (Ptran + Psc)
(2.6)

Static power consumption is the result of the device leakage current and the supply volt-

age. The dynamic power consumption occurs when the logic gates perform the output

transitions. From a closer look at the dynamic power consumption, it is the combination

of switching and short circuit power dissipation represented as Ptran and Psc, respectively.

The short circuit power is a result of the “short-circuit currents” when there exists a short

period during the switching of a gate while PMOS and NMOS are conducting simulta-

neously. Dynamic power consumption is due to the charge and discharge of the load ca-

pacitance in the circuit. The importance of these dissipation sources typically depends on

technology scalings. Since the dynamic power consumption is the dominating factor for

the power consumption, it is particularly relevant from a side channel point of view be-

cause it determines a simple relationship between a device’s internal data and its externally

observable power consumption [22]. The dynamic power consumption can be written as

Ptran = αCLV
2
DDf (2.7)

where α is the switching activity factor, CL is the effective load capacitance, VDD is the

voltage of the power supply, and f is the clock frequency [8]. In CMOS devices, when

measuring the power consumption either at the ground pin or at the power pin, the highest

peak will appear during the charge of the capacitance, i.e. a 0 → 1 event [22]. This

data-dependent power consumption is the origin of side-channel information leakages.

29

Figure 2.10: Idle consumption (left), charging (middle), discharging (right) [7] [8].

2.5.1 Power Leakage Models

To correlate the sensitive data with the power traces, there are different leakage models for

the side-channel adversaries to use to predict the immediate power consumption of a device

processing the target data. Some leakage models are more sophisticated than others. These

power leakage models can be used both to simulate the attacks or to improve an attack’s

efficiency. The most common models used to describe the power leakage in CMOS devices

are Hamming distance, Hamming weight and switching distance.

Hamming Weight Model

The Hamming weight model is the simplest representation of a device’s power consump-

tion such that the amount of power consumed is proportional to the number of bits that are

logic ‘1’ during an operation, namely HW (x0). Therefore, the greater the number of bits

that are set, the larger the amount of power consumed. This model is applicable for a mi-

croprocessor with precharged buses such as when the bus is set to zero between each value

sent. Since the model is very simple, it weakly describes a circuit’s power consumption but

can be used as an advantage in cases where little is known about the underlying architecture

[7].

30

Hamming Distance Model

This is the model that was commonly used to describe the power consumption in an em-

bedded system. The model assumes that the number of bit transitions during a crypto-

graphic operation is proportional to power consumption [23]. For example, when a value

x0 contained in the CMOS device switches into a value x1, the actual side channel leak-

ages are correlated with the Hamming distance of these values that be can expressed as

HD(x0, x1) = Hw(x0 ⊕ x1). In other words, it is the XOR of the two states such as that of

a device register’s past and present state, when using the Hamming weight model. If a bit

is static during an operation, then it is assumed that it will not contribute to the power.

Switching Distance Model

Hamming weight and distance models assume 0→ 1 and 1→ 0 events consume the same

amount of power. The switching model described by Peeters et al. [24] extends the Ham-

ming distance concept by considering that the transition 0→ 1 may not consume the same

amount of power as 1→ 0.

2.5.2 Attack Methodology

Power analysis attacks exploit a relationship between the changing internal state of a cryp-

tographic implementation and the instantaneous power consumption to retrieve the secret

key. Instantaneous power consumption defines the power consumption of an implementa-

tion (either hardware or simulation-based) that can be measured and recorded as it executes.

The process of performing a successful power analysis attack presented by Smith in [9] is

broken down into three important steps: identification, extraction and evaluation. Each

step represents a part of the overall attack methodology that uses the instantaneous power

consumption to identify the secret information.

Identification

In the identification step, the attacker identifies and hypothesizes a relationship between the

31

secret key information and instantaneous power consumption. To have a meaningful rela-

tionship, the attacker needs to identify the secret data to attack and formulate an accurate

power model that describes the circuit’s power consumption by making certain assump-

tions about the device’s architecture and implementation. Besides establishing a specific

relationship between the secret key information and instantaneous power consumption, this

step also includes identifying the required inputs to the system, the output values to be

measured, and during which part of the execution the power consumption will be captured

[9][7].

Extraction

The generation of the power waveforms may be either hardware or simulation-based; there-

fore, in the extraction step, a process is developed to collect and process the power mea-

surements of the state of the relationship during execution and the necessary system in-

puts/outputs for an attack. The collection of measurements can be done in a non-invasive

manner while the system performs a cryptographic operation. Since the attack may require

a large number of power measurements, this step includes the development of an automated

method that captures and stores the power traces, each with accompanying inputs and/or

outputs and any other additional information [9][7].

Evaluation

The final step is to develop a software system to organize, process, and evaluate the col-

lected power traces and system inputs/outputs. This information along with the leakage

power model and attack algorithm are used to identify the relationship between the power

trace data and estimated secret information to determine the most likely candidate for the

target secret key information being sought. This step may be used to determine all or part

of the secret key information [9][7].

32

2.5.3 Simple Power Analysis

Simple Power Analysis (SPA) is the most basic power analysis technique that attempts to

interpret the power consumption of a device and deduce information about its performed

operations [6]. The adversary observes a power waveform (or a number of waveforms) in

order to identify large, noticeable features that may reveal information about the device’s

operations, or the data being operated on [7]. This concept is illustrated with the example in

Figure 2.11 where the adversary could easily identify the Data Encryption Standard (DES)

algorithm initial permutation, 16 noticeably repeated patterns also known as rounds and the

final permutation at the end of the power trace. Since DES has 16 rounds and the visual

inspection of the power trace confirms it, this is nothing new for the adversary, however,

the adversary could use such a visual inspection of the leakage traces as the preliminary

step in a more powerful attack by determining the parts of the traces that are relevant to the

adversary [22]. There are cases in which this sequence of operations can provide useful

information such as when the instruction flow depends on the data. An example is that SPA

can be used to break Rivest Shamir Adleman (RSA) public-key decryption implementa-

tions by revealing differences between multiplication and squaring operations of the secret

exponent’s value. In the RSA algorithm, a simple modular exponentiation function scans

across the exponent, performing a squaring operation in every iteration with an additional

multiplication operation for each exponent bit that is equal to ‘1’. The secret exponent can

be compromised if squaring and multiplication operations have different power consump-

tion characteristics, take different amounts of time, or are separated by different code [6].

33

Figure 2.11: SPA trace showing DES algorithm’s initial permutation, 16 rounds, and final permuta-
tion [6].

Since SPA is easy to launch, there are simple implementation techniques to prevent it.

One technique is to avoid procedures that use secret intermediates or keys for conditional

branching operations, which will mask many SPA characteristics. In cases where the al-

gorithms inherently assume branching, this can require creative coding and incur a serious

performance penalty [6].

2.5.4 Differential Power Analysis

Differential Power Analysis (DPA) is a powerful attack that is much more difficult to pre-

vent than SPA. DPA intends to take advantage of data dependencies in the power consump-

tion patterns such that the attacks use statistical analysis and error correction techniques

to extract information correlated to secret keys from the detection of smaller scale vari-

ations that may otherwise be overshadowed by measurement errors or other noise when

performing SPA [6].

Implementation of a DPA attack involves two phases: data collection and data analy-

sis. The data collection phase may be performed in a non-invasive manner by sampling

a device’s power consumption during cryptographic operations as a function of time. The

data analysis phase is to guess secret information by establishing a relationship between the

secret information and the instantaneous power consumption of the device. The attacker

would need to identify a state within the system that is dependent upon both the secret

and known quantity, i.e. plaintext or ciphertext. The state is known as the sensitive value,

and may be estimated by guessing the value of the secret given some known input. If the

sensitive value is correlated to the circuit’s power consumption, then a correct guess of the

34

secret will correlate to the power consumption [6][7].

The DPA selection function D(C, b,Ks) of a single bit DPA attack on a block cipher is

defined as computing the value of the bit b of the sensitive state given a known ciphertext C

(or plaintext) and a key guess Ks. The attacker observes m encryption operations and cap-

tures m power traces of k samples each, designated T1..m[1..k]. The attacker also records

the corresponding ciphertexts C1..m (or plaintexts P1..m).

DPA analysis uses power consumption measurements to determine whether a key block

guessKs is correct. To do this, the attacker computes a k-sample differential trace ∆D[1..k]

by finding the difference between the average of the traces for which D(C, b,Ks) produces

one and the average of the traces for which D(C, b,Ks) produces zero as seen in Equation

(2.8) [6]. Therefore, ∆D[j] is the differential of the average power over C1..m of a given

point j from the power consumption measurements.

∆D[j] =

∑m
i=1D(Ci, b,Ks)Ti[j]∑m

i=1D(Ci, b,Ks)
−
∑m

i=1(1−D(Ci, b,Ks))Ti[j]∑m
i=1(1−D(Ci, b,Ks))

≈ 2

(∑m
i=1D(Ci, b,Ks)Ti[j]∑m

i=1D(Ci, b,Ks)
−
∑m

i=1 Ti[j]

m

)
 (2.8)

If Ks is incorrect, the correct value for bit b from evaluating D(C, b,Ks) has the prob-

ability of P ≈ 1
2
. In other words, the selection function’s output is effectively uncorrelated

to the target bit that was actually computed by the target device. The power traces will be

divided into two subsets: a subset with traces for which D(C, b,Ks) is one and another

subset with traces for which D(C, b,Ks) is zero, and the difference in the averages of the

subsets should approach zero as the number of traces increases as in Equation (2.9) [6].

lim
m→∞

∆D[j] ≈ 0 if Ks is incorrect (2.9)

If Ks is correct, the computed value of the selection function D(Ci, b,Ks) produces the

correct value of the target bit b with a probability of P = 1. The selection function is

correlated to the value of the bit manipulated in the device target state. As a result, the

∆D[j] approaches the effect of the target bit on the power consumption as the number of

power traces increases. Any data values, measurement errors and anything else that are not

35

correlated to D approach to zero. Due to the power consumption being correlated to the

data bit values, the plot of ∆D will have spikes in regions whereD is correlated to the value

being processed and flat or approaching zero elsewhere [6].

The DPA attack methodology just mentioned is to illustrate an attack of a single byte or

word of the secret key from a cryptographic device. To recover the rest of the key bytes, the

attacker would need to apply the same method until successfully retrieving the whole key.

For example, AES-128 operates on a message block size of 128 bits and uses a 128 bit key.

Since the AES state operates on 16 bytes and a key is 16 bytes, the attacker would need to

find all 16Ks that feed into 16 S-boxes of the first round encryption. The S-box is the target

of interest because of its non-linear operation and high power consumption. Since the S-box

takes 8 bit inputs and produces 8 bit outputs, the attacker would use 28 = 256 key guesses

as part of the selection function D(C, b,Ks) and apply Equation (2.8). This is illustrated in

Figure 2.12 using a simple block diagram. As an example, Figure 2.13 shows the case of

when the DPA attack uses an incorrect key that results in a flat differential power trace. If

the correct key guess is applied then there will be spikes in the different power traces as can

been seen in Figure 2.14. There will be cases where some of the incorrect key guesses will

produce different power traces with spikes that the attacker might conclude and mistake

for the correct key. Thus, the attacker needs to examine the differential power traces of

all the key guesses and looks for whichever key guess provides the highest spikes in the

differential trace which is the likely correct key byte. The attacker would then reapply the

same procedures to obtain the rest of the 15 key bytes of the AES-128 encryption. DPA

can use known plaintext or known ciphertext and can find encryption or decryption keys

such as with the AES algorithm.

36

Figure 2.12: Differential power analysis overview [9].

Figure 2.13: DPA attacks with incorrect key
guess [10].

Figure 2.14: DPA attacks with correct key guess
[10].

The DPA algorithm may be extended to attack multiple bits at a time. The multi-bit

attack computes an n-bit quantity and computes the average trace for the trace set bin 1

and trace set bin 0 on a specified threshold. The manner in which the traces are partitioned

depends upon the leakage modes and the value of the threshold [7][9]. The advantage of

the multi-bit attack over the single bit attack is in the improvement of signal-to-noise ratio

(SNR) which leads to a smaller number of power traces to launch a successful attack [25].

Another type of DPA is the high-order DPA (HO-DPA) that uses sophisticated selection

functions that combine multiple samples from within a trace. Selection functions can also

assign different weights to different traces or divide traces into more than two categories. It

is able to defeat many countermeasures or attack systems where partial or no information

37

is available about plaintexts or ciphertexts to the attackers. Data analysis using functions

other than ordinary averaging are beneficial with data sets that have unusual statistical

distributions. Although HO-DPA is way more powerful than the simple DPA that uses

ordinary averaging, it is much more complicated to implement [6].

2.5.5 Correlation Power Analysis

Different from DPA, Correlation Power Analysis (CPA) deduces the correct key by using

correlation coefficients of statistics. This method was first introduced by Brier et al. on

DES and AES [26]. In CPA, the attacker computes the correlation between two independent

variables that are the sensitive value calculated by the power model, i.e. Hamming Weight

or Hamming Distance, and the actual device’s power consumption. The sensitive value is

computed in the same way as DPA using a known input such as plaintext or ciphertext and

key guess to estimate the intermediate state, and applying a power model to approximate

its power contribution [21][7].

Let’s denote by X the predicted power calculated by a power model and by Y the

equivalent real power traces measured when processing the cryptographic operation. The

Pearson’s correlation coefficient ρX,Y between X and Y with their expected values µX and

µY and standard deviations σX and σY can be calculated as

corr(X, Y) = ρX,Y =
cov(X, Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY
(2.10)

where E is the expected value function [27]. Since power analysis deals with discrete

measured power traces, Equation (2.10) can be rewritten as

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.11)

or as the mean of the products of the standard scores

rx,y =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
(2.12)

and is referred to as the Pearson correlation coefficient r [27]. From the standard score

expression in Equation (2.11), the sample mean x̄ and sample standard deviation sx can be

38

calculated as

x̄ =
1

n

n∑
i=1

xi and sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (2.13)

The sample Pearson correlation coefficient formula may be further rearranged to facilitate

the construction of a single-pass algorithm for calculating sample correlations, but depend-

ing on the numbers involved, i.e. digit precision, it can sometimes be numerically unstable

[27].

rx,y =

∑
xiyi − nx̄ȳ

(n− 1)sxsy
=

n
∑
xiyi −

∑
xi
∑
yi√

(n− 1)
∑
x2i − (

∑
xi)2

√
(n− 1)

∑
y2i − (

∑
yi)2

(2.14)

The correlation coefficient indicates how well two random variables match each other.

Therefore, the correlation coefficient r is a unitless quantity between -1 and 1, where -1

is strong negative correlation, 0 is no correlation, and 1 is strong positive correlation [27].

As mentioned earlier, in the CPA attack, the value of a secret key is hypothesized and

then the power model, i.e. Hamming weight or Hamming distance, of some intermediate

value is calculated. The higher the absolute value of rx,y, the better correlation matches

between the measured power consumption and the hypothetical power consumption, i.e.

Hamming weight or Hamming distance [13]. The highest absolute value of rx,y suggests

the correct hypothesized key.

Compared to DPA, CPA requires more intensive math calculations but due to its ability

to pick up subtle characteristics of the power traces that DPA is not able to exploit, it

requires less power traces to launch a successful attack. In general, DPA requires a large

number of traces due to all the unpredicted data bits penalized by the signal-to-noise ratio

(SNR) in the case of using smaller number of traces[26] [28]. Another approach to improve

DPA with SNR issues is by using the DPA multi-bit attack [25][9].

39

Chapter 3

Previous Work

Initial Work

Power analysis attacks were first introduced by Paul Kocher, Joshua Jaffe, and Benjamin

Jun from Cryptography Research Inc. in 1999 [6]. The paper describes how and why the

power consumption of an implementation can be related to secret information. It defines

simple, differential and high-order differential power analysis attacks and provides experi-

mental results for single-bit DPA attacks against commercial smart-card devices using DES

implementation. The authors describe the methodologies on how to attack the first and last

rounds of DES to obtain the 56-bit key. The important notes from this paper are the defini-

tion of the DPA selection function D(C, b,Ks) and the k-sample differential trace formula

from Equation (2.8) that are essentially the backbone of the DPA algorithm.

Early Stage of DPA and CPA Attack Applications

A paper by Aigner and Oswald in [21] extends the methodology of a single-bit DPA attack

by Kocher et al. [6], demonstrating such an attack on software implementation of DES.

The authors present the methodology for developing a simulated power model and also

describe the acquisition environment used to capture power measurements from an 8-bit

Atmel microprocessor on an 8052-board.

The basic single-bit DPA attack was extended to multi-bit DPA attack by Messerges

et al. in [23]. The goal is to increase the signal to noise ratio (SNR) of the differential trace

for a correct key guess. With higher SNR, it requires fewer number of traces and shorter

time to obtain a successful attack. The technique is applied to a software implementation

of DES. A selection function is used as with single-bit DPA in order to separate the power

40

traces and ciphertexts/plaintexts into groups. With multiple-bit DPA, the selection function

is modified so that it outputs multiple bits. With these multiple output bits, the attack

is able to partition the average traces of group “1” and group “0” according to a simple

thresholding scheme, referred to as the “generalized d-bit DPA attack”. The variable d

is a threshold of how many bits are “1” from the number of output bits in the selection

function that is represented by “n”. The difference between group “1” and group “0” is

the differential power trace for that particular key guess. In the case where the threshold

is selected such that the output of the selection function is all 0’s or all 1’s, the attack

is referred to as the “all-or-nothing d-bit DPA attack” [7]. In addition to the discussion

of Hamming weight attacks, the paper also talks about the attacks based on Hamming

distance.

Correlation power analysis attack was first introduced by Brier et al. in [26] on AES.

The paper discusses the mathematics and the algorithm behind CPA attack. The attack

relies on the Pearson correlation coefficient formula where the attacker computes the cor-

relation between two independent variables that are the sensitive value calculated by the

power model, i.e. Hamming Weight or Hamming Distance, and the actual devices power

consumption. The authors demonstrated the attack on a large set of smart card chips us-

ing AES and the results showed the advantages of the CPA method against DPA in terms

of efficiency and robustness such that it takes far fewer traces to successfully attack AES

than DPA. The paper mentions the drawback of CPA which is the characterization of the

leakage model parameters as it is more demanding than DPA, i.e. computational intensive;

therefore the method may be more difficult to implement.

DPA and CPA Attacks on AES and Grøstl Utilizing ASIC Simulated Power Trace

Framework

Messerges et al. in [23] presented the idea of the multi-bit DPA attack on DES as discussed

earlier. Ken Smith in [9] extended the work of Messerges et al. by formalizing an attack

methodology and creating a framework for performing single and mult-bit DPA attacks

on AES hardware implementation. The attack methodology is divided into three stages:

41

identification, extraction and evaluation. Smith’s implementation of the extraction stage is

flexible for use on simulated power waveforms and also waveforms captured from phys-

ical implementation. An AES hardware is developed and synthesized with the Synopsys

130-nm CMOS standard cell library. The Synopsys PrimeTime PX tool is then used to gen-

erate simulated instantaneous power consumption waveforms for single and multi-bit DPA

attacks. A set of scripts are developed to automate the process of simulating the design,

capturing/storing the resultant power measurements, and invoking the attack framework to

execute the user’s choice of single or multi-bit DPA as depicted in Figure 3.1. Smith uses

the known plaintext attack to feed plaintexts into the AES engine and then use the ham-

ming weight of the byte substitution output of the AES first round as the sensitive data to

successfully retrieve the keys from single and multi-bit DPA attacks.

Figure 3.1: Ken Smith’s thesis: ASIC top-level simulation flow [9].

The attack methodology by Ken Smith in [9] serves as the foundation for the work

by Garrett Smith in [7] to perform power analysis attacks on the SHA-3 candidate Grøstl.

Compared to Ken Smith’s work, Garrett Smith makes significant improvement in the sim-

ulation flow and attack framework in order to synthesize, simulate and attack a given cryp-

tographic algorithm. A number of alterations are made to the flow to reduce the simulation

time. These include changes to the test bench structure, a careful selection of the simu-

lation window, significant reduction in disk usage between each of the process, and most

importantly, modification of the two most time consuming processes (simulation and power

evaluation) to execute in parallel [7]. From Figure 3.2, the process is mostly the same as

in Figure 3.1, but with the modification of having the simulation and power evaluation

42

execute in parallel. Similar to the previous work, the implemented cryptosystem designs

use the Synopsys 130nm standard cell library. From the attack framework perspective, it

is written in a modular, plugin-oriented fashion to facilitate the additional support of new

cryptosystems, leakage models and attack algorithms [7]. Smith demonstrates successful

single- and multi-bit DPA and CPA attacks on AES. For Grøstl implementation with 64-bit

data path, only single- and multiple-bit CPA attacks succeeded. Finally, only the multi-bit

CPA attack is successful on the Grøstl implementation with 512-bit data path. Smith also

implements countermeasures of the boolean masking technique on these designs to thwart

the first order power analysis attacks.

Figure 3.2: Garrett Smith’s thesis: modified ASIC top-level simulation flow [7].

CPA Attacks on AES Implementation on FPGA Development Boards

The previous work contained theoretical simulated attacks on AES to retrieve the key such

as in [9] and [7]. Keven Meritt [12] and Benhadjyoussef et al. [11] demonstrate the actual

successful physical attacks on AES-128 on FPGA boards using CPA technique within a few

minutes. Meritt uses the Xilinx Spartan-3E starter kit and Benhadjyoussef et al. use the

Side-channel Attack Standard Evaluation Board (SASEBO) that uses a Xilinx FPGA. The

SASEBO is designed specially to have mounted test points ready for side-channel attacks.

In fact, the same board type is used by various organizations working on cryptographic

implementations and side-channel attack research such as the well known dpacontest.org

43

group. The board used by Meritt was not designed for SCA purposes, so Meritt makes

the following hardware modification: removal of the decoupling capacitors for the FPGA

core voltage to get the best quality power traces and addition of the shunt resistor in series

with the FPGA Vcc power rail to measure the instantaneous power consumption during the

encryption cycles. Both the work by Meritt and Benhadjyoussef et al. use the known ci-

phertext attack with CPA technique, in particular with the Hamming distance power model,

to retrieve the round 10th key as in Figure 3.3.

Figure 3.3: AES round 10 CPA attack using Hamming distance model [11].

The Hamming distance power model in this case is the number of bits that change from

the reference state, i.e. ciphertext, to internal signal state D. By recovering the round 10th

key, it is a matter of performing the reverse key expansion to obtain the original key. Less

than 10,000 actual power traces are needed to retrieve 16 key bytes which is in the same

range for simulated power attacks by Ken Smith in [9] and Garrett Smith in [7]. The papers

show the feasibility of attacking an AES implementation in an FPGA without requiring any

44

expensive equipment, and once properly set up, are able to complete successful attacks in

an order of minutes.

It is worthwhile to look a little deeper into Meritt’s physical attack setup. The power

traces generated from this setup serve as test traces for the test verification of the devel-

opment of this thesis attack framework from reading traces, processing traces, applying

different power analysis attacks, i.e. SPA, DPA, and CPA, to implementing different power

models. Figure 3.4 shows the Xilinx Spartan-3E FPGA block diagram that uses the naive

and unprotected implementation of AES-128. The overall interactions of the different com-

ponents of the attack setup such as the PC, target FPGA development board and the oscillo-

scope can be seen in Figure 3.5. The heart of the CPA attack application from Meritt’s work

is the waveform acquisition program as illustrated in Figure 3.6 of the software class struc-

ture. It interacts with the FPGA development board to send down plaintexts and receive

ciphertexts, interacts with the oscilloscope to collect power traces and finally, executes the

CPA attack when finished collecting the ciphertexts and corresponding power traces.

Figure 3.4: Xilinx Spartan-3E FPGA block dia-
gram [12].

Figure 3.5: CPA platform setup using FPGA de-
velopment board [12].

45

Figure 3.6: Waveform acquisition software
class structure [12].

DPA and CPA Attacks on Existing Hash Functions in HMAC Construction with Sim-

ulated and Physical Traces

The previous research discussed thus far examined DPA and CPA attacks on simulated and

actual captured power waveforms from block cipher encryptions of DES and AES. The

usage of power analysis attacks is not limited to block cipher encryptions. There are a

number of research papers which examine the usage of power analysis attacks on HMAC

to retrieve the key or to obtain an internal state so the attacker could forge the message.

Robert McEvoy et al. use DPA to attack a simplified version, SHA2-HMAC, that is only

the inner hash function of the HMAC, specifically H((K ⊕ ipad) ‖ M)) [29]. The pur-

pose is to recover a fixed intermediate hash of (K ⊕ ipad) using practical DPA 1st order

attacks. The attack is not to recover the secret key, but the secret intermediate state of the

hash function such that it allows an attacker to forge MACs for arbitrary messages. The

paper demonstrates the implementation on the Xilinx Spartan-3E development board us-

ing SHA-256. The traces are obtained for the first three rounds of SHA-2, 64 rounds with

4,000 random messages, but execute 700 times per message to reduce acquisition noise for

use in the analysis of seven variables of a SHA-2 state. The authors also discuss a coun-

termeasure design using boolean masking for linear operations and arithmetic masking

for non-linear operations on SHA-2 operations to protect against power analysis attacks.

The paper talks about an algorithm for converting back and forth between the boolean and

arithmetic maskings. The caveats with the proposed countermeasure are that more LUT

46

(lookup table) resources from the FPGA will be used for masking operations and there will

be degradation of hash performance due to converting back and forth between the boolean

and arithmetic maskings.

Similar to the work by McEvoy et al. which uses power analysis to obtain the internal

state of the HMAC to forge MACs on arbitrary messages, Fan Zhang and Zhijie Shi in [13]

use DPA and CPA attacks on a fully implemented HMAC-Whirlpool to obtain the hashes

of H(K ⊕ ipad) and H(K ⊕ opad) as the initialization inputs of the HMAC-Whirlpool to

forge messages as illustrated in Figure 3.7. The motivation of the authors to pick Whirlpool

as the underlying hash function for HMAC is because Whirlpool is a block cipher based

hash algorithm using Miyaguchi-Preneel construction. It has been in the public domain

more than a decade and so far no effective attacks have been found. Hence, using HMAC-

Whirlpool is supposed to be secure. It is difficult to retrieve the key because the hash

function has good one-way property, so an alternative is to find the intermediate hash value

after the key is used. From Figure 3.7, the attacker obtains H ′1 and H ′′1 of the H(K ⊕

ipad) and H(K ⊕ opad) output respectively, then uses them as initialization inputs of

a modified HMAC without needing to know the key and is, therefore, able to forge any

given message successfully. Similar to past research where the S-Box was the primary

target for the selection function due to its non-linear operation corresponding to high power

consumption on physical devices, Zhang et al. also exploit the S-Box as the selection

function for the power analysis attacks using a known plaintext attack approach as seen in

Figure 3.8. The authors use DPA and CPA with the Hamming weight model to retrieve

H ′1 and H ′′1 successfully, using less than 10,000 inputs on an 8-bit Atmel AVR processor

running HMAC-Whirlpool. Furthermore, the paper confirms the use of CPA to retrieve H ′1
and H ′′1 with a smaller number of inputs than DPA, which is in line with past research for

DPA and CPA attacks on AES.

47

Figure 3.7: HMAC-Whirlpool where both K and m are one block long[13].

Figure 3.8: Target of selection function for power analysis attacks [13].

48

Side-channel Cryptanalysis of SHA-3 Candidates

Side-channel analysis was one of the main factors NIST took into consideration when se-

lecting the winner of the SHA-3 competition. Benoit and Peyrin [19] study six second

round SHA-3 candidates from a side-channel cryptanalysis perspective. The AES-based

candidates include ECHO, Grøstl and SHAvite-3, and non AES-based candidates include

BLAKE, CubeHash and HAMSI. The paper focuses on identifying an appropriate choice

of selection function for each of the six candidates in an HMAC setting and evaluating the

relative efficiency through simulations of correlation power analysis attacks on the differ-

ent selection functions (AES S-Box, modular addition, HAMSI S-Box and exclusive XOR)

based on the hash-inherent structure and internal primitives used. The selection functions

mentioned in the previous list rank where an attacker should look for a power analysis at-

tack. For example, to attack an AES-based SHA-3 candidate, one would look at the S-Box

as the selection function due to its non-linear operation that corresponds to higher power

consumption instead of the XOR operation that corresponds to lower power consumption.

The authors draw conclusions concerning the relative complexity for protecting each can-

didate against first order attacks based on the elementary operations required to implement

each hash function rather than show some particular hash functions can be broken with

side-channel analysis.

By the third and final round of the SHA-3 competition, there were five remaining can-

didates. These were BLAKE, Grøstl, JH, Keccak and Skein. The work by Zohner et al.

in [30] identifies side channel vulnerabilities for JH-MAC, Keccak-MAC and Skein-MAC

and demonstrates attacks on the candidate reference implementations on an ATMega256-1

platform to evaluate the complexity and gain of the attacks. Additionally, the authors use

profiling power analysis attack to recover the input to the Grøstl hash function, assuming

the attacker does not possess knowledge of the input or output of the hash function and has

only the measured power consumption data of a target cryptographic device. The paper

does not conclude certain candidates are harder to attack in practice than others since the

provided reference implementations are designed for understandability of the algorithm,

not real-life practical implementation. As noted by the authors, the intention of the paper

49

is to identify the operations an attack would exploit and to outline the necessity of side

channel resistant hash functions in order to further encourage the development of counter-

measures against side channel attacks on SHA-3 candidates [30].

Power Analysis Attacks of Keccak using Physical Traces

After NIST’s announcement of Keccak as the winner of the SHA-3 competition, Taha and

Schaumont published two papers where the first one is on side channel analysis of MAC-

Keccak as discussed in [4] and the second paper looks at the application of differential

power analysis of MAC-Keccak for any given key length as that can be referred to in [14].

As mentioned in the previous chapter, Keccak is built on sponge construction, and it pro-

vides a new Message Authentication Code (MAC) function called MAC-Keccak where the

secret key is prepended to the message before the hashing. By obtaining the secret key

through different means such as side channel analysis, it allows the attacker to forge the

hashed message. In [4], Taha and Schaumont present a comprehensive side channel anal-

ysis of the MAC-Keccak where the secret key is used as part of the input message. The

authors present analysis on the effect of changing the key length, all the possible attack

points and complete attack scenarios. Taha and Schaumont show that the side-channel re-

sistance of the MAC-Keccak depends on the key-length used, and they derive the optimum

key-length as ((n × rate)− 1), where n ∈ [1 :∞] and the rate is the Keccak input block

size. Besides discussing the side channel analysis theory of attacking MAC-Keccak, the

paper applies the discussed theory in a practical attack experiment against MAC-Keccak

implemented on a 32-bit Microblaze processor.

In their second paper [14], Taha and Schaumont look at how the changing of the key

length impacts the set of internal operations that need to be targeted with differential power

analysis. The proper selection of these target operations becomes a new challenge for

MAC-Keccak when some key bytes are hidden under a hierarchical dependency structure.

At the high level, they show the difference between the DPA of the target operations of

MAC-Keccak and that of the typical cryptographic algorithms such as AES and HMAC

that is illustrated in Figure 3.9. From the paper, the authors provide a complete differential

50

power analysis of the MAC-Keccak for any key length by using a systematic approach to

identify the required target operations [14]. Finally, Taha and Schaumont implement the

Keccak reference software code on a 32-bit Microblaze processor built on top of a Xilinx

Spartan-3E FPGA and successfully mount DPA attack by breaking several difficult case

studies of MAC-Keccak with the results plotted in Figure 3.10. The authors chose the

Keccak implementation with an input block size of r = 1088 and capacity of c = 512.

The reasoning behind the choice of long key length is that it gives the MAC-Keccak im-

plementation higher resistance to DPA. Complexity of attacking MAC-Keccak increases

faster than linear with the key length due to the consecutive dependency between different

key bytes. The usage of long key lengths are common in the cryptographic community

such as in the applications of RSA. Overall, the two papers presented by Taha and Schau-

mont describe how to carry out attacks on a software implementation but not on hardware

implementations.

Figure 3.9: The difference between the CPA of AES, HMAC, and MAC-Keccak [14].

51

Figure 3.10: Success rate of different key length case studies [14].

Up to this point, there has been only existing work that focuses on attacks of soft-

ware implementations of MAC-Keccak to retrieve the secret key, but there has been no

comprehensive side channel vulnerability assessment of MAC-Keccak from the hardware

implementation perspective. Pei et al. in [15] present the attack of targeting the θ transfor-

mation of the first round of MAC-Keccak implemented on an FPGA to retrieve the secret

key that is 320 bits which is the size of the first plane, 40 bytes or 5 lanes. The authors

construct several different side channel leakage models and implement CPA attacks based

on them [15]. Recall the θ transformation in the previous chapter. The θ transformation

is calculated in two phases. The first phase is for calculating the θplane which is the parity

of each column and the second phase is for calculating the remaining part of the θ trans-

formation such that it computes the XOR between every bit of the state and the two parity

bits of the θplane. Of all the presented power models from [15], only power model 1 that

targets the θplane and power model 3 that targets the output of the θ transformation provide

high correlation values between the power model and the collected power traces. Pei et al.

discuss the usage of power model 1 to recover all of the 320 key bits but it requires a sig-

nificant number of power traces. In Figure 3.11, using power model 1 takes about 500,000

52

traces to recover one byte of one key lane with a success rate around 90%, with 8 bytes in

each lane. To generate the power traces and apply power model 1 to produce the results

in Figure 3.11, the authors implement the official VHDL code of unmasked Keccak imple-

mentation on a SASEBO board which contains a Xilinx Virtex-5 FPGA running at 12MHz

and use an Agilent MSOX4104A oscilloscope to capture the measured power traces. The

official Keccak VHDL code that is used is the high-speed core that has 1600 internal bits,

with the rate r = 1024 bits and capacity c = 576 bits. The authors discuss the usage of

power model 3 to recover the relationship, i.e. parity, between 2 key lanes, and there are

5 such relationships. This helps to decrease the key guess from 2320 to 264. Enumerating

one lane with 264 choices, one can find the the correct key from the parity of the two key

lanes. The experiments from the paper show that power model 1 has lower correlation

values than power model 3, plus it requires more traces in order to get high success rates

for retrieving all of the 320 key bits correctly. Pei et al. recommend to use more than one

side channel leakage models (two complementary models) to recover all the key bits of the

MAC-Keccak such as using power model 1 to recover one key lane and then use power

model 3 to recover the parity of the two adject key lanes of the target key lane that power

model 1 successfully recovered. By knowing the key lane parity of the two adjacent key

lanes of the target lane that produce the correct key from power model 1, the attacker could

apply the reverse calculation of the θ transformation to retrieve the two adjacent key lanes

that the attacker before only knows the key lane parity as a result from power model 3. The

process repeats again until it retrieves the rest of the key lanes. The advantage of using two

complementary models is that it increases the speed of recovering the secret key versus

only using power model 1 in terms of using a fewer number of traces which means less

CPA computations and shorter attack execution time.

53

Figure 3.11: Success rate based on model 1 [15].

54

Chapter 4

Keccak Hardware Architecture

From the Keccak submission for the SHA-3 competition, Bertoni et al. provide three differ-

ent flavors of Keccak hardware architecture implementions that target different platforms

and these can be found in [2]. These three different hardware designs are: high-speed core,

mid-range core and low-area coprocessor. The intention of this chapter is to focus on the

high-speed core as the architecture looks very attractive with 1 clock cycle per round func-

tion and it is more practical to implement on real hardware devices. In addition, this is

the main hardware architecture that this thesis focuses on attacking in the MAC-Keccak

application to retrieve the secret key. It is still worthwhile to briefly discuss the other two

Keccak hardware architectures, and the reader may consult [2] for more in depth discussion

of these architectures.

Due to the symmetry and the simplicity of the Keccak round function, the algorithm

design allows trading off area for speed and vice versa, such that different architectures

reflect different trade-offs [2]. For each of the architectures, the authors provide two flavor

instances of Keccak. The first one is the instance of Keccak with default parameter values

and that is Keccak[r = 1024, c = 576]. It is built on top of Keccak-f [1600] which is the

largest instance of the Keccak-f family [2]. The second one is Keccak[r = 40, c = 160],

and it is the smallest instance of Keccak that makes use of Keccak-f [200] such that its c

capacity has sufficient level of security for many applications. The round function is based

on simple boolean expressions and there is no need for adders or S-boxes with complex

logic. Therefore, the benefit of avoiding the complex sub-blocks is to have a very short

critical path for reaching very high frequencies [2]. As mentioned earlier, the design of the

Keccak round function allows Keccak architectures to trade implementation area for speed.

55

From the name of the high-speed core, one can intuitively infer this core is the fastest among

the three and requires a lot of silicon area in order to achieve that kind of performance.

The in-depth discussion of the high-speed core will be looked at further in this chapter.

The design purpose of the mid-range core is to be fast and also at the same time to save

silicon area. Therefore, this core utilizes the folding technique by Jungk et al. in [31]

on the Keccak round that results in reducing silicon area at the cost of performance. The

implementation typically cuts Keccak’s state into 2 or 4 pieces, naturally fitting between

the fast core (1 piece) and the Jungk et al. compact implementation (8 pieces). As a

result, the mid-range core circuit is not as fast as the high-speed core but more compact.

The implementation is parametrized by Nb, which determines the amount of folding. With

Nb = 2, the Keccak-f [1600] permutation is computed in 74 clock cycles, and in 124 clock

cycles with Nb = 4 [2]. At the other end of the spectrum among the three architectures is

the low-area coprocessor that implements Keccak with the main focus of utilizing a small

silicon area. Therefore, this architecture is ideal for wireless senor networks or smart cards

where area plays an important role since it determines the cost of the device. Plus, on these

small devices the operating system does run different processes in parallel and one does

not expect high performance from these devices. In other words, the low-area coprocessor

has a very small implementation area with low speed. In this architecture, the state of the

Keccak is stored in memory and the coprocessor is equipped with registers for storing only

temporary variables for calculations of a given round. Inside of the coprocessor, there are

two parts: a finite state machine (FSM) and a data path. The data path is equipped with

three registers for storing temporary values for round calculation, and the FSM computes

the address to be read and sets the control signals of the data path [2]. From [2], it takes

215 clock cycles to compute one round of the Keccak-f permutation and out of these clock

cycles, 55 cycles are used by the core for internal computation and do not transfer data in

and out of memory.

Finally, the upper end of the spectrum among the three architectures in terms of perfor-

mance is the high-speed core where one round of Keccak is computed per clock cycle. Due

to this architecture characteristic, it is chosen as this thesis’ main Keccak core, in particular

56

utilizing the Keccak[r = 1024, c = 576] instance with default parameter values to analyze

and attack the MAC-Keccak configuration. The core operates in a stand-alone fashion such

that the input block is transferred to the core, and the core does not use other resources of

the system for performing the computation [2]. The advantage of this stand-alone hashing

design is that the CPU can use direct memory access to transfer chunks of message to be

hashed and while the core is computing the hash, the CPU can be assigned to a different

task. The beauty of the high-speed core as shown in Figure 4.1, is that the computation of

one Keccak-f round is based on plain combinational logic and is used iteratively for the

different rounds. The three main noticeable components of the core from the figure are the

input/output buffer, the state register and the round function. The use of the input/output

buffer allows decoupling the core from a typical bus used in a system-on-chip (SoC) [2].

Figure 4.1: The high-speed core with one round per clock cycle [16].

57

The usage of the I/O buffer in the absorbing phase is to allow simultaneous transfer of

the input through the bus and the computation of Keccak-f for the previous input block.

Likewise in the squeezing phase, it allows the simultaneous transfer of the output through

the bus and the computation of Keccak-f for the next output block [2]. The widths of the

buses come in typically 8, 16, 32, 64 or 128 bits. The provided high-speed core by Bertoni

et al. for the SHA-3 competition uses the Keccak[r = 1024, c = 576] instance where width

of the bus is fixed to the lane size w of the underlying Keccak-f permutation. Thus, this

limits the throughput of the sponge engine to w per cycle [2].

The structure of the standard Keccak hardware implementation in a high level block

diagram is shown in Figure 4.2, where one state register holds both the input and output of

a round operation that consists of five transformations. The names of the components in this

figure reflect the actual components inside of the VHDL reference source code provided

by Bertoni et al. A test bench is written to feed in the message blocks from a text file,

keccak in.txt, into the Keccak core, where the core performs the hash computation. The

test bench is also responsible for writing the hashed output messages to the output file,

keccak out.txt. These functions and tasks of the test bench are captured in a simple state

machine diagram that is depicted in Figure 4.3. A small example of an input file with seven

messages to be hashed can be seen in Figure 4.4. The format of the file is fairly simple such

that the first line dictates the number messages in the file, each row in hex values represents

a single row of 8 bytes, a single ‘’ denotes an end of the current block message and, finally,

a sequence of ‘-’ and ‘.’ notify the test bench that it is the end of the input file. Since the

Keccak instance that is used in this thesis has the rate r = 1024, there are 16 rows of 8

bytes each, to reflect the rate size. The sequence of the rows indicates the order they are

used to fill the Keccak state, i.e. one lane at a time, starting from the bottom plane and

then going upward. The message block that is expressed in 16 rows is padded according to

Algorithm 9 where the last bit of the rate has to be ‘1’ and there may be 0 or more ‘0’ bits

in between the last bit ‘1’ of the rate and the preceding bit 1. Each row is 8 bytes or 64 bits

which is the size of w for Keccak-f [1600]. The corresponding hashed output messages for

the simple message input in Figure 4.4 is captured in Figure 4.5. The format of the file

58

lists the four rows as the output message and the ‘-’ indicates the end of that current hashed

output message. Similar to the input file, each row of the output file is expressed in hex and

is 8 bytes long. The output is expressed in four rows and is 256 bits long.

Thus far the discussion is at the high level, using the test bench to feed in the inputs

and then save the corresponding hashed output message into a file. As mentioned before,

Figure 4.2 is the high level block diagram of the Keccak high-speed core hardware imple-

mentation. At the beginning of the hash operation is keccak buffer which is the IO buffer

that reads in the message from the keccak in.txt. Since a single message block in the input

file is expressed in 16 rows, it takes keccak buffer 16 clock cycles to absorb the message.

Upon the next clock cycle, the din buffer full signal of the keccak buffer goes high and that

is an indication to XOR the 1024 bits that were read in with the state register that is initial-

ized to 0s as inputs to the combinational logic five-step operation as this is the first round

of Keccak. The output of the five-step operation is written back to the state register. The

following 23 rounds of Keccak take the state register output as input to the combinational

five-step operations. At the end of the last round of Keccak, when the dout valid signal

of the keccak component is high, it is an indication to the test bench to start recording the

output message, where the output message is squeezed in four clock cycles and that is also

when the dout valid signal goes low. Note from Figure 4.2, the dout valid signal of the

keccak component is nothing more than the dout buffer out valid output signal from the

keccak buffer component, saying the output data is ready. Each clock cycle that the core

squeezes an output, it is 64 bits. Once the test bench completes writing the hashed output

message to file, it resets the core and waits a few clock cycles before repeating the process

of hashing the next message block from the file. The total hashing requires 47 clock cycles,

as summarized in Equation 4.1, where it takes 16 clock cycles to absorb the message, 24

clock cycles to iterate through 24 rounds of five-step transformations, 3 clock cycles to

wait for the I/O buffer to indicate the output is valid to read, i.e. sets dout valid active, and

59

finally 4 clock cycles to squeeze the output.

Total Cycles = Read Message+ [Rounds × (Number Cycles Per Round)] +

Wait Dout V alid Active+Write Hashed Output

= 16 + [24 × (1)] + 3 + 4

= 47

(4.1)

60

Fi
gu

re
4.

2:
T

he
hi

gh
-s

pe
ed

co
re

w
ith

on
e

ro
un

d
pe

rc
lo

ck
cy

cl
e

[1
6]

.

61

Figure 4.3: The high-speed core test bench state machine [16].

62

1 7
2 0706050403020100
3 0F0E0D0C0B0A0908
4 1716151413121110
5 1F1E1D1C1B1A1918
6 2726252423222120
7 BFE7AE43B614180D
8 2B675BB3D8C601DD
9 8159BEF30620CE59

10 3DC1001F6242A04A
11 EE43C1D7E0AFC9BF
12 B5A991C1C9CE538A
13 CC6177053B6C79C2
14 FDFD6ECFA7392C42
15 26 B1E3D152479029
16 BCD838BED58E7C59
17 8000000000000001
18 −
19 . . .
20 . . .
21 . . .
22 −
23 0706050403020100
24 0F0E0D0C0B0A0908
25 1716151413121110
26 1F1E1D1C1B1A1918
27 2726252423222120
28 36586E33363C7A0B
29 C0B0FA131183077A
30 4241EEFD30D5A3A5
31 899 DF0E316307700
32 5857F99DFC57C49E
33 E489D7684E515BB9
34 574FAA622DE82530
35 514A670FEC2B9C04
36 621E57D793ED4FDB
37 92 F499855E43627D
38 8000000000000001
39 −
40 .

Figure 4.4: Input file, keccak in.txt, used by the test bench to feed the messages in the file into the
Keccak high-speed core for hashing. A single message block of 1024 bits in the file consists of
16 rows where each row, represented in hex, is 8 bytes. A row corresponds to a single lane in the
Keccak state.

63

1 EAFC4EF0141306BC
2 3F6A1946CCB7E1AC
3 7536 B073314274E2
4 8C318CCC8CEA4786
5 −
6 . . .
7 . . .
8 . . .
9 −

10 E8DDF1FC40380B8C
11 6E3A5A0A240377CC
12 AC183172B55B76FF
13 2FD13EDE76F54227
14 −

Figure 4.5: Output file, keccak out.txt, created by the test bench to store the hashed output messages
corresponding to the input messages in keccak in.txt. The length of each hashed output message is
256 bits, represented by 4 rows in the output file where each row, expressed in hex, is 8 bytes.

Just to recapture the discussion of how many clock cycles it takes to hash a block of

message that happens to be the size of the rate r, the following figures, Figure 4.6 and Fig-

ure 4.7, show simulation waveforms looking at the hashing operations that use 24 rounds

and another waveform to focus on the first few rounds. The simulation waveforms are

generated by the ModelSim tool, and cursors are set at points of interest for analysis. The

example message block that is used in these two ModelSim waveforms and also its corre-

sponding output hash value came from the input and output files depicted in Figure 4.4 and

Figure 4.5, respectively.

Figure 4.6 shows the capturing of the 24 rounds of Keccak for hashing a message. At

time 80ns, the Keccak high-speed core starts to read in the message at one lane, i.e. 64

bits, per clock cycle, where a single clock cycle is 20ns in this instance. By 400ns, the

message is already read in and the core begins to start the hash computation with round

1. The cursors at 420ns and 440ns correspond to the start of the second and third round,

respectively. The time at 1020ns denotes the end of squeezing the output to the file. Finally,

the test bench resets the core and lets it settle down a few cycles before starting the whole

hash process for the next message in the input file that begins at 1120ns. Note that at

time 940ns, the dout valid of the keccak component goes high indicating output data is

ready, and that is when the core squeezes the output and also when the test bench saves the

64

output to the file. The reason for the test bench resetting the core at the end of the hash

operation and also consuming a few clock cycles after the reset is to make sure everything

is resetting back to normal and, specifically, to make absolutely certain the state register

only contains 0s. It is critical for the state register to be all 0s at the beginning of each hash

computation because the attacked power model relies on the change of state values in order

to attack Keccak successfully. This will be elaborated more in the next chapter regarding

the simulation and attack frameworks. Figure 4.7 is nothing more than a zoomed-in of the

curves of the previous figure, looking specifically at the first few rounds. The purpose of

this is to understand the exact timing of when Keccak completes two round versus twenty-

four round hash computation in order to compare the application, i.e. CPA, attack time

between using power traces from these two different rounds.

65

Fi
gu

re
4.

6:
Si

m
ul

at
io

n
w

av
ef

or
m

s
fo

rh
as

hi
ng

a
bl

oc
k

m
es

sa
ge

of
10

24
bi

ts
lo

ok
in

g
at

al
l2

4
ro

un
ds

of
K

ec
ca

k.

Fi
gu

re
4.

7:
Si

m
ul

at
io

n
w

av
ef

or
m

s
fo

rh
as

hi
ng

a
bl

oc
k

m
es

sa
ge

of
10

24
bi

ts
lo

ok
in

g
at

fir
st

2
ro

un
ds

of
K

ec
ca

k.

66

Chapter 5

Simulation and Attack Frameworks

5.1 Simulation Framework

Compared to the software implementations of MAC-Keccak implemented in [4] and [14],

hardware implementations of MAC-Keccak with their parallel implementations have much

lower side channel leakage. Therefore, side channel attacks on a hardware implementa-

tion of MAC-Keccak are much more challenging to implement as can be seen in [15] by

Pei et al. So far, there are attacks of physical hardware implementations of MAC-Keccak

using FPGA development boards, but there has been no side channel vulnerability assess-

ment of the hardware implementations using simulated power consumption waveforms.

When compared to physical power extraction, circuit simulation significantly reduces the

complexity of mounting a power attack, provides quicker feedback during the implemen-

tation/study of a cryptographic devices, and that ultimately reduces the cost of testing and

experimentation. Therefore, power analysis with simulated traces enables the evaluation of

a protected and unprotected cryptosystem’s effectiveness against power attacks at various

stages of the design with significantly less overhead compared to the study of a physical

device [7]. On the other hand, there are some concerns that need to be kept in mind when

generating and using simulated power traces for power analysis attacks, those are main-

taining power trace sample precision, i.e. ns versus ps time domain, or 5 decimal place

power values versus 2 decimal place power values, and producing compact output power

trace files as quickly as possible. This research simulates the execution of the Keccak high-

speed core provided by Bertoni et al. for the Keccak submission to the SHA-3 competition,

where the simulation framework to produce the power traces of the target ASIC implemen-

tation builds off the design and simulation flow established in the work by Ken Smith in

67

[9] and Garrett Smith in [7]. The research uses the fundamental simulated power trace

design flow from Ken Smith and uses the Makefile script concept from Garrett Smith for

coordinating different tools in Ken Smith’s power trace design flow for efficiency and code

maintainability.

Figure 5.1: ASIC top-level simulation flow [9].

Figure 5.1 illustrates the top-level simulation flow used by Ken Smith in [9], and it

is also the same simulation flow that is leveraged by this thesis to generate power traces

for the Keccak high-speed core. The design flow utilizes the Synopsys electronic design

automation (EDA) tools to compile, synthesize, simulate and perform power estimation

of the hardware design. The simulated power extraction process is split into three main

steps. First, the hardware design is compiled and synthesized using the Synopsys Design

Compiler. After the design is built, the synthesized implementation and its corresponding

test bench are then simulated using Synopsys VCS. During the simulation, the algorithm

is executed many times with different input vectors. Finally, the simulation output is pro-

cessed by Synopsys Primetime PX tool to generate a time-based power report [7]. Various

configuration files are used to specify the design sources to build, the technology library

and the various parameters relevant to design simulation. The input vector, the extracted

waveform from the simulation and the output data, i.e. ciphertext from block cipher en-

cryption or digest output from hash algorithm, are then grouped and stored until they are

required for evaluation. Several other utilities are used for supporting the simulated power

extraction, and all of these tools are implemented to run on the CentOS Linux workstation.

The above described the process to generate simulated power traces and store/compress the

68

traces along with their corresponding messages. Hashed messages are controlled by the

global shell script which is shown in Figure 5.2. The shell script is invoking the main build

target, power, from the Makefile script as shown in Figure 5.3 to generate the simulated

power traces as a result of invoking other dependent targets that are on the list of Makefile-

chained build targets to compile, synthesize, simulate and perform power estimation of the

Keccak high-speed core hardware design. The original simulation in [9] by Ken Smith

uses Perl scripts to achieve the objective of generating simulated traces, but these neither

have the flexibility of invoking intermediate build targets nor the dependency of tracking

intermediate files that are used by the final build target, i.e. files used by PrimeTime PX to

generate traces. Therefore, this research leverages the idea of using the Makefile script to

enable dependency tracking of the intermediate resources from [7] by Garrett Smith. Not

only is using Makefiles useful for tracking the dependency of intermediate resources, it

also allows the flexibility to invoke the intermediate sub-targets that build these resources,

which is very useful when debugging compilation, synthesis or simulation issues.

69

1 # ! / b i n / bash
2

3 # Def ined o u t p u t f o l d e r .
4 f o l d e r = P o w e r T r a c e s $ (d a t e +”%m %d %Y.%Hh %Mmin”)
5

6 # P r i n t s t a r t ba nn e r .
7 echo ”∗∗∗∗ Power A t t a c k S i m u l a t i o n s ∗∗∗∗ ”
8

9 # C r e a t e o u t p u t f o l d e r .
10 mkdir $ f o l d e r
11 s l e e p 5
12

13 # I t e r a t e t h r o u g h t h e l i s t o f k e c c a k i n ∗ . t x t and g e n e r a t e power t r a c e s .
14 f o r i t e r i n $ (seq −f %03g 1 10)
15 do
16 # Remove any u n n e c e s s a r y o l d f i l e s b e f o r e g e n e r a t i n g any
17 # power t r a c e s .
18 make c l e a n
19

20 cp t e s t v e c t o r s / k e c c a k i n $ i t e r . t x t k e c c a k i n . t x t
21

22 # C a l l ’ power ’ t a r g e t from t h e M a k e f i l e t o compi le , s i m u l a t e , and
23 # g e n e r a t e power t r a c e s .
24 make power
25

26 # S t r i p power waveform . o u t f o r u n n e c e s s a r y i n f o r m a t i o n i . e . b an ne r .
27 . / p a r s e r o u t f i l e . p l power waveform . o u t $ f o l d e r / p o w e r w a v e f o r m $ i t e r . o u t
28

29 # Move a r t i f a c t s t o o u t p u t f o l d e r f o r a r c h i v i n g .
30 mv s i m u l a t i o n . t x t $ f o l d e r / s i m u l a t i o n $ i t e r . t x t
31 mv k e c c a k o u t . t x t $ f o l d e r / k e c c a k o u t $ i t e r . t x t
32

33 # Let t h e u s e r know t h e power t r a c e g e n e r a t i o n f o r c u r r e n t
34 # k e c c a k i n . t x t i s done .
35 echo ”∗∗∗∗ Completed power s i m u l a t i o n f o r i n p u t f i l e − k e c c a k i n $ i t e r . t x t

∗∗∗∗ ”
36 s l e e p 10
37 done
38

39 # Remove any u n n e c e s s a r y o l d f i l e s .
40 make c l e a n
41

42 # Move a r t i f a c t s t o o u t p u t f o l d e r f o r a r c h i v i n g .
43 cp −r t e s t v e c t o r s /∗ $ f o l d e r
44

45 # Per form q u i c k checksum on t h e a r t i f a c t s i n t h e o u t p u t f o l d e r and s t o r e
46 # t h o s e checksums f o r f u t u r e r e f e r e n c e i f need t o check t h e f i l e
47 # i n t e g r i t y o f any a r t i f a c t f i l e .
48 sha256sum $ f o l d e r /∗ > $ f o l d e r / cksum sha256sum . t x t
49

50 # Zip up t h e o u t p u t f o l d e r t o save memory s p a c e .
51 t a r −z c v f $ f o l d e r . t a r . gz $ f o l d e r

Figure 5.2: Global script for coordinating HDL compilation, generating power simulation traces,
and zipping artifacts for software attack.

70

1 # ###
2 # Def ined v a r i a b l e s .
3 # ###
4 QUIET ?= 0
5 CLOG = compi l e . l o g
6 SLOG = s i m u l a t e . l o g
7

8 i f e q ($ (QUIET) , 1)
9 CLOG += &>/dev / n u l l

10 SLOG += &>/dev / n u l l
11 e n d i f
12

13 DESIGN HDL = l i b / c o r e . v k e c c a k n e t l i s t . vhdg t b / k e c c a k t b . vhd
14

15 # ###
16 # Rule t o c r e a t e t h e ga t e−l e v e l n e t l i s t .
17 # ###
18 k e c c a k n e t l i s t . vhdg : s c r / dc commands keccak . t c l l i b / c o r e t y p . db
19 d c s h e l l −f $< | t e e $ (CLOG)
20

21 # ###
22 # Rules f o r c o m p i l a t i o n , s i m u l a t i o n , and power a n a l y s i s .
23 # ###
24 simv : $ (DESIGN HDL)
25 v l og an l i b / c o r e . v | t e e −a $ (CLOG)
26 vh d l an k e c c a k n e t l i s t . vhdg | t e e −a $ (CLOG)
27 vh d l an t b / k e c c a k t b . vhd | t e e −a $ (CLOG)
28 vcs −debug −ve rb k e c c a k t b | t e e −a $ (CLOG)
29

30 dump . vpd : s c r / s imv commands keccak . t c l simv
31 . / s imv −u c l i −do $< + n t b r a n d o m s e e d a u t o m a t i c | t e e $ (SLOG)
32

33 dump . vcd : dump . vpd
34 vpd2vcd +morevhdl + inc ludemda $< $@ | t e e −a $ (SLOG)
35

36 power waveform . f s d b : s c r / p t commands keccak . t c l dump . vcd
37 PT PIPE=0 p t s h e l l −f $< | t e e −a $ (SLOG)
38

39 power waveform . o u t : power waveform . f s d b
40 f s d b 2 n s −fmt o u t −o $@ $<
41

42 .PHONY: power
43 power : power waveform . o u t
44

45 # ###
46 # Rule t o c l e a n up and remove u n n e c e s s a r y f i l e s .
47 # ###
48 .PHONY: c l e a n
49 c l e a n :
50 rm − r f AN.DB 64 c s r c work simv simv . d a i d i r t r a n s c r i p t ∗ ∗ . t x t ∗ . o u t ∗ . vhdg \
51 ∗ . i n i ∗ . key ∗ . w l f ∗ . l o g ∗ . vcd ∗ . vpd ∗ . s v f ∗ . f s d b fsdb2nsLog \
52 ARCH ENTI ∗ . mr ∗ . syn PACK

Figure 5.3: Makefile for simulated power trace generation.

71

5.1.1 Synthesis

Hardware compilation and synthesis of the Keccak high-speed core require the use of sev-

eral tools, illustrated in Figure 5.4. Tools are represented as circles and resources such

as scripts, sources and intermediate files are expressed as rectangles. The build target of

the design synthesis is the compiled simulation executable, simv, which is invoked by

the Makefile in Figure 5.3. Basically, when the Makefile calls simv, it is simply invok-

ing the various tools to generate the simv binary. The first dependent target to generate

simv is keccak netlist.vhdg. The Makefile rule for this target invokes Synopsys dc shell

tool. The Keccak high-speed core source files are read in and parsed by the dc shell

tool. The tool then synthesizes an implementation netlist built from standard cells pro-

vided by the Synopsys core typ.db 130nm library. This netlist is then written back out into

keccak netlist.vhdg. The vhdlan tool then parses the generated netlist and the top-level

test bench. The standard cell library Verilog model core.v is parsed with the vlogan utility.

A simulation executable simv is created with the V CS tool. The above discussed steps can

be seen with the rule for the simv target in the Makefile which shows the list of commands

that need to be executed for hardware synthesis. Another thing to note from the simv build

target rule is the need to specify the hardware test bench at the top-level for the simula-

tion. This is done so the test bench can operate the unit under test which is the Keccak

high-speed core hardware implementation. Figure 5.5 shows the commands executed by

dc shell to synthesize the hardware design from the standard cells. Note that the hardware

test bench is excluded from the synthesis.

72

Figure 5.4: Hardware synthesis and simulation executable generation flow.

73

1 # ###
2 # Link d e s i g n .
3 # ###
4 s e t s e a r c h p a t h { r t l t b l i b . }
5 s e t t a r g e t l i b r a r y { c o r e t y p . d b }
6 s e t l i n k l i b r a r y {∗ c o r e t y p . d b }
7

8 # ###
9 # Compile HDL s o u r c e s .

10 # ###
11 s e t c o m p i l e c l o c k g a t i n g t h r o u g h h i e r a r c h y t r u e
12

13 r e a d f i l e −format vhd l ” k e c c a k g l o b a l s . v h d ”
14 r e a d f i l e −format vhd l ” k e c c a k r o u n d c o n s t a n t s g e n . v h d ”
15 r e a d f i l e −format vhd l ” k e c c a k r o u n d . v h d ”
16 r e a d f i l e −format vhd l ” k e c c a k b u f f e r . v h d ”
17 r e a d f i l e −format vhd l ” k e c c a k . v h d ”
18

19 c u r r e n t d e s i g n keccak
20 l i n k
21

22 l i s t d e s i g n s
23 u n i q u i f y − force
24

25 c h e c k d e s i g n
26 compi l e −map e f fo r t medium
27

28 r e p o r t c e l l
29 r e p o r t a r e a −h i e r a r c h y
30

31 # ###
32 # G e n e r a t e t h e g a t e− l e v e l n e t l i s t .
33 # ###
34 w r i t e −format vhd l −h i e r a r c h y −output k e c c a k . v h d g
35

36 e x i t

Figure 5.5: Hardware synthesis script for the Keccak design.

74

5.1.2 Power Simulation

There are three steps to simulate a design using the Synopsys VCS MX-based flow and

these involve analysis, elaboration and simulation. The analysis and elaboration steps de-

scribed in the previous section build the Makefile target simv, also known as the simulation

executable. The simulation executable gets executed many times with varying stimuli from

an external file, keccak in.txt. The execution of the simv is driven from the Makefile

which automates the process of simulating the design and invoking PrimeTime to generate

the power waveforms and place them in the power waveform.out. Figure 5.6 is a diagram

of the simulation flow for power trace generation. The attack.sh script is the main script

for invoking the main build target, power waveform.out, in the Makefile and, once the

main build target is built, it is responsible for stripping the raw power trace file of unnec-

essary information and then compressing/zipping the trace files for later usage in the CPA

attack application, then invoking the whole process again if there is any more data in the

keccak in.txt file.

75

Figure 5.6: Simulation and power modeling flow.

simv takes a simv commands keccak.tcl file as input, which is used to specify the

simulation runtime, time resolution and value change dump file as can be seen in Figure

5.7. It is critical for the simulation executable to dump the signal values after every step in

time to dump.vpd. The test bench is responsible for loading input test vectors and writing

the result output to a file. The input vectors were generated externally using the provided

C code program by the Keccak developers, Bertoni et al. The program is modified to

write an arbitrary number of test vectors specified by the user into the keccak in.txt file

where each message is padded according to the padding scheme. This file is parsed by the

VHDL test bench to provide stimuli for the Keccak high-speed core to hash. The length of

the simulation runs for a maximum of 1,000s at the default resolution of 10ps. Whenever

the test bench reaches the end of keccak in.txt with no more input files, it will assert

and stop the simulation and not run for the remainder of the 1,000s. The only reason for

76

specifying the large amount of time is to be able to simulate some test cases where the

keccak in.txt might have 50,000 messages. In this research, each keccak in.txt file is

capped with 20,000 messages to be hashed for power traces.

1 dump − f i l e dump.vpd
2 dump −add / KECCAK TB −depth 0
3 dump − a u t o f l u s h on
4 dump −d e l t a C y c l e on
5 dump − fo rceEven t on
6 run 1000000000000
7 e x i t

Figure 5.7: Simulation executable commands.

With each simulation, the simv executable produces a VPD (Value change Plus Dump)

file. This is a Synopsys proprietary binary format that captures the changes in value of

signals within a design over the course of a simulation. Plus, it is a more compact form

compared to the ASCII-based IEEE standard VCD (Value Change Dump) file format. For

the VPD to be usable by PrimeTime, it first needs to be converted to VCD format by

using the vpd2vcd tool. Under the hood, the PrimeTime analysis engine operates on VCD

activity data. The usage of the Synopsys PrimeTime PX is invoked by using the pt shell

environment. The pt shell tool processes a Tcl script, as in Figure 5.8, that configures the

environment for time-based power analysis. In the time-based mode, PrimeTime examines

how the signal values change over the course of the simulation, gathered from the value

change dump, and computes the instantaneous power consumption for each simulation

event. Another part of the power analysis for PrimeTime is to provide an SDC constraint

file with the system clock frequency which in this research is specified with a 20ns period.

PrimeTime first parses the standard cell library, design netlist and design constraints

file. The activity information is then loaded using the read vcd command, which also al-

lows the tool to determine the mapping between the VCD signals and the objects in the

design netlist. To perform power analysis calculations of each entity in the Keccak high-

speed core design, only, without mixing with the test bench signals in PrimeTime, the

VCD is read using the read vcd command with the strip path parameter specified. Power

analysis is performed by calling the update power and report power commands. Prior

77

to analysis, set power analysis options is used to specify which objects from the design

hierarchy should be monitored for waveform generation and also the format of the wave-

form file containing the instantaneous power consumption data. The top level design is

sufficient in this research to monitor and report. The results are written to a FSDB wave-

form file which is a proprietary binary file format. The fsdb2ns tool is used to convert

the FSDB file into an ASCII format OUT file that will be useful in the attack phase for

the evaluation algorithms to extract and access the waveform information. The fsdb2ns

tool can convert from FSDB to OUT format without a loss in precision [9]. One impor-

tant thing to note about the PrimeTime tool is that it reports power consumption for each

simulation event when a signal changes value as opposed to using a fixed sampling rate.

Each power event is recorded in the .out file as a time index and its corresponding power

sample. A parse out.pl Perl script was written to process the waveform produced after

each simulation such as stripping out unnecessary information like duplicate channels of

information and some header fields. This new processed waveform is then compressed and

zipped along with the keccak in.txt, keccak out.txt, and simulation.txt files in order to

save disk space, as generating and storing large volumes of trace data requires a signifi-

cant amount of storage [7]. The purpose of grouping these files and then zipping them is

a simple way to associate these pieces of information for the evaluation algorithms to use.

Each simulation is independent, so the process may be parallelized by invoking multiple

instances of attak.sh, simultaneously. This will reduce the simulation time by a factor of

N where N is the degree of parallelism.

For each simulation, three output files are produced: a Nanosim .out formatted wave-

form containing the combined power traces for each of the hash operations simulated in

power waveform.out, a timestamp archive containing a single record for each individual

hashed message operation in simulation.txt, and the hashed outputs in keccak out.txt.

Each record contains the hash operation’s start time and input message as shown in Figure

5.9. The CPA attack framework requires these timestamps in order to locate and extract

each power waveform correctly. The starting timestamp is subtracted from each event

timestamp in order to properly align the trace samples for evaluation.

78

1 # ###
2 # S e t t h e power a n a l y s i s mode.
3 # ###
4 s e t p o w e r e n a b l e a n a l y s i s t r u e
5 s e t s h s o u r c e u s e s s e a r c h p a t h t r u e
6 s e t p o w e r r e a d a c t i v i t y i g n o r e c a s e t r u e
7 s e t p o w e r a n a l y s i s m o d e t i m e b a s e d
8

9 # ###
10 # S e t l i b r a r y s e a r c h p a t h , r e a d i n t h e n e t l i s t , and l i n k t h e d e s i g n .
11 # ###
12 s e t s e a r c h p a t h ” l i b . ”
13 s e t l i n k l i b r a r y ”∗ c o r e t y p . d b ”
14 r e a d v h d l k e c c a k . v h d g
15 c u r r e n t d e s i g n keccak
16 l i n k
17

18 # ###
19 # Run t i m i n g a n a l y s i s , r e a d i n c o n s t r a i n t s and s w i t c h i n g a c t i v i t y f i l e .
20 # ###
21 u p d a t e t i m i n g
22 r e a d s d c l i b / k e c c a k . s d c
23

24 s e t wavefo rm pa th ” power wavefo rm old ”
25 r e a d v c d − s t r i p p a t h KECCAK TB /KECCAK MAP dump.vcd
26

27 # ###
28 # Per form power a n a l y s i s .
29 # ###
30 s e t p o w e r a n a l y s i s o p t i o n s −waveform format f s d b \
31 −waveform output $wavefo rm pa th \
32 −w a v e f o r m i n t e r v a l . 0 1 \
33 − i nc lude t o p
34

35 check power
36 u p d a t e p o w e r
37 r e p o r t p o w e r
38 r e p o r t p o w e r −h i e r a r c h y
39

40 q u i t

Figure 5.8: PrimeTime PX simulation script for the Keccak design.

79

1 80 ns
2 0706050403020100
3 0F0E0D0C0B0A0908
4 1716151413121110
5 1F1E1D1C1B1A1918
6 2726252423222120
7 BFE7AE43B614180D
8 2B675BB3D8C601DD
9 8159BEF30620CE59

10 3DC1001F6242A04A
11 EE43C1D7E0AFC9BF
12 B5A991C1C9CE538A
13 CC6177053B6C79C2
14 FDFD6ECFA7392C42
15 26 B1E3D152479029
16 BCD838BED58E7C59
17 8000000000000001
18

19 . . .
20 . . .
21 . . .
22

23 6320 ns
24 0706050403020100
25 0F0E0D0C0B0A0908
26 1716151413121110
27 1F1E1D1C1B1A1918
28 2726252423222120
29 36586E33363C7A0B
30 C0B0FA131183077A
31 4241EEFD30D5A3A5
32 899 DF0E316307700
33 5857F99DFC57C49E
34 E489D7684E515BB9
35 574FAA622DE82530
36 514A670FEC2B9C04
37 621E57D793ED4FDB
38 92 F499855E43627D
39 8000000000000001

Figure 5.9: Simulation timestamps with input messages for Keccak high-speed core with 24 rounds.

5.2 Attack Framework

There was a great deal of value in performing initial testing and verification of the attack

framework’s analysis algorithms by reproducing existing successful power analysis attacks

such as reproducing the simulated attacks on the AES block cipher from the work of Ken

Smith in [9] and Garrett Smith in [7]. The top-level class diagram of the attack framework is

80

illustrated in Figure 5.10. The attack framework was designed in a modular, plugin-oriented

fashion in order to facilitate the addition of support for new cryptosystems, leakage models

and attack algorithms. The framework is written in C# using Microsoft Visual Studio

to take advantage of the powerful debugging tool, IntelliTrace, with capabilities such as

interactive code tracing/stepping. The other benefit of using C# in Microsoft Visual Studio

is for code maintenance and flexibility that future work can expand on. As of right now,

the framework is able to support power analysis attack on AES and Keccak cryptosystems

with simulated and physical power traces. Each of the attack algorithms, such as DPA

and CPA, is written to have a built-in leakage models such as Hamming weight and trace

parsers, this way if there is a change to one trace parser such as for reading simulated traces

for Keccak, CPA will not impact the other trace parser for reading the physical traces of

Keccak CPA. The current framework supports the attack of AES with DPA 1-bit attack

and CPA 8-bit attack. Likewise, for Keccak, the current framework supports CPA 1-bit,

2-bit, 4-bit, 8-bit and 16-bit attacks. The framework also has the graph and utility instances

that are used to plot results from the SPA, DPA or CPA attack algorithms such as SPA

power curve, DPA confidence ratio and CPA success rates, just to name a few. The central

attack manager is the SCA (Side Channel Analysis) module that is responsible for the

creation and distribution of work. Based on the number physical CPU cores available on

a given workstation, the SCA module will spawn one or more worker threads, up to the

number available CPU cores, for the attack. The usage of multiple threads in CPA makes

a big difference between completing an attack in a few hours with multiple threads and

a few days for a single thread due to the intensive computation for correlation between

the power traces and the power model. The benefit of having a central attack manager

with a generic interface is that it allows new cryptosystems to be added with minimal

impact to the rest of the system. When launched, the attack framework software is an

interactive command-line application with intuitive help menu that allows the user to select

the desired attack option along with providing necessary input parameters. The software

was successfully built and tested on Microsoft Windows 7 using Microsoft Visual Studio

with .NET Framework Version 4.5.

81

Figure 5.10: Top level class diagram of the attack framework.

5.2.1 Algorithm Design

Thus far, the discussion has been about the design of the attack framework that uses the

generated power traces along with the availability of attack algorithms such SPA, DPA and

CPA that could be used to attack the cryptosystem. This section will focus on the algorithm

design of CPA along with the target operation of Keccak in order to come up with an

accurate power model to attack MAC-Keccak successfully to retrieve the key. Based on

the characteristic that the Keccak hash function absorbs the input message and processes

the message with the different rounds in order to produce a message digest, one can exploit

the first Keccak round operation, specifically the θ transformation, to extract the key as

proposed in Figure 3.9 by Taha et al. Recall that the θ transformation is computed over two

successive phases. The first phase is to calculate the parity of each column, which is called

θplane. The second phase consists of calculating the remaining part of the θ transformation

such that it computes the XOR between every bit of the state and the two parity bits of

θplane. By calculating the θplane first, it speeds up the calculation of the θ transformation

versus the naive way of recalculating the parity bits of the two adjacent columns for every

output bit. The described steps for computing the θ transformation are illustrated in Figure

5.11. This is, indeed, how the Keccak high-speed core in Figure 4.1 implemented the θ

transformation.

82

Figure 5.11: θ step, θ1, and θ2 [14].

According to Bertoni et al., the developers of Keccak, they suggest in the Keccak refer-

ence of [2] that MAC-Keccak is secure with the key prepended to the input message. There-

fore, the object of the power analysis attack of MAC-Keccak is to retrieve the prepended

key of each input message. Obviously, the key is the secret part and the appended messages

are public information that the attacker has access to. If the attacker is somehow able to re-

trieve the key, he is then able to forge the hashed messages and claim to be the valid sender.

From the discussion of the Keccak high-speed core architecture in the Keccak Hardware

Architecture chapter, the core has an internal state of 1600 bits, rate r of 1024 bits and

capacity c of 576 bits. An external C code program is used to generate the input messages

in keccak in.txt where each message occupies 16 lanes, i.e. 1 lane of 64 bits, that is used

by the test bench to feed into the core for hashing. Since the rate is 1024 bits, the padded

messages generated with the prepended key were chosen to fit perfectly in 1 rate block.

Therefore, Figure 5.12 and Figure 5.13 show how the message resides in the Keccak state

array after absorption but before any round transformations. The key is chosen to be 40

bytes long so that it will fit perfectly on the bottom plane. Figure 5.12 shows the front view

of the Keccak state for 1 message block of 1024 bits, that is, 16 lanes where the 5 key lanes

occupy the bottom plane and 11 lanes of message data occupy the next three upper planes.

The selection of the Key1 value is depicted in Figure 5.13 where its internal byte values

increase sequentially in order to easily monitor for the correlation results and also to debug

83

the CPA attack algorithm.

Figure 5.12: Front view of the Keccak state with 5 key lanes and 11 lanes of message data.

Figure 5.13: Top view of the Keccak state, 1st plane using Key1. Each cell is a byte.

Once we understand how the Keccak high-speed core reads in the input message, the

next step is to examine the Keccak round transformations in order to come up with a mean-

ingful target operation to perform CPA attacks. At the beginning of each hash operation,

the core is reset so that the state register is cleared before each MAC-Keccak operation.

Since the θ transformation of the Keccak first round has access to the key, it will serve

as the point of interest for attacking. In particular, this research work focuses on the first

of the two steps of θ transformation computation mentioned earlier, that is, targeting the

θplane. Figure 5.14 shows the computation of θplane where the target key is the bottom plane

followed by the controlled, generated messages on the next few planes. The operation of

the θplane is very simple such that it only performs XOR of the bits in a given column.

Therefore, the attack power model is to monitor the output bits of the θplane operation.

Since everything is reset before each hash computation, monitoring the output bit of the

θplane is nothing more than monitoring the number of bits set to 1. In this case, it easy to

84

see HW (θplane) = HD(θplane) where HW stands for Hamming weight and HD is Ham-

ming distance. Recall, the Hamming weight power model is defined such that the power

consumption corresponds to the number of bits set to 1 and the Hamming distance power

model is defined such that the power consumption corresponds to the number of bits that

switch, i.e. 1 to 0 or 0 to 1.

Figure 5.14: MAC-Keccak selection function target for one unknown key piece [14].

After identifying the target operation of the θ transformation for the power model to

be used in CPA attacks, the next step is to apply the CPA attack that uses the generated

simulated power traces described in the earlier section and the power model that is just

mentioned. To understand how CPA works, Figure 5.15 shows the high-level CPA class di-

agram with labeled internal block components of the interaction between the power wave-

form class and power model class. The power waveform and power model classes with

internal calculation for means and standard deviations, represent the two variables in the

Pearson’s correlation coefficient that can be seen in Equation (2.12). The CPA class dia-

gram also shows the current data structures that are being used to store the read-in power

traces along with the computed power model. The objective of creating this CPA class

diagram is to make and facilitate the understanding of how CPA works, intuitively. One

important thing to note from the power waveform class is that it takes the power out files

with power values recorded at 10ps resolution and averages the power values for every 1ns

85

to elevate power values versus ps time domain to power values versus ns time domain. The

purpose of this is to save space in memory for the data structure to store processed power

traces in the power waveform class.

86

Fi
gu

re
5.

15
:C

or
re

la
tio

n
po

w
er

an
al

ys
is

ov
er

vi
ew

.

87

The usage of the SPA is effective in cracking RSA because it exploits the square-and-

multiply operation of the algorithm. However, using SPA to retrieve the key from MAC-

Keccak is not sufficient. Like any tool, it is used as a starting point to extract preliminary

information that a more sophisticated tool like CPA could use. Figure 5.16 shows the

simple power analysis of power trace #007 using Key1 with 24 rounds of Keccak. The

curve shows the characteristics that are mentioned in Keccak Hardware Architecture such

that the first 16 spikes correspond to reading the 16 input lanes of a single block message

from a file, followed by 24 spikes for the 24 rounds, 3 small spikes from waiting for the

valid data out, and finally 4 additional spikes from writing the result to the output file.

Any spikes following after that result from reseting the hash operation. The advantage of

applying SPA to MAC-Keccak is to see at which clock cycle or point in time each Keccak

operation starts and ends. The simulated power traces in this work use a clock with a 20ns

cycle.

Figure 5.16: Simple power analysis of power trace #007 using Key1 with 24 rounds of Keccak.

Figure 5.17 shows the zoomed-in power trace using the first 16 clock cycles of reading

88

the input message followed by the two clock cycles for 2 Keccak round operations. This

figure clearly shows a high power spike at time 320ns which is the first operation and that

is the point of interest for the power attack. Since the time scale for both SPA plots is in

ns, the number of samples per power trace for using 24 rounds of Keccak is 1040 sample

points and 360 points for 2 rounds of Keccak. The number of sample points used plays a

critical role in the attack performance between using the two different Keccak rounds and

that will be discussed in the next chapter, Results and Analysis. One could even go further

to restrict the number of power samples per waveform up to and including the first round

and not necessarily to include the second round. The reason this work did not choose to do

that is because it is better to view the waveform correlation results with at least one other

Keccak round besides the first round in order to verify the selected target operation of θplane

really produces a useful power model.

Figure 5.17: Simple power analysis of power trace #007 using Key1 with 2 rounds of Keccak.

Using the knowledge of SPA to extract the MAC-Keccak power waveform characteris-

tics such as when each round starts and ends, everything that is needed for a CPA attack

89

against MAC-Keccak is ready. Figure 5.18 shows the top view of the Keccak state and the

attack target of 1 key byte of Key1 on the 1st plane encircled by the red dotted line denoted

as partial key piece 7.

Figure 5.18: Top view of the Keccak state, attack target of 1 key byte of Key1 on the 1st plane. Each
cell is a byte.

The CPA attack uses the 8-bit selection function key guess size to carry out the attack

against the targeted partial key piece 7 utilizing 24 rounds of Keccak and 2 rounds of

Keccak in Figure 5.19 and Figure 5.20, respectively. Observing these two curves with

20K power traces applied among the different key guesses, the correct key guess does not

stand out at all. Using an 8-bit CPA selection function key guess size should produce 256

correlation traces where each trace corresponds to a key guess. The figures only show

the first 16 correlation traces as one knows the correct key guess is 0x07, therefore it is

sufficient to only show the first 16 correlation traces. The clock signal is shown as the

orange curve. There seems to be a high correlation at time 320ns which is the Keccak

first-round operation.

90

Figure 5.19: CPA time domain - 24 rounds of Keccak using 20K traces with Key1.

Figure 5.20: CPA time domain - 2 rounds of Keccak using 20K traces with Key1.

91

Figure 5.21 and Figure 5.22 show a side-by-side comparison of the correlation wave-

form for the ‘correct’ key byte guess that is 0x07 and the wrong key byte guess, chosen to

be 0x0B, for CPA using 24 rounds of Keccak. The reason why key guess 0x0B is chosen

to be compared with the supposed correct key byte 0x07 is that both have the same number

of 1s. The purpose is to see how having the same number of bit 1s set with different key

guesses impacts the correlation waveforms. It is interesting to see that at time 320ns, which

is the beginning of the first round, there is a positive correlation value spike but following

that, there is a negative spike with a much larger magnitude. Clearly, looking at these plots,

there is no distinct correlation between the key guess and the applied power traces.

Figure 5.21: CPA time domain - examining the
supposed “correct” key byte guess value for 24
rounds of Keccak using 20K traces that used
Key1.

Figure 5.22: CPA time domain - examining the
wrong key byte guess value for 24 rounds of
Keccak using 20K traces that used Key1.

Figure 5.23: CPA time domain - examining the
supposed “correct” key byte guess value for 2
rounds of Keccak using 20K traces that used
Key1.

Figure 5.24: CPA time domain - examining the
wrong key byte guess value for 2 rounds of Kec-
cak using 20K traces that used Key1.

92

Figure 5.23 and Figure 5.24 show the same analyzed key guesses as the previous figures

but these curves were generated from the CPA attacks focusing on the first 2 rounds. Both

figures show there is a large positive spike at time 320ns among the other time points of

the correlation waveform and one might jump to the conclusion that this is the correct

key byte. Therefore, to prevent this from happening, the CPA algorithm also generates the

correlation versus key guess value graph where it plots the highest correlation value of each

key guess as can be seen in Figure 5.25 and Figure 5.26 for the usage of 24 rounds and 2

rounds respectively. The CPA attack program then searches among the key guesses for

their highest correlation values and whichever key guess provides the highest correlation

value is the best candidate for the target key piece. Please notice the usage of the term ‘key

piece’ since the CPA application could use 1-bit, 2-bit, 4-bit, 8-bit or even 16-bit selection

function key guess sizes. This section focuses specifically on the usage of the 8-bit CPA

selection function key guess size for ease of discussion and understanding. The chapter

on ‘Results and Analysis’ will elaborate more on the usage and experiment results of the

n-bit CPA selection function key guess size. Using the term ‘key piece’ removes specific

dependency for using or referring to the 8-bit CPA selection function key guess size. Where

used, key byte is understood to be using the 8-bit CPA selection function key guess size.

For an 8-bit CPA selection function key guess size there are 256 key guesses, 1-bit CPA has

2 key guesses, 2-bit CPA has 4 key guesses, 4-bit CPA has 16 key guesses and 16-bit CPA

has 65,536 key guesses. Intuitively, one would think the two plots of highest correlation

value of each key guess would be the same for the usage of 24 and 2 rounds of Keccak

since the point of interest for attack is the first round. The reason for this difference is that

when using fewer power traces, the correlation contributions of the rounds beyond the first

two rounds are larger than the first round. In other words, the correlation values from round

2 to 24 provide false positive results. This is the reason for the CPA attack, in particular

the power waveform class, to extract only the beginning of the power waveforms up to the

first 2 rounds and discard the rest. It is interesting to see the magnitude of the supposed

correct key guess 0x07 is nowhere near the top potential candidate for the CPA algorithm

to consider.

93

Figure 5.25: CPA predicted the wrong key value for Key Piece 7 using 24 rounds of Keccak.

Figure 5.26: CPA predicted the wrong key value for Key Piece 7 using 2 rounds of Keccak.

94

From the two previous plots of the correlation versus key guess value for the target

partial key piece 7, it seems there is no hope for the CPA attack to extract the key from

MAC-Keccak using the exploitation of the θplane operation in the Keccak first round. With

past experience of attacking AES using DPA and CPA algorithms, the usage of more power

traces led to better results for extracting the correct key guess. This is true when increasing

from 20K applied traces to 200K traces for the CPA attack against MAC-Keccak and is able

to extract the target key byte correctly. Both Figure 5.27 and Figure 5.28 for the usage of 24

and 2 Keccak, rounds respectively, show the highest positive correlation value at time 320ns

and that is associated with key guess 0x07. All of the other correlation values associated

with the other time points hover around the x-axis. The CPA time domain plot for the 24

rounds clearly shows there is a high correlation at the beginning of round 1 that is at 320ns

between the 200K power traces and the power model of the targeted θplane operation.

Figure 5.27: CPA time domain - 24 rounds of Keccak using 200K traces with Key1.

Figure 5.28 shows the CPA time-domain plot for 2 rounds of Keccak using 200K traces

with Key1. Unlike the previous plot that shows the CPA time domain across 24 rounds

95

of Keccak where it is difficult to see the exact time associated with the highest correlation

value, in this figure, it is more evident the high positive spike is associated with the first

round Keccak operation. The next highest spike in terms of magnitude in these plots is

right at the beginning of the second round computation which is 340ns. It is critical to look

for positive correlation values in these graphs as it indicates a positive relationship between

the two variables which are the collected simulated power traces and the power model for

a target operation. Therefore, one should not take the magnitude of the correlation results

as an indication of the correct key guess as they will provide false positive results but leave

the correlation results the way it is and then look for the highest positive correlation value.

Figure 5.28: CPA time domain - 2 rounds of Keccak using 200K traces with Key1.

The previous plots show the superposition of the first 16 different key guess CPA time

domain curves, and it is hard to see the curve of the correct key byte other than a huge

spike at the time point 320ns. Figure 5.29 and Figure 5.30 show a single curve of the CPA

time domain for the correct key byte guess and an incorrect key byte as a result of the CPA

attacking on all 24 rounds. Unlike the earlier plots that show the same information but

96

from the application of 20K traces, this time it is more obvious that the true correct key

guess has the highest correlation spike. For the wrong key guess in Figure 5.30 with the

key value 0x0B, there is still a high correlation value at time 320ns among its time points

but its magnitude is nothing compared to the magnitude of the correct key byte guess in

Figure 5.29. The reason why key guess 0x0B has a similar CPA time domain curve as the

correct key guess is the commonality of the number of 1 bits in the 8-bit wide key guess

size. It is interesting to see the correlation computation of the CPA algorithm successfully

differentiate the order of 1s in the correct key guess versus the incorrect key guess even

though both key guesses share the same number of 1s.

Figure 5.29: CPA time domain - examining the
correct key byte guess value for 24 rounds of
Keccak using 200K traces that used Key1.

Figure 5.30: CPA time domain - examining the
wrong key byte guess value for 24 rounds of
Keccak using 200K traces that used Key1.

Figure 5.31 and Figure 5.32 show single curves of the CPA time domain for the correct

key byte guess and the incorrect key byte as a result of the CPA attacking the first 2 rounds

of Keccak. The interesting thing to observe from these CPA time domain plots is to see,

close up, the correlation value activities over time. For example, in both figures, there is a

clear sign of high correlation at the beginning of the first round of Keccak and fairly high

negative correlation at the beginning of the second round. What is interesting is that for

the application of 200K power traces, each time point of the applied traces that does not

correlate to the power model of the target operation hugs tightly to the x-axis. It makes

sense for this to happen. As more samples of the power traces are applied, the calculation

of the correlation computation is more accurate at reflecting the relationship between the

simulated power traces and the power model. Plus, the usage of more power traces removes

97

any outlier power values in simulated traces and removes measurement or environment

noise captured in the physical traces.

Figure 5.31: CPA time domain - examining the
correct key byte guess value for 2 rounds of
Keccak using 200K traces that used Key1.

Figure 5.32: CPA time domain - examining the
wrong key byte guess value for 2 rounds of Kec-
cak using 200K traces that used Key1.

As discussed before, the CPA attack application provides the correlation versus key

guess value plot where the highest correlation value of each key guess is plotted in the

graph upon the completion of the attack. This graph can be seen in Figure 5.33 and Figure

5.34 for the usage of 24 rounds and 2 rounds, respectively. Unlike the earlier plots for the

correlation versus key guess value as the result of the 24 and 2 round attacks using 20K

traces where the correlation value of the supposed correct key guess is nowhere near the

top, the correlation of the correct key guess in these figures as a result of using 200K traces

stand out among the correlation values of different key guesses. At a first glance of the two

figures, it might seem they are identical but they are not. The graphs are slightly different

for key guesses with very low correlation values such as from key guess 150 to 160. The

slight difference is a result of the false positive correlation values provided by the rounds

after the first 2 rounds. By using a larger number of power traces to minimize this problem

and the fact the two curves share common characteristics overall, especially no differences

for key guesses with correlation values, it is safe to use either 24 or 2 rounds of Keccak to

attack MAC-Keccak providing the attacker uses a sufficient number of power traces. This

anomaly can be seen with the success rate plots using 8K trace steps in the CPA algorithm

to recover 8 and 40 bytes of Key1 in the next chapter, Results and Analysis.

98

Figure 5.33: CPA predicted the correct key value for Key Piece 7 using 24 rounds of Keccak.

Figure 5.34: CPA predicted the correct key value for Key Piece 7 using 2 rounds of Keccak.

99

Now that the CPA program along with the power model for targeting the θplane of the

first Keccak round are proven to be useful and effective for attacking a single key byte of

Key1, the next step is to see how effective it is to attack a single key lane when the bottom

plane of the Keccak state is filled with the whole key, i.e. 5 key lanes or equivalently 40 key

bytes. Another way to verify the correctness of the CPA algorithm along with the chosen

power model for targeting the θplane, is to attack a completely different key where each key

byte has a random value rather than each key byte having an incremental value as in the

case of Key1. The suggested 40 byte long key, Key2, with random value for each key byte

is illustrated in Figure 5.34 where the key takes up the whole bottom plane of the Keccak

state array. The results of these CPA attack experiments will be discussed and analyzed in

the Results and Analysis chapter.

Figure 5.35: Top view of the Keccak state, 1st plane using Key2. Each cell is a byte.

Since a key that is 40 bytes long only fills up the bottom plane of the Keccak state array,

it is with high confidence the implemented CPA algorithm with the power model targeting

the θplane of the Keccak first round will be able to recover either all or most of the key

bytes. Recall from the Previous Work chapter that Taha and Schaumont in [14] focus on

attacks of software implementations of MAC-Keccak to retrieve the secret key of various

key lengths and some are beyond 1 Keccak plane. Attacking software implementations

of MAC-Keccak is different from hardware implementations. Pei et al. in [15] only per-

form attack on a hardware implementation of MAC-Keccak that utilizes a key that fits the

Keccak bottom plane, perfectly. Thus this research is the first work to apply side channel

100

vulnerability assessment of the hardware implementation using gate-level circuit-simulated

power consumption waveforms from Synopsys EDA tools, in particular, using the 130-nm

CMOS standard cell library, and also the first to explore and analyze method of attacking

key expansion into the second plane of the Keccak state array for the hardware implemen-

tation. The chosen key for this experiment to spand the full 2 key planes is the extension

of Key1 with an additional 40 key bytes where each key byte has an incremental value.

The layout of the key in the Keccak state array from the front view of the Keccak state is

depicted in Figure 5.36 where there are 10 key lanes considered as 80 unknown bytes. In

this scenario, the attacker has access to 6 lanes (48 bytes) of controlled messages. Figure

5.37 shows visualization of the key from the top view of the Keccak state. For reasons

similar to why Key1 was chosen to have sequential values for each key byte, the key for

this experiment is chosen for ease of monitoring the correlation results and debugging the

CPA attack algorithm.

Figure 5.36: Front view of the Keccak state with 10 key lanes and 6 lanes of message data.

101

Figure 5.37: Top view of the Keccak state, 1st and 2nd planes. Each cell is a byte.

The proposed method for attacking the 2 key planes of the Keccak state array is to use

the same power model for targeting the θplane operation of the θ transformation of Keccak

first round. The same reason stands as before for targeting θplane: its access to the key

before the key is diffused into the different parts of the Keccak state from the different

transformations. Figure 5.38 shows the MAC-Keccak selection function target for two

unknown key pieces where if one is to apply the same CPA attack method for targeting

the θplane, it will only get the parity of the unknown key pieces. By retrieving the parity

of the two unknown key pieces, the information does not help in any way to extract or

retrieve the two key pieces. Therefore, the proposed process to extract the two unknown

key pieces is to apply n-bit x n-bit cascade CPA attack using the same power model to

target the θplane. Think of the n-bit x n-bit cascade θplane attack as a key guess, not across

102

the z plane in the normal case, but across the y plane. For example, a 4-bit x 4-bit cascade

CPA θplane attack produces 256 key guesses where the first plane 4-bit selection provides

16 guesses, the second plane 4-bit selection provides 16 guesses and that is a permutation

of 256 guesses. The same concept can be applied to 8-bit x 8-bit cascade CPA θplane attack

to produce 65,536 key guesses. Intuitively, based on the analysis of the key guesses the

CPA algorithm has to go through between 4-bit x 4-bit cascade CPA θplane attack and 8-bit

x 8-bit cascade CPA θplane attack, 4-bit x 4-bit cascade CPA attack will perform much faster

but suffer from lower SNR than 8-bit x 8-bit cascade CPA attack. Before performing n-bit

x n-bit cascade CPA attack, there needs to be some way to confirm power analysis attack is

doable for two key lanes given the fact the two key planes are static across different power

simulations and only the 6 remaining lanes can be controlled by the attacker. The concern

here is if the 6 message lanes provide enough randomness such that the output of the θplane

is still meaningful. Recall in the early case where the key spans only the first plane and

there are 11 lanes of controlled messages. The 11 lanes of controlled messages mean the

messages occupy at least 2 full planes of the Keccak state array which provides for more

randomness that is beneficial in the power model mean and standard deviation calculations

to filter between the wrong and right key guess. This may not be the case for attacking

a key that occupies two planes, leaving room for only 1 full plain of controlled message.

What has just discussed is the theory attack that may not be the case when put in practice.

To test this theory, there are three experiments that are done in an attempt to extract the

key. Experiment 1 attempts to extract the key on the bottom plane. Experiment 2 attempts

to extract the key on the second plane. Finally, experiment 3 is for performing n-bit x n-

bit cascade CPA attack. The same set of simulated power traces can be used for the three

experiments and the power waveform does not have to be changed at all to accommodate

the test of these experiments. However, the power model class has to be tweaked slightly

for each experiment. Since the attack framework is written in a modular fashion, it is not

hard to accommodate these test experiments.

103

Figure 5.38: MAC-Keccak selection function target for two unknown key pieces [14].

Experiment 1 - Targeting bottom plane key

The objective of experiment 1 is to attack the current power model for targeting the θplane

to extract the key at the bottom plane. In this experiment, it is assumed the 2nd key plane

is part of the message even though, in reality, it is not. The purpose of this is to see if using

a plain with static information will in any way affect the outcome of the CPA attack even

though the single message plain has randomness that will impact the output θplane from the

power model. From Figure 5.39, the target bytes to recover are in red, static information

that is assumed to be part of the message is in yellow, and finally, the controlled messages

are in green.

Figure 5.39: Assuming the 2nd key plane is part of the message and attempting to recover the 1st
key plane.

Another way to view the target key bytes (or key lane to be specific) for this experiment

is by looking at the top view of the Keccak state for the 1st and 2nd planes depicted in

104

Figure 5.40 where the target key lane has a red outline and the static lane information as

part of the message has a yellow outline. Basically, the target is the 2nd key lane of the

bottom plane.

Figure 5.40: Top view of the Keccak state, 1st and 2nd planes. Attacking the 1st plane key lane (red
outline) by using the 2nd plane key lane (yellow outline) as part of the message. Each cell is a byte.

The choices for performing CPA attack are 4-bit and 8-bit CPA selection function key

guess sizes with 16 and 256 key guesses, respectively. The reason for doing this is to see if

the 4-bit CPA selection function key guess attack provides sufficient information that could

be used in a 4-bit x 4-bit cascade CPA attack. If the information, indeed, could be used in

a 4-bit x 4-bit cascade CPA, there is no reason to use a 8-bit x 8-bit cascade CPA as that is

more computational intensive due to the number of available key guesses compared to the

same number of key guesses 4-bit x 4-bit cascade CPA has to go through. The experiment

uses 200K traces and 4-bit and 8-bit CPA selection function key guess size attacks. Figure

105

5.41 shows the result of the ranked top-8 correlation values of partial key pieces of Key1

in lane 1 from 8-bit CPA selection function key guess size attacks. Likewise, the same

information is shown in Figure 5.42 and Figure 5.43 from 4-bit CPA selection function

key guess size attacks. Observing the results from 4-bit and 8-bit CPA selection function

key guess size attacks, the target key byte (1st plane key) has the value of the assumed

key message which is why cells are color coded yellow to match with the assumed key

message values as seen in the Keccak top view of Figure 5.40. Notice the different labeling

of the ‘Partial Key Piece’ between 8-bit and 4-bit attacks. Since the target key lane is lane

1 of the bottom plane and each lane has 64 bits, for 8-bit CPA attack the target partial key

piece starts at 8 (indexed 0) and goes up to 15. Similar labeling is used for the target key

piece for 4-bit CPA. Therefore, the starting target key piece for lane 1 with 4-bit CPA is 16

and it goes up to 31. Even though 8-bit and 4-bit CPA selection function key guess size

attacks provide the same key guess results, the correlation values are different for the two

attacks. It makes sense for the 8-bit CPA selection function key guess size attack to have

higher correlation values due to the better SNR as a result of the number of processed and

available key guesses. It makes sense for the target key byte (1st plane key) to have the

value of the assumed key message because of the XOR operation of the θplane operation.

The key values on plane 1 and 2 canceled one another, i.e. where identical to each other.

From this cancellation between the two keys, there is more degree-of-freedom to utilize the

randomness in the message plane to influence the calculation of the correlation values for

the power model, hence the attack of the bottom key lane turns out to be the values of the

top key lane that is assumed to be part of the message.

106

Figure 5.41: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first plane from
8-bit CPA selection function key guess size. Partial key pieces are in bytes and represented as hex
values.

Figure 5.42: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first plane from
4-bit CPA selection function key guess size, targeting the first 4 key bytes of lane 1. Partial key
pieces are in bytes and represented as hex values.

107

Figure 5.43: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the first plane from
4-bit CPA selection function key guess size, targeting the last 4 key bytes of lane 1. Partial key
pieces are in bytes and represented as hex values.

Experiment 2 - Targeting second plane key

From the results of Experiment 1, the idea of targeting the second plane key leads one to

conclude the results of the attack of lane 1 of the 2nd key plane will yield the key values

from the bottom plane, which is indeed the case. The discussion for how this is happening

or yielding the result of the key that is assumed to be part of the message can be referred

back to the Experiment 1 analysis.

Figure 5.44: Assuming the 1st key plane is part of the message and attempting to recover the 2nd
key plane.

From Figure 5.44, the target bytes to recover are in red, static information that is as-

sumed to be part of the message is in yellow, and finally, the controlled messages are in

green. Another way to view the target key bytes (or key lane, to be specific) for this exper-

iment is by looking at the top view of the Keccak state for the 1st and 2nd planes depicted

in Figure 5.45 where the target key lane has a red outline and the static lane information

as part of the message has a yellow outline. Basically, the target is the 2nd key lane of the

second plane.

108

Figure 5.45: Top view of the Keccak state, 1st and 2nd planes. Attacking the 2nd plane key lane
(red outline) by using the 1st plane key lane (yellow outline) as part of the message. Each cell is a
byte.

The choices for performing CPA attack are 4-bit and 8-bit CPA selection function key

guess sizes with 16 and 256 key guesses, respectively. The experiment uses 200K traces

and 4-bit and 8-bit CPA selection function key guess size attacks. Figure 5.46 shows the

result of the ranked top-8 correlation values of partial key pieces of Key1 in lane 1 from

8-bit CPA selection function key guess size attacks. Likewise, Figure 5.47 and Figure 5.48

from 4-bit CPA selection function key guess size attacks. Observing the results from 4-bit

and 8-bit CPA selection function key guess size attacks, the target key byte (2nd plane key)

has the value of the assumed key message which is why cells are color-coded yellow to

match with the assumed key message values as seen in the Keccak top view of Figure 5.45.

As discussed in Experiment 1, the reason this is happening is the cancellation between the

109

two keys that creates more degrees-of-freedom to utilize the randomness in the message

plain to affect the θplane output that influences the calculation of the correlation values from

the power model.

Figure 5.46: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the second plane
from 8-bit CPA selection function key guess size. Partial key pieces are in bytes and represented as
hex values.

Figure 5.47: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the second plane
from 4-bit CPA selection function key guess size, targeting the first 4 key bytes of lane 1. Partial
key pieces are in bytes and represented as hex values.

110

Figure 5.48: Top-8 correlation values of partial key pieces of Key1 in lane 1 of the second plane
from 4-bit CPA selection function key guess size, targeting the last 4 key bytes of lane 1. Partial key
pieces are in bytes and represented as hex values.

Experiment 3 - n-bit x n-bit cascade CPA attack

The results of Experiment 1 and 2, whether using 4-bit or 8-bit CPA selection function

key guess size attacks, look promising as these experiments have narrowed down 2 correct

key pieces out of 16 for 4-bit CPA and out of 256 for 8-bit CPA selection function key

guess size attacks. However, the caveat is that it is uncertain the order of the key pieces.

With the attack result characteristics of CPA using the power model to target θplane from

Experiment 1 and 2, one would assume applying n-bit x n-bit cascade CPA attack can

recover the 2 key pieces (4-bit or 8-bit wide) and is much better than knowing the parity

of the two known key pieces in the same column using the regular n-bit CPA selection

function key guess size attack. When applying 4-bit x 4-bit (256 guesses) cascade CPA with

power model targeting θplane operation attack, the result is meaningless correlation values.

Likewise, when applying 8-bit x 8-bit (65536) cascade CPA with power model targeting

θplane operation attack, the result is also meaningless correlation values. Therefore, n-bit

x n-bit cascade CPA with power model targeting θplane operation attack is not sufficient to

attack 2 key planes.

111

Chapter 6

Results and Analysis

In the Algorithm Design section of the previous chapter, it discusses and shows that an

attacker could exploit MAC-Keccak to retrieve a single key byte of a 40-byte long key by

performing a power analysis attack on the θplane of the first Keccak round θ transforma-

tion. The CPA attack uses both 24 rounds and first 2 rounds of Keccak with 200K traces

to retrieve the target key byte successfully. From that section, it also discusses any key

length larger than 40 bytes is safe from CPA attacks on the θplane of the first Keccak round.

Therefore, this chapter will look at cases where the key length is less than or equal to 40

bytes and examine to see how many key bytes of the 40-byte long of two different keys (one

has internal byte values increased sequentially and another is from random generation) are

able to retrieve from using the same CPA attack and power model. In addition, there will

be analysis of the 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit CPA selection function key guess

size attacks that are performed on the waveforms to compare/analyze the optimization and

computation effort/performance of successful key extraction on MAC-Keccak between us-

ing 24 rounds versus 2 rounds of Keccak. Please note the index labeling of any part of the

Keccak state array such as the first lane is labeled 0 as the dimension is indexed by 0. The

results were obtained from running the attacks on a Windows 7 PC using Intel Core i5,

32GB of RAM and 1TB hard drive.

Key1 - Attacked 1 Key Lane (8 Bytes)

By successfully attacking 1 key byte, the next step is to attack a single key lane that is 64

bits or 8 bytes as depicted in Figure 6.1 with encircled dotted red line. Figure 6.1 shows the

key that is used in MAC-Keccak is Key1 and that it fits perfectly on the first plane of the

112

Keccak state. Key1 is defined as 40 bytes long and the value of the key starts from 0x00 to

0x27 sequentially.

Figure 6.1: Top view of the Keccak state, attack target of 1 key lane of Key1 on the 1st plane. Each
cell is a byte.

The following figures show the success rate of attacking 8 key bytes with different n-bit

CPA selection function key guess size attacks.

Figure 6.2: Success rates of 1-bit CPA selection
function key guess size attacking 8 key bytes
using 24 rounds of Keccak.

Figure 6.3: Success rates of 1-bit CPA selection
function key guess size attacking 8 key bytes us-
ing 2 rounds of Keccak.

113

Figure 6.4: Success rates of 2-bit CPA selection
function key guess size attacking 8 key bytes
using 24 rounds of Keccak.

Figure 6.5: Success rates of 2-bit CPA selection
function key guess size attacking 8 key bytes us-
ing 2 rounds of Keccak.

Figure 6.6: Success rates of 4-bit CPA selection
function key guess size attacking 8 key bytes
using 24 rounds of Keccak.

Figure 6.7: Success rates of 4-bit CPA selection
function key guess size attacking 8 key bytes
using 2 rounds of Keccak.

114

Figure 6.8: Success rates of 8-bit CPA selection
function key guess size attacking 8 key bytes
using 24 rounds of Keccak.

Figure 6.9: Success rates of 8-bit CPA selection
function key guess size attacking 8 key bytes
using 2 rounds of Keccak.

Figure 6.10: Success rates of 16-bit CPA se-
lection function key guess size attacking 8 key
bytes using 24 rounds of Keccak.

Figure 6.11: Success rates of 16-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

Figure 6.2 to Figure 6.11 show the success rates of n-bit CPA selection function key

guess size for using 24 rounds and 2 rounds of Keccak. The figures on the left side result

from using 24 rounds of Keccak from the power waveforms. Likewise, the figures on the

right side show the data from only using/focusing on the first 2 rounds of Keccak from a

Keccak that was simulated for 24 rounds. The legend of ‘SR top N’ indicates the target

key piece is in the top N ranked correlation results. For example, ‘SR top 8’ indicates

the value of the target key piece is in the top 8 correlation results, assuming the CPA

attack application has access to the key and compares with the top 8 correlation results.

Obviously, in real life, the CPA attack application does not have access to the key in order

to compute the success rates. The goal here is to see how MAC-Keccak is susceptible

to power analysis attacks from the research perspective. Comparing the results between

115

the figures on the left using 24 rounds of Keccak versus the figures on the right using 2

rounds of Keccak, only the first few thousand applied traces are where using 24 rounds

differs from using 2 rounds. This is more noticeable with using 1-bit, 2-bit and 4-bit CPA

selection function key guess sizes up to 54K traces. With 8-bit and 16-bit CPA selection

function key guess sizes, it is only noticeable up to 16K traces between using 24 rounds

and 2 rounds of Keccak. The cause for this difference in the success rates is that when

using 24 round Keccak, the correlation computation with small number traces between the

3rd and 24th rounds provide false positive correlation results for the correct key when, in

fact, there should only be correlated values at the first round of Keccak. As more traces

are applied to the attack, the correlation result of the correct key bytes standout more with

the Keccak first round, and the success rates for n-bit CPA selection function key guess

sizes are the same for using 24 rounds and 2 rounds. Another characteristic of these figures

is that as the success rates approach 1, the threshold of the correlation result to contain

the correct key value is relaxed such that SR top 8 approaches 1 faster than SR top 2.

Only SR top 1 of n-bit CPA selection function key guess sizes is meaningful to determine

how successfully the CPA attack is able to retrieve the key. Therefore, from these figures,

as n-bit CPA selection function key guess size increases, SR top 1 approaches the value

1 with a fewer number of traces. It makes sense that 16-bit CPA selection function key

guess size requires a fewer number of traces to retrieve the key byte successfully because

there are 65,536 key guesses to correlate than compared to 4-bit CPA selection function

key guess size with 16 key guesses to correlate. One can conclude that the larger the n-bit

CPA selection function key guess size, the better the signal-to-noise-ratio (SNR), and that

requires fewer numbers of traces needed to be applied to retrieve the key. Just to drive

the point home, Figure 6.12 and Figure 6.13 show the usage of 24 rounds of Keccak and

2 rounds of Keccak, respectively, that larger n-bit CPA selection function key guess size

with SR top 1 approaches the success rate of 1 with fewer number of traces and that as

more traces are applied, the success rates from using two different Keccak rounds for CPA

attacks are the same.

116

Figure 6.12: Success rates where the correct key is ranked first according to the correlation result
for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function key guess sizes when attacking 8 key
bytes using 24 rounds of Keccak.

Figure 6.13: Success rates where the correct key is ranked first according to the correlation result
for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function key guess sizes when attacking 8 key
bytes using 2 rounds of Keccak.

117

Figure 6.14 to Figure 6.17 show the runtime of n-bit CPA selection function key guess

size for using 24 rounds and 2 rounds of Keccak. It is not surprising to see smaller n-

bit CPA selection function key guess sizes such as the 4-bit CPA selection function key

guess size having much better runtime than the 16-bit CPA selection function key guess

size. Again, this is related to the number of key guesses for the chosen n-bit CPA selection

function key guess size. The larger the n-bit CPA selection function key guess size, the

more choices for the key guess and hence is more computation and runtime costly for CPA

attacks. In addition to the size of the n-bit CPA selection function key guess size affecting

the runtime, the number of applied traces is also another factor for the long runtime. The

characteristic of the plots for the different n-bit CPA selection function key guess sizes is

the same for the two different applied Keccak rounds. One takeaway point is using 2 rounds

of Keccak is much faster in terms of the number of applied traces as discussed before and

the runtime compared to using 24 rounds of Keccak due to the CPA algorithm processing

much fewer power points. One can say that beyond the usage of the first 2 rounds of Keccak

are extra power point information that do not add any more value than 2 rounds of Keccak

for a successful attack of MAC-Keccak other than wasting computation resource and time.

Figure 6.14: Runtime of 1-bit, 2-bit, 4-bit, and
8-bit CPA selection function key guess sizes us-
ing 24 rounds of Keccak.

Figure 6.15: Runtime of 1-bit, 2-bit, 4-bit, and
8-bit CPA selection function key guess sizes us-
ing 2 rounds of Keccak.

118

Figure 6.16: Runtime of 16-bit CPA selection
function key guess size using 24 rounds of Kec-
cak.

Figure 6.17: Runtime of 16-bit CPA selection
function key guess size using 2 rounds of Kec-
cak.

Figure 6.18 to Figure 6.21 show the cumulative runtime of n-bit CPA selection function

key guess sizes using 24 rounds and 2 rounds of Keccak. The previous figures show the

runtime of n-bit CPA selection function key guess sizes per applied traces, whereas the fol-

lowing figures show the cumulative runtime. The characteristic of the cumulative runtime

curves is the same as the runtime curves with n-bit CPA selection function key guess size.

The cumulative runtime is nothing more than the continuous time for the length of the CPA

attacks using a fixed number of traces applied to each attack iteration. In this case, the

attack of the 8 key bytes expands to 200K traces using 8K trace steps. It is interesting to

note that the 16-bit CPA selection function key guess size requires fewer applied traces for

successful attack of 8 key bytes, but looking at the cumulative runtime regardless of using

24 rounds or 2 rounds of Keccak, the computation time is far too long, i.e. number of days,

compared to the 8-bit CPA selection function key guess size that requires only a few hours

for 100% 8 byte key recovery.

119

Figure 6.18: Cumulative runtime of 1-bit, 2-
bit, 4-bit, and 8-bit CPA selection function key
guess sizes using 24 rounds of Keccak.

Figure 6.19: Cumulative runtime of 1-bit, 2-
bit, 4-bit, and 8-bit CPA selection function key
guess sizes using 2 rounds of Keccak.

Figure 6.20: Cumulative runtime of 16-bit
CPA selection function key guess size using 24
rounds of Keccak.

Figure 6.21: Cumulative runtime of 16-bit CPA
selection function key guess size using 2 rounds
of Keccak.

From analyzing the success rates, runtimes and cumulative runtimes of the n-bit CPA

selection function key guess sizes, it is clear the 8-bit CPA selection function key guess size

is the best candidate for CPA attack in terms of number of required traces and computation

performance time to successfully attack 8 key bytes. The data also supports using 2 rounds

of Keccak is optimal compared to 24 rounds of Keccak to provide the same correlation re-

sults as increasing the number of applied traces and benefits from much faster computation

time.

Recall the following plot from the work of Pei et al. discussed in the Previous Work

chapter. The plot shows the success rate for attacking a single key byte using physical

traces from a SASEBO-GII board which contains a Xilinx Virtex-5 FPGA and also the

120

same power model as this research that exploits the θplane of the first round Keccak θ trans-

formation where the key is on the bottom plane before being diffused across the Keccak

state from the other transformations. From the plot, applying 500K traces Pei et al. is able

to recover one key byte with SR top 1 of around 90% using the 8-bit CPA selection function

key guess size. This is understandable since these processed traces came from a physical

device that is susceptible to measurement equipment and surrounding noise. Compared to

the data result of the success rate using simulated traces depicted in Figure 6.13, usage of

8-bit and 16-bit CPA selection function key guess size attacks are able to retrieve not only

1 key byte but the whole key lane, i.e. 8 bytes, with a success rate of 1 using only 64K

traces. What this means is that using simulated traces for studying power models to target

Keccak operation is much more superior than using physical traces without the interface of

noise such as environmental noise, measurement device noise, etc. Therefore, one can say

using circuit simulation significantly reduces the complexity of mounting a power attack,

provides quicker feedback during the implementation/study of a cryptographic device, and

that ultimately reduces the cost of testing and experimentation.

Figure 6.22: Success rate based on model 1 [15].

Key1 - Attacked 5 Key Lanes (40 Bytes)

Now that one is able to attack the first key lane of Key1 successfully, the next step is to

attack all five key lanes which are on the bottom plane of the Keccak state. From the

experiment results of the just discussed section where 8-bit CPA selection function key

121

guess size shows to be the best candidate to use for CPA attacks in terms of the number

of traces required for successful attacks and also providing the best computation runtime

performance that is practical for real world attack. Figure 6.23 to Figure 6.28 show the

results of attacking 40 key bytes of Key1 using 8-bit CPA selection function key guess

size.

Figure 6.23: Success rates of 8-bit CPA selection function key guess size attacking 40 key bytes
using 24 rounds of Keccak.

122

Figure 6.24: Success rates of 8-bit CPA selection function key guess size attacking 40 key bytes
using 2 rounds of Keccak.

Figure 6.23 and Figure 6.24 show the success rate for attacking 40 key bytes with 8K

trace steps using 24 rounds and 2 rounds of Keccak, respectively. The two figures look

almost the same as applying more traces and confirm the usage of 2 rounds of Keccak is

sufficient for a CPA attack targeting the θplane of the Keccak first round θ transformation.

These SR top N curves for attacking 40 key bytes show the same characteristic as attacking

a single key lane in the earlier mentioned figures.

The following four figures show the runtime and cumulative runtime of the 8-bit CPA

selection function key guess size for 24 rounds and 2 rounds of Keccak, where the usage

of the 2 rounds has a computation runtime twice as fast as using 24 rounds. These figures

come in handy when developing and targeting new operations for power models as it may

be useful to determine how long to execute CPA attacks with certain numbers of traces in

order to test the new power model.

123

Figure 6.25: Runtime of 8-bit CPA selection
function key guess size using 24 rounds of Kec-
cak.

Figure 6.26: Runtime of 8-bit CPA selection
function key guess size using 2 rounds of Kec-
cak.

Figure 6.27: Cumulative runtime of 8-bit CPA
selection function key guess size using 24
rounds of Keccak.

Figure 6.28: Cumulative runtime of 8-bit CPA
selection function key guess size using 2 rounds
of Keccak.

The summary of the 8-bit CPA selection function key guess size attack on Key1 for

40 bytes using 200K power traces is illustrated in Figure 6.29. The attack only recovers

35 of the 40 key bytes and that is an 87.5% success rate which can be confirmed from the

SR top 1 of 8-bit CPA selection function key guess size of Figure 6.23 and Figure 6.24,

where the highlighted green cells mean correct key recovery and red cells mean incorrect

key recovery. Figure 6.30 shows the ranked top 8 correlation values of each target key

byte of the 4th key lane and, similarly, Figure 6.31 shows the ranked top 8 correlation of

each target key byte of the 5th key lane. By examining the top 8 correlation results of the

incorrect guess key bytes that are depicted in Figure 6.30 and Figure 6.31, one can see that

the correlation of the correct key guess for the targeted key byte is not that far off, at most 2

below the top correlation value. By appyling more traces, eventually the correct key guess

124

will bubble to the top as the one with the highest correlation value, which means more

intensive correlation computation between the power model and the power traces leading

to longer runtime. It is interesting to see the incorrectly recovered target key bytes happen

mostly on the last key lane. This is probably due to how the random messages are generated

by the C code program, i.e. the messages tend to have the same bit sequence and not create

enough randomness. Recall that the power model target θplane relies on the output of the

simple linear XOR operation of the Keccak state column. If for some reason the bits in

the column spit out the same value when using different messages to trigger the XOR, it

will not be useful for the power model since it is not able to discern between using correct

key guess and incorrect key guess. Therefore, for future work, one could generate input

messages such that the bits of the column are aligned in a special way that will exploit the

XOR operation in order to be considered as an effective power model.

Figure 6.29: Recovered 35 of 40 key bytes of Key1 using 8-bit CPA selection function key guess
size.

125

Figure 6.30: Top-8 correlation values of partial key pieces of Key1 in lane 3 of the bottom plane.
Partial key pieces are in bytes and represented as hex values.

Figure 6.31: Top-8 correlation values of partial key pieces of Key1 in lane 4 of the bottom plane.
Partial key pieces are in bytes and represented as hex values.

Key2 - Attacked 1 Key Lane (8 Bytes) Using 2 Rounds of Keccak

The research work then focuses on attacking another key that was generated randomly to

confirm the CPA attack with the power model targeting the θplane of the θ transformation

of the first round is really able to extract the key from MAC-Keccak successfully and that

it was not a coincidence with Key1. Key1 was specifically chosen to have its 40 key bytes

starting sequentially from 0x00 for the first byte to 0x27 for the last byte so it would be easy

to monitor from the correlation results and also to debug the CPA attack algorithm. With

the data results from retrieving Key1 and high confidence of the selected target operation

for the power model for the CPA algorithm working correctly, Key2 is used to double check

the attack algorithm for correctness. Figure 6.32 shows the layout of the 40 byte long Key2

across the bottom plane of the Keccak state and also the target key lane of 8 bytes for attack

126

that is encircled with dotted red line.

Figure 6.32: Top view of the Keccak state, attack target of 1 key lane of Key2 on the 1st plane. Each
cell is a byte.

Based on the data result from attacking Key1 with 24 rounds and 2 rounds of Keccak, the

attacks on MAC-Keccak for Key2 are done with 2 rounds of Keccak to save computation

time and memory. The following figures show the success rate of attacking 1 key lane also

known as 8 key bytes with different n-bit CPA selection function key guess size attacks.

Figure 6.33: Success rates of 1-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

Figure 6.34: Success rates of 2-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

127

Figure 6.35: Success rates of 4-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

Figure 6.36: Success rates of 8-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

Figure 6.37: Success rates of 16-bit CPA se-
lection function key guess size attacking 8 key
bytes using 2 rounds of Keccak.

Based on the observation of the SR top 8 of the different n-bit CPA selection function

key guess size attacks from Figure 6.33 to Figure 6.37, it confirms the finding from attack-

ing Key1 that as the size of the CPA selection key guess size increases there will be better

SNR and that requires fewer traces to use to successfully attack a whole key lane. Figure

6.38 shows only the SR top 1 of the different used n-bit CPA selection function key guess

size attacks. It is interesting to see a 1-bit CPA selection function key guess size attack

having around an 82% success rate of retrieving the whole key lane given the fact this CPA

attack has only 2 possible key guesses. Another interesting point from this curve regarding

attacking Key1 is that both 8-bit and 16-bit CPA selection function key guess size attacks

approach the success rate of 1 with the same number of applied traces. In the earlier curve

of SR top 1 of the different used n-bit CPA selection function key guess size attacks of a

128

single key lane of Key1 in Figure 6.13 where the 16-bit CPA selection function key guess

size clearly outperforms 8-bit CPA selection function key guess size to achieve a stable

success rate of 1 in terms of requiring a fewer number of applied traces. Here with attack-

ing a single lane of Key2, 8-bit and 16-bit CPA selection function key guess size attacks

require 44K traces to achieve a stable success rate of 1. There are two things to be learned

from this event. First, the data result confirms the 8-bit CPA selection function key guess

size in some cases is as good as the 16 CPA selection function key guess size regarding the

number of required traces to achieve a stable success rate of 1 given the fact the 8-bit CPA

selection function key guess size has only 256 key guesses while the 16-bit CPA selection

function key guess size has 65,536 key guesses which has better SNR. The second thing

to note is that in the worst case scenario, the larger n-bit CPA selection function key guess

size such as 16-bit cannot perform worse than the next lower n-bit CPA selection function

key guess size which is 8-bit, in this case. Based on these two points, the success rates of

n-bit CPA selection function key guess size attacks from Figure 6.38 show the higher the

n-bit CPA selection function key guess size, the better the SNR and the fewer number of

traces required for successful attacks. This statement can be backed up by observing the

1-bit, 2-bit and 4-bit selection function key guess size attacks from the plot that either the

attacks never reach a success rate of 1 or if it does, it is not stable like with 8-bit and 16-bit

selection function key guess size attacks.

Figure 6.39 to Figure 6.42 are other experiment results from attacking the first key lane

of Key1 regarding the runtime and cumulative runtime of the different n-bit CPA selection

function key guess sizes. The results from these curves further confirm that 8-bit CPA

selection function key guess size is the best candidate for CPA attack, not only in terms of

the required power traces to launch a successful attack, but also in terms of optimal runtime

and cumulative runtime. 16-bit CPA selection function key guess size gives the best SNR

but is not practical for real power analysis applications due to poor performance runtime

and cumulative runtime.

129

Figure 6.38: Success rates of the correct key that is ranked as top guess according to the correlation
result for 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function key guess sizes attacking 8 key
bytes using 2 rounds of Keccak.

Figure 6.39: Runtime of 1-bit, 2-bit, 4-bit and 8-
bit CPA selection function key guess sizes using
2 rounds of Keccak.

Figure 6.40: Cumulative runtime of 1-bit, 2-bit,
4-bit and 8-bit CPA selection function key guess
sizes using 2 rounds of Keccak.

130

Figure 6.41: Runtime of 16-bit CPA selection
function key guess size using 2 rounds of Kec-
cak.

Figure 6.42: Cumulative runtime of 16-bit CPA
selection function key guess size using 2 rounds
of Keccak.

Key2 - Attacked 5 Key Lanes (40 Bytes) Using 2 Rounds of Keccak

After the successful attack of the first key lane of Key2, the next step is to attack all five

key lanes which are on the bottom plane of the Keccak state. The CPA attack against these

lanes for the 40 key bytes utilizes only 2 rounds of Keccak and the 8-bit selection function

key guess size against the target operation. The success rate for recovering these 40 key

bytes is expressed in Figure 6.43. The data results for the runtime and cumulative runtime

of the 8-bit CPA selection function key guess size are expressed in Figure 6.44 and Figure

6.45, respectively. The data of these curves show that attacking 40 key bytes with the 8-bit

CPA selection function key guess size is feasible, especially if one is concerned with the

runtime, then it takes less than 40 minutes to complete an attack for 40 key bytes.

The summary of the number of successfully recovered key bytes can be seen in Figure

6.46 where the correct recovered key bytes are shaded in green and incorrect recovered key

bytes are shaded in red. Compared to the attack of 40 key bytes of Key1 where the CPA

algorithm is able to recover only 35 of 40 key bytes correctly, which is a success rate of

87.5%, the CPA is able to recover 38 of 40 key bytes of Key2 correctly. That is a success

rate of 95% that can be confirmed in the Key2 success rate plot in Figure 6.43. Similar to

the attack result with Key1, the incorrect recovered key bytes happen on the last key lane.

Looking at the ranked top-8 correlation values of that lane as is illustrated in Figure 6.47,

the correlation of the correct key guess for the targeted key byte is not that far off such that

it is, at most, 1 below the top correlation value. By appyling more traces, eventually the

131

correct key guess will bubble to the top as the one with the highest correlation value, which

means more intensive correlation computation between the power model and the power

traces leading to longer runtime.

Figure 6.43: Success rates of 8-bit CPA selection function key guess size attacking 40 key bytes
using 2 rounds of Keccak.

132

Figure 6.44: Runtime of 8-bit CPA selection
function key guess size using 2 rounds of Kec-
cak.

Figure 6.45: Cumulative runtime of 8-bit CPA
selection function key guess size using 2 rounds
of Keccak.

Figure 6.46: Recovered 38 of 40 key bytes of Key2 using 8-bit CPA selection function key guess
size.

133

Figure 6.47: Top-8 correlation values of partial key pieces of Key2 in lane 4 of the bottom plane.
Partial key pieces are in bytes and represented as hex values.

134

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work took an in-depth look at the application of the power analysis attacks that use the

n-bit CPA selection function key guess technique to extract the key from the MAC-Keccak

using simulated power traces that no other research institutions have done before. The

research leveraged the simulated power trace methodology from [9] in order to successfully

develop, synthesize and simulate Keccak high-speed core hardware implementation from

the SHA-3 competition with the Synopsys 130-nm CMOS standard cell library to generate

power waveforms for power analysis attacks.

The work provided a robust and re-usable framework for the study and development

of the power analysis attacks. The re-usable framework was designed and written in a

modular fashion to be flexible to attack both simulated and physical power traces of AES,

MAC-Keccak and future crypto systems. The robust design of the framework allows it to

be easily adaptable for future research.

From the generation and application of the simulated power traces, this research suc-

cessfully attacked unprotected MAC-Keccak with keys<= 40 bytes and extracted the keys

by using 1-bit, 2-bit, 4-bit, 8-bit and 16-bit CPA selection function key guess size attacks

from the exploitation and targeting of the Keccak first round θ function that absorbed the

“key||message”. As the results of the n-bit CPA selection function key guess size attacks,

it was observed the larger the selection function key guess size used, the better the signal-

to-noise-ratio (SNR), therefore requiring fewer numbers of traces needed to retrieve the

key but suffering from higher computation time. With 16-bit CPA selection function key

guess size attack using 2 rounds of Keccak, 50K traces and 7 hours of computation were

135

required for 100% key extraction of a single key lane of 8 bytes. Compared to larger se-

lection function key guess size, smaller selection function key guess size has lower SNR

that requires higher number of applied traces for successful key extraction and utilizes less

computational time due to smaller number of guesses to iterate through. With 4-bit CPA

selection function key guess size attack using 2 rounds of Keccak, it requires 200K traces

and 7 minutes of computation for 100% key extraction of a single key lane. Of all the n-bit

CPA selection function key guess sizes used, 8-bit CPA selection function key guess size

is the best candidate in terms of computation time and the number of required traces for

mounting successful attacks. With 8-bit CPA selection function key guess size attack us-

ing 2 rounds of Keccak, 80K traces and 7 minutes of computation were required for 100%

single key lane extraction.

Finally, the research also explored and analyzed the attempted method of n-bit x n-bit

cascade θplane for attacking the first and second planes of the 3D Keccak state where the

key expanded beyond 40 bytes. The n-bit x n-bit cascade θplane attack method leveraged

and expanded from the successful attack where the key is only on the bottom plane. The

usage of power model of the first round θ function for n-bit x n-bit cascade θplane attack is

proven not to be sufficient for attacking due to simple XOR operations and low correlation

values. Therefore, MAC-Keccak utilizing keys greater than 40 bytes such that the key bytes

beyond the first plane is safe from first round θ function power model CPA attacks.

7.2 Future Work

There are several avenues to extend this thesis work. Since this research focused specif-

ically on attacking hardware implementation using simulated power consumption wave-

forms to extract the key from the MAC-Keccak and showed that a 1st plane key is prone

to CPA attacks, future work may use the same attack methodology and focus on phys-

ical power extraction and analysis. One could implement the same Keccak high-speed

core architecture as used in this thesis on the FPGA development board and perform the

first round θ power model CPA attacks. This way it will be interesting to compare and

analyze the attack framework computation performance between simulated and physical

136

power trace CPA attacks. Due to the fact physical traces are susceptible to the device and

environment noise and measurement error, the physical attack may require a significantly

larger number of power traces for successful attacks, resulting in a more computationally

expensive attack. Future work could leverage the physical FPGA framework from Kevin

Meritt in [12] that was used for attacking physical AES traces and modify it for physical

attacks of MAC-Keccak by replacing the AES crypto core for Keccak high-speed core,

and modifying PC GUI interactions with the FPGA board for sending down messages and

collecting power traces. Once the physical traces are generated, one could use the attack

framework in this thesis with the current MAC-Keccak predefined power model or user’s

defined power model with high confidence that the framework will work with the physical

traces since the framework has been tested with the AES physical power traces from Meritt

in [12] successfully.

Another idea for future projects to expand from this thesis is to implement counter-

measures such as blinding/masking to deter first round θ power model CPA attacks. One

could implement the three-share masking technique proposed by Keccak’s developers for

the Keccak high-speed core in [16] for simulated or physical power trace generation. It

would be interesting to see if the proposed masking technique could withstand CPA attacks

with ideal simulated traces that do not exhibit noise and measurement error such as from

physical devices. Other parameters can be to see if the three-share masking can deter the

attacks by looking at the number of applied power traces and also the n-bit CPA selection

function key guess sizes.

The work in this thesis applies the side channel vulnerability assessment of the Keccak

high-speed core hardware implementation using gate-level circuit-simulated power con-

sumption waveforms from Synopsys EDA tools with a 130-nm CMOS standard cell li-

brary. The success of the CPA attack depends on how accurate the power model, i.e. using

Hamming weight versus Hamming distance, is for the target operation to correlate with the

power traces. As mentioned earlier the total power consumption of the CMOS circuit is

the sum of the static power and dynamic power. Potential future work is to investigate the

effect of using smaller technology sizes such as 45nm, 16nm or 7nm CMOS standard cell

137

library and see how that will impact the CPA attack. As the technology gets smaller in size,

the static power is exponentially increasing whereas the dynamic power is linearly decreas-

ing. It will be interesting to see if the dynamic power for these smaller size technologies

is overshadowed by the constant larger static power, that is using and realizing them in

existing power leakage models like Hamming weight or Hamming distance in CPA attacks

to be in any way effective as with larger technology sizes.

Finally, another possibility for future work is to investigate other potential targets of

the Keccak operations for better power correlations. This thesis only focused on the θplane

calculations of the first round θ operation that performed column XOR operations. Since

the θ operation is a linear function, it does not produce high correlation values such that

this thesis is only able to extract the key from MAC-Keccak on the first plane, i.e. <

40 bytes. From past experience with attacking the non-linear operation such as the S-

Box of AES that gave the strongest correlation values, one would want to target the non-

linear operation of Keccak. In this case, future work should look at the first round χ non-

linear operation for high correlation values. Besides targeting the first round χ non-linear

operation, another target is to examine the output of the first round as a result of the five

Keccak operations. This way the output of the first round is known to have gone through

the non-linear operation and, hopefully, will provide better correlation values to attack key

bytes beyond the first plane.

138

Bibliography

[1] A. Kaminsky, “CSCI 462 - Introduction to Cryptography, Chap-
ter 11. Hash Functions, Lecture Notes.” [Online]. Available:
http://www.cs.rit.edu/ ark/spring2015/462/module11/notes.shtml, March 2015.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Keccak reference, Ver-
sion 3.0.” [Online]. Available: http://keccak.noekeon.org/Keccak-reference-3.0.pdf,
January 2011.

[3] NIST, “DRAFT FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions,” Federal Information Processing Standards Publica-
tion, 2014.

[4] M. Taha and P. Schaumont, “Side-Channel Analysis of MAC-Keccak,” in Signal Pro-
cessing Workshop on Higher-Order Statistics (SPWHOS), pp. 125–130, 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), 2013.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Cryptographic sponge func-
tions.” [Online]. Available: http://sponge.noekeon.org/CSF-0.1.pdf, 2011.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO’99, pp. 388–397, London, UK: Springer-Verlag, 1999.

[7] G. Smith, “Power Analysis Attacks on the SHA-3 Candidate Grøstl,” Master’s thesis,
Rochester Institute of Technology, 2012.

[8] J. P. Uyemura, Introduction to VLSI Circuits and Systems. John Wiley & Sons, sec-
ond ed., 2002.

[9] K. J. Smith, “Methodologies for Power Analysis Attacks on Hardware Implementa-
tions of AES,” Master’s thesis, Rochester Institute of Technology, 2009.

[10] CRI, “DPA Workstation Training: Differential Power Analysis,” Cryptographic Re-
search Inc., January 2012.

139

[11] N. Benhadjyoussef, H. Mestiri, M. Machhout, and R. Tourki, “Implementation of
CPA analysis against AES design on FPGA,” in Communications and Information
Technology (ICCIT), 2012 International Conference on, pp. 124–128, June 2012.

[12] K. Meritt, “Differential Power Analysis Study and Experimental Results,” Master’s
thesis, Rochester Institute of Technology, 2012.

[13] F. Zhang and Z. J. Shi, “Differential and Correlation Power Analysis Attacks on
HMAC-Whirlpool,” in Information Technology: New Generations (ITNG), 2011
Eighth International Conference on, pp. 359–365, April 2011.

[14] M. Taha and P. Schaumont, “Differential Power Analysis of MAC-Keccak at Any
Key-Length,” in 8th International Workshop on Security (IWSEC2013), pp. 68–82,
2013.

[15] P. Luo, Y. Fei, X. Fang, A. A. Ding, M. Leeser, and D. R. Kaeli, “Power Analysis
Attack on Hardware Implementation of MAC-Keccak on FPGAs,” in 2014 Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–7,
2014.

[16] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer,
“The Keccak implementation overview, Version 3.2.” [Online]. Available:
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf, May 2012.

[17] NIST, “Cryptographic Hash and SHA-3 Standard Development.” [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/index.html, 2013.

[18] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message Au-
thentication,” in Advances in Cryptology CRYPTO 96, vol. 1109 of Lecture Notes in
Computer Science, pp. 1–15, Springer Berlin, Heidelberg, 1996.

[19] O. Benoit and T. Peyrin, “Side-channel Analysis of Six SHA-3 Candidates,” in Cryp-
tographic Hardware and Embedded Systems, CHES 2010, vol. 6225 of Lecture Notes
in Computer Science, pp. 140–157, Springer Berlin, Heidelberg, 2010.

[20] J.-J. Quisquater, “Side channel attacks: State-of-the-art.” [Online]. Available:
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047 Side Channel report.pdf,
2002.

[21] M. Aigner and E. Oswald, “Power Analysis Tutorial,” Institute for Applied Informa-
tion Processing and Communication, University of Technology Graz - Seminar, Tech.
Rep., 2000.

140

[22] F.-X. Standaert, “Introduction to Side-Channel Attacks,” in Secure Integrated Circuits
and Systems, pp. 27–44, Springer, 2009.

[23] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of Power Analy-
sis Attacks on Smartcards,” in Proceedings of the USENIX Workshop on Smartcard
Technology on USENIX Workshop on Smartcard Technology, pp. 17–27, Berkeley,
CA, USA: USENIX Association, 1999.

[24] E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Power and Electromagnetic Anal-
ysis: Improved Model, Consequences and Comparisons,” in Integration, the VLSI
Journal, vol. 40, pp. 52–60, Spring 2007.

[25] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining Smart-Card Security
under the Threat of Power Analysis Attacks,” in IEEE Transactions on Computer,
vol. 51, pp. 541–552, 2002.

[26] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leakage
Model,” in CHES 2004, vol. 3156 of Lecture Notes in Computer Science, pp. 135–
152, 2004.

[27] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes.
McGraw-Hill, fourth ed., 2002.

[28] E. Brier, C. Clavier, and F. Olivier, “Optimal statistical power analysis,” Cryptology
ePrint Archive, Report 2003/152, 2003.

[29] R. McEvoy, M. Tunstall, C. C. Murphy, and W. P. Marnane, “Differential Power Anal-
ysis of HMAC based on SHA-2, and Countermeasures,” in Proceedings of the 8th In-
ternational Conference on Information Security Applications, WISA’07, pp. 317–332,
Berlin, Heidelberg: Springer-Verlag, 2007.

[30] M. Zohner, M. Kasper, M. Stottinger, and S. A. Huss, “Side Channel Analysis of the
SHA-3 Finalists,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1012–1017, 2012.

[31] B. Jungk and J. Apfelbeck, “Area-efficient FPGA Implementations of the SHA-3 Fi-
nalists,” in 2011 International Conference on ReConFigurable Computing and FP-
GAs (ReConFig), pp. 235–241, 2011.

[32] D. R. Stinson, Cryptography: Theory and Practice. Chapman and Hall/CRC,
third ed., 2006.

	Power Analysis Attacks on Keccak
	Recommended Citation

	tmp.1440530446.pdf.vSA9L

