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Abstract

The cell-to-cell propagation of the cardiac action potential allows for the electro-mechanical

coupling of cells, which promotes the coordinated contraction of cardiac tissue, often referred

to as the heartbeat. The main structures that promote electrical coupling between adjacent

cardiac cells are pore-like proteins called gap junctions that line the membranes of such cells,

allowing a channel for electrically charged ions to travel between cells. It is known that the

conformational, and hence conducting, properties of gap-junction channels change as a function

of local gap-junctional voltage and local ionic concentrations and are stochastic in nature. Many

previous models of gap junctions have made a constant-resistance approximation or used an

ODE model relating gating state to a local voltage. In this thesis, we extend a previous ODE

model of gap-junction gating state by Henriquez et al. and formulate it as a system of stochastic

differential equations (SDEs) by deriving the expected change vector and covariance matrix of

the model and integrating the covariance with respect to a stochastic process, the Wiener Process.

In doing so, we construct the first SDE-based model of gap-junction gating dynamics. This

SDE description of the electrical coupling between cardiac cells is integrated into a 1D cable

model where intracellular current dynamics are described using the Luo-Rudy 1 formulation.

Monte Carlo simulations are performed on the resulting model in order to gather data used

to construct distributions of several model responses of interest, including conduction block,

conduction velocity, gap-junction current and gap-junction conductance. We find a smoothing

effect occurs as the number of gap junctions considered increases, but at small numbers of gap

junctions, such as those observed in many diseased states, stochastic effects can be pronounced.

In such decoupled regimes, stochastic effects are found to have a large effect on the occurrence of

conduction block, the cessation of action potential propagation at some tissue location, and are

found to increase the variance in conduction velocity from cell to cell. The waiting time between

when two consecutive gap junctions reach their maximum current was found to conform to a

gamma distribution, with shape and scale parameters a function of the number of gap junctions.

As the number of gap junctions increases, the spread of the waiting time distributions decreases.

Gap-junctional conductance was modeled as a time-dependent Gaussian distribution, with a

temporal variance decreasing as a function of the elapsed time after depolarization. In the case

of conduction block, we show that an emulator function can be constructed to estimate the

probability of occurrence, thereby reducing the need for a large number of computationally

intensive Monte Carlo simulations. Along with probabilistically describing the stochastic gap-

junction model, these distributions can be leveraged in larger-scale tissue-level simulations to

incorporate stochastic gap-junction gating at a reduced computational cost.
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I. Introduction

Heart disease is the leading cause of death in high-income countries and provides a major strain on

global health-care systems [1]. Ventricular fibrillation is one especially deadly form of arrhythmia,

which is a collection of conditions defined by irregularity in the heartbeat. Characterized by

disordered electrical activity in the heart, ventricular fibrillation is responsible for up to 1 out

of every 10 deaths in the United States [1]. There is evidence that the electrical disorganization

that characterizes arrhythmia, including ventricular fibrillation, is in part affected by sub cellular

processes in cardiac myocytes, the electrically excitable cells constituting the various cardiac tissues

[28], [13]. Therefore, it is important to be able to adequately model the electrophysiology of cardiac

ventricular myocytes in order to gain a deeper understanding of the relationship between cellular

processes and these dangerous conditions.

The cardiac action potential is the sharp increase and subsequent fall of membrane potential in

cardiac ventricular myocytes that occurs over roughly 200-300 ms in response to the opening and

closing of various voltage-gated ionic channels that line the cell-membrane. Action potentials

initiate the contraction process in individual cells, and their propagation from cell to cell allows

for the coupled behavior of cells and, on a larger scale, cardiac tissues. This coupling is what

ultimately allows for the organized beating of the heart. The voltage upstroke is modulated by

these ion channels, which line the membrane of the ventricular myocyte and regulate the flux of

ions between the cellular myoplasm and extracellular space. Further, large proteins called gap

junctions also line the cell membrane, where they allow for ionic coupling between adjacent cells

and assist in the propagation of the action potential [32].

Many of the processes involved in the initiation and propagation of the cardiac action potential

at the level of a single cardiac myocyte are reliant on inherently stochastic phenomena [5], [21].

One such example is the voltage-and ionic-concentration-dependent stochastic conformational

changes in cellular proteins responsible for the transportation of the ionic species across cardiac

cell membranes. Often, the modeling of these stochastic sub-systems is done in a deterministic

manner in which it is assumed that the behavior of a large enough collection will have well-

defined aggregate properties [28], [13]. Although this approach allows for more computational

simplicity than the approach of modeling each stochastic sub-unit individually [10], [26] [22], the

deterministic models fail to adequately model the stochasticity present in such a system when the

number of coupled subunits is not sufficiently large [31].

In this study, we investigate the applicability of stochastic differential equation modeling to
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capture the inherent stochasticity of gap-junctional gating. This approach combines the ability

to produce stochastic properties while still tracking population-level dynamics, hence reducing

the data storage and processing needs of stochastic models that track the state of each channel

individually [26]. We derive a system of stochastic differential equations modeling the population-

level gating-dynamics of gap junctions by extending the deterministic ODE model from [11] to

the stochastic realm. We then determine several probability distributions on the now-stochastic

cardiac processes and discuss ways to integrate the results into other cardiac models [7], as well

as compare model distributions with experimental results.

The rest of this thesis is organized as follows: In Section II we give a general overview of the cardiac

ventricular action potential and intracellular calcium cycling as well as the electrical coupling

between cells via gap junction proteins. In Section III we provide a background into the theoretical

formulation of stochastic differential equations as well as a brief overview of the numerical solver

used in computing our model. We then derive the system of stochastic differential equations that

will model gap-junction gating dynamics and conclude the chapter with model implementation

details. In Section IV we use model simulation data to derive probability distributions for several

cardiac phenomena of interest. We show that stochastic effects are prominent in poorly coupled

cases and that the stochastic system approaches the deterministic system when the number of

units becomes arbitrarily large. In Section V we place this research within the wider context of

the field by comparing the derived distributions with experimental data and discuss leveraging

the distributions to reduce computational demands for tissue-level simulations. We conclude

the chapter by introducing preliminary results from a stochastic differential equation model of

intracellular Ca2+ channel gating. In section VI, we discuss avenues to extend this work and

provide several limitations of the current approach.

2



II. Gap Junction Connectivity

In this chapter we give an introduction to several cardiac processes and how they are necessarily

linked in order for the heart to function. The action potential is a central, emergent cardiac process

that initializes the contraction process in cardiac tissue and, through cell-to-cell coupling via gap

junction proteins, promotes the coordination of this contraction necessary for optimal function.

The action potential emerges from changes in intracellular and extracellular ionic concentrations,

which are mediated by the gating dynamics of membrane channels that alter their conduction

properties in response to local voltage and electrochemical gradients. Upon the membrane-voltage

spike that initializes the action potential (depolarization), a large amount of Ca2+ is released into

the bulk myoplasmic region of the cell, and work is done to subsequently expel or restore the large

concentration of free Ca2+ in a complicated physiological process known as calcium cycling. While

in the bulk myoplasmic space, the Ca2+ is free to bind to large intracellular proteins (buffers) that

initiate the contraction process.

The increase in the intracellular concentration of charged ionic species in a depolarized cell allows

for the current pool necessary to travel between adjacent cells via large pore-like proteins lining

the cell-membranes, gap junctions, thus initializing depolarization. This general process along

with efforts in modeling it are discussed in this section.

II.1 Cardiac Action Potential and Calcium Cycling

The cardiac action potential is a cellular electrophysiological phenomenon characterized by the

sharp rise and gradual fall of cell-membrane voltage. The exact form of the action potential varies

among the various tissues in the heart. In this paper we will be focusing on the electrophysiology

of cardiac ventricular myocytes. In general the ventricular action potential is deconstructed into 5

phases: upstroke (phase 0), early repolarization (phase 1), plateau (phase 2), late repolarization

(phase 3) and resting potential (phase 4). Figure 1 shows the voltage form of a typical mammalian

action potential from [4]. During phase 0, the resting cell-membrane potential (≈ −80mV) is

increased rapidly (to ≈ 30mV) as sodium channels lining the cell membrane open and produce

the fast inward sodium current. Phase 1 is the result of the activation of the voltage-dependent

transient outward potassium current. The plateau phase (2) is marked by a quasi-equilibrium

between inward calcium current and several outward potassium currents. Late repolarization (3)

is brought about by the initiation of the delayed rectifier potassium currents, which return the cell
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Figure 1: Voltage trace of a typical mammalian action potential from [4]. The fast upstroke corresponds to

the rapid depolarization from the fast sodium inward current. The plateau phase is a result of the

interplay between inward Ca2+ current and outward K+ current. The slow repolarization phase in

which the membrane voltage is returned to the pre-depolarization state is brought upon by delayed

K+ rectifier currents.

to resting membrane potential (4) [32]

Several mechanisms in cardiac cells work against the electrochemical gradient in order to return

the ionic concentrations in the cell to their resting values. Two such mechanisms are the Na-Ca

exchanger and the Na-K pump, both of which are large proteins embedded in the cell membrane

that exchange ionic species between the interior of the cell and the extracellular space [28].

Working in opposition to the sodium gradient, the Na-K pump requires the hydrolysis of ATP in

order to export 3 sodium ions for every 2 potassium ions imported, resulting in a net outward

current. The Na-Ca exchanger uses the sodium electrical gradient to import 3 sodium ions for

every 1 calcium ion exported, resulting in a net inward current, although this can reverse during

phase 0 of the action potential in response to the rapid rise in intracellular Na. The activity of the

Na-Ca exchanger and Na-K pump contribute to the specific action potential shape [32].

Efforts to model the ventricular action potential have a long history. Ref [20] was a pioneering

model of the cardiac action potential, in which the Hodgin-Huxley model of neuronal action
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potential initiation and propagation was adapted to model the electrodynamics of a Purkinje

cell. The model consists of a set of nonlinear ordinary differential equations that model the

conductances of voltage-gated ionic channels, which are used in the computation of the total

membrane current of the cell. In 1977, Beeler and Rueter [4] constructed the first model of the

ventricular action potential. The model consists of four currents; fast inward Na+ and slow inward

Ca2+ currents along with inward and delayed K+ rectifier currents. In 1991, Luo and Rudy [17]

extended the Beeler-Reuter [4] model through the incorporation of two additional currents, the

plateau current and an explicit background current, allowing for further refinement of the action

potential shape. Four years later, Luo and Rudy extended their original research to incorporate

current descriptions for Na-K pump and Na-Ca exchanger along with calcium-induced calcium

release (CICR), a process in which a relatively small membrane Ca2+ current induces a relatively

large release of Ca2+ from intracellular stores [18].

More recently, cardiac models have been trending towards increasing physiological detail and

complexity. A large investment of modeling has been made to understand CICR. Figure 2 displays

a rough schematic representation of the major intracellular currents and structures involved in

CICR. CICR is a process in which a relatively small membrane calcium current through L-type

channels initializes the opening of ryanodine (RyR) channels, which release a relatively large

amount of calcium, stored in a tubular organelle called the sarcoplasmic reticulum (SR) [32]. The

calcium that has been released into the cell’s bulk cytoplasm is now free to bind to calcium buffers,

in particular, troponin, which is influential in initiating the mechanical contraction necessary for

the heartbeat [32]. The calcium that does not bind to buffers is actively pumped back into the SR

via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump and into the extracellular space

via the Na-Ca exchanger. [10] models CICR via a Markovian description of the gating dynamics of

the calcium release unit (CaRU), an aggregate structure comprised of L-type membrane channels

and RyR SR channels. The gating state of each CaRU is computed via a Markov chain, which is

a function of voltage and local Ca2+ concentration. Each gating configuration has a particular

associated RyR and L-type current (ICaL) state. The SERCA current is modeled as an ordinary

differential equation that is an algebraic function of bulk myoplasmic Ca2+ concentration. The

model descriptions of RyR, ICaL and SERCA currents are then integrated into the Luo-Rudy II

[18] model of ionic currents.
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Figure 2: Schematic representation of the major intracellular structures and currents involved in CICR in the

venticular myocycte from [25]. Notice the membrane Ca2+ flux JDHPR through L-type channels

induces the release of SR Ca2+ via JRyR flux. RyR and L-type calcium channels can be modeled as

a single functional unit, the calcium release unit (CaRU). The bulk cytoplasmic Ca2+ from Jx f eris

free to bind to troponin buffers, which initiate contraction.

II.2 Gap-junction Physiology

The direct cell-to-cell communication in most vertebrate animals is accomplished through struc-

tures that line the cell membrane called gap junctions. Gap junctions are channel proteins that

are composed of two half-channels (referred to as connexons) embedded in the cell membrane of

adjacent cells [29] , as shown in Figure 3. Each connexon is composed of six connexins, proteins

that are arranged in such a way to form a pore-like structure [8]. The linkage of connexons on

adjacent cells to form gap junctions promotes the electrical coupling of cells by allowing an avenue

through which charged ions may diffuse between cells.

Gap-junction coupling is thought to be the primary mechanism that allows for the propagation of

the cardiac action potential, although recent experiments and modeling efforts [16] have shown

that the influence of local electric fields can also have a coupling effect on nearby cells, especially

in cases where the number of gap junctions are low due to diseased state. This mode of coupling,

known as ephaptic coupling, is an area of active research.

The voltage-induced changes in intracellular ionic concentrations during the onset of an action

potential in cell x provide the species available to form the gap-junctional coupling current, Ij,
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Figure 3: Visual model of cell-to-cell coupling through gap junctions from [5]. Each cell contributes one

hemi-channel (connexon) to form a gap junction channel that allows for diffusion of ionic species

between cells.

with adjacent cell y. Ij subsequently raises the cell-membrane voltage in cell y to the threshold,

which promotes the conformation of sodium channels to the open state, initializing the fast inward

sodium current and resulting in the depolarization phase of the action potential [32].

It has been shown that at least two distinct current-producing modes, referred to as the open

state and the residual state, exist for each connexon [8]. This conception is a simplification of

the actual gating dynamics of gap junctions, as it has been shown that each of the six connexin

proteins comprising the connexon serve as sub-gates and a much larger number of distinct gating

modes exist [30]. In this context, gating mode refers to the channel’s particular conformation

among a discrete number of possibilites. The geometry of the channel alters which ionic species

are permitted to travel through and as a result its conductive properties. It has also been shown

in numerous experiments that the gating dynamics of connexons, and thus gap junctions, are

functions of the local gap-junctional voltage gradient [30], [8], [11], [29]. The state of gap junctions

is known to follow a Boltzman distribution with respect to gap-junctional voltage. Mouse connexin

gating data collected from [30] shows a drop in open probability from p(O) ≈ 0.9 at 0mV to

p(O) ≈ 0.5 at 37.5mV. Further experiments provide evidence for a chemical dependency in gating

configuration, that is, conformation in response to local ionic concentrations, in particular [Ca2+]i

and [H+]i [8]. This chemical dependency manifests as a slow, time dependence in inactivation,

independent of gap-junctional voltage. That is, p(O)→ 0 as t→ ∞ at a constant voltage V0.
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Figure 4: Electrodynamical coupling of two connexons respresented as a circuit diagram from [30]. The

circuit senses global gap-junctional voltage Vj and each connexon produces local voltage Vj1 and

Vj2. Each connexon has two rate parameters, α and β, governing the switches S1 and S2, which

re-route current between high (H) and low (L) conductances γ.

Despite the importance of gap junctions in cardiac electrophysiology, relatively few mathematical

models have been constructed to describe their gating dynamics, as many cardiac action potential

models approximate the behavior with constant intercellular resistance values or smooth out their

influence with continuous tissue approximation models [7]. [30] derives a gap junction model

describing the dynamics of gap junctions in ventricular myocardium cells. The conductances

of each hemi-channel are derived by conceptualizing the two connexons as a series circuit

experiencing a constant gap-junctional voltage Vj, represented schematically in Figure 4. The rate

parameters of the dynamical system governing gating proportions are modeled as exponentially

decaying functions of the local voltage across each connexon. The local gap junction current, Ij, is

then computed as the product of the proportion of gap junctions in each of the four gating modes

and the associated conductance. The model put forth in [11] aims to describe the propagation of

an action potential along a 1D cable model with a voltage-dependent description of gap-junction

gating. The model uses the voltage-dependent dynamic gating model from [30] to compute the

coupling current Ij and models the intracellular currents using the well known Luo-Rudy I model

[17].

The gating dynamics of cellular protein channels are fundamentally a stochastic process. Also,

due to the dependence of gap-junction gating dynamics on small changes in ionic concentrations

[8], another source of stochasticity in the system results from the stochasticity of molecule position

on scales where the notion of concentration breaks down. Several models developed in recent

years have attempted to capture this stochasticity in gap junction gating descriptions. [22] and
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[21] created 4- and 16-state Markov chains to model the gating dynamics of gap junctions. In

computation of the model, the gating state of each gap junction is stochastically simulated from

the underlying Markovian description. Vj is then computed as the sum of the voltages across

each connexon in the gap junction and the large-scale gating dynamics modeled directly in [30]

are emergent properties of the summation of Ij for a large number of stochastically modeled gap

junctions.
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III. Methods

Stochastic differential equations (SDEs) play an important role in the mathematical modeling of

processes that are stochastic (randomly determined) in nature, such as random fluctuations in

stock prices, epidemiological disease transmission models, and mechanical vibrations [23], [3],

[27]. In this section we present an overview of the theoretical foundation of SDEs, after which we

derive a system of SDEs to model the random dynamical nature of gap-junction gating. We must

first introduce an important stochastic process, the Wiener Process, as it displays the properties

that are desired from the stochastic noise we wish to model within the SDE system. Due to the

non-differentiability of the Wiener Process, we are forced to refine the traditional definition of the

Riemann-Stieltjes integral in order to accommodate the non-smoothness of the solutions to SDEs.

Since an SDE defines a stochastic process, the solution to an SDE is but one realization of that

process. Hence, we would like not only to compute sample realizations of an SDE, but also to

define its high-level probabilistic behavior. We discuss several methods for doing so in this section.

After a brief discussion of numerical solution techniques, we conclude the section by deriving

the SDE formulation for a model of gap-junction gating dynamics and present implementation

details. Intuitively, the stochastic system represents the originally formulated deterministic system

along with a component representing white noise. The white noise itself models the stochasticity

involved in gating dynamics at the channel level. That is, ion-channel gating is a stochastic process

[3].

III.1 Stochastic Differential Equation Formulation

Before presenting the general formulation of a stochastic differential equation we must define

several quantities. Let W(t) be the continuous-time stochastic process defined for t ∈ [0, T]

satisfying the following properties:

1. W(0) = 0.

2. For all s such that 0 ≤ s < t ≤ T, the random variable W(t)−W(s) ∼ N(0,
√

t− s); that is,

W(t)−W(s) is normally distributed with a mean of 0 and a variance equal to the size of the

increment.

3. W(t) has independent increments. That is, for 0 ≤ u < v < x < y ≤ T, W(v)−W(u) and
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W(y)−W(x) are independent random variables.

The stochastic process W(t) satisfying the above three properties is know as the Wiener Process, or,

more colloquially, Brownian motion. The Wiener process is the rigorous mathematical description

that captures the random motion of pollen grains suspended in fluid observed in 1827 by botanist

Robert Brown [2]. The Wiener process is useful in the formulation of many SDEs since it represents

the integral of idealized (white) noise, that is, noise independent of any signal. Hence, it can be

used to simulate purely random processes in a model that cannot be handled in a deterministic

fashion.

Let X = [X1, X2, ..., Xn] be a n-dimensional vector. Then the general form for a stochastic differen-

tial equation driven by white noise is as follows:

dX
dt

= µ(X, t)dt + σ(X, t)dW(t), (III.1)

where dW(t) is the derivative of the Wiener process.

Due to the Wiener process being discontinuous almost everywhere [15], (III.1) is actually inter-

preted as the integral equation

X(t) = X(0) +
∫ t

0
µ(X(s), s)ds +

∫ t

0
σ(X(s), s)dW(s), (III.2)

even though it is written in terms of differentials. The first integral is integrated with respect

to time and thus the standard formulation of the Riemann-Stieltjes integral can be used for

evaluation. The second integral is with respect to a stochastic process and, for reasons discussed in

the following sub-section, cannot be evaluated in the same manner as a deterministic integral. In

this case we use theory from the Itō calculus, which was developed to extend traditional calculus

constructs, such as the integral, to the stochastic domain.

It is also of note that X(t) must necessarily be a continuous-time stochastic process, as its realization

at any time t is dependent upon stochastic process W(t).

III.2 Evaluating the Stochastic Integral

To motivate why we must refine our definition of the integral when integrating with respect to a

discontinuous stochastic process, such as W(t), let us consider the outcome if we attempt to apply

the Riemann-Stieltjes integral in such a situation.
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Applying the Riemann-Stieltjes defintion to the second integral in (III.2), we obtain the follow-

ing; ∫ b

a
σ(X(t), t)dw(t) = limn→∞

n

∑
i=0

σ(X(t̂), t̂)(w(ti+1)− w(ti)) (III.3)

where t̂ ∈ [ti, ti+1] and n = b−a
∆t .

Implicit in this definition is the notion that as n → ∞, ti+1 − ti = ∆t → 0, and hence σ(X(t̂), t̂)

converges to a consistent value. The issue arises in that X(t̂) need not be continuous with respect

to t and hence its value depends upon which t̂ ∈ [ti, ti+1] is taken.

Intuitively, this problem can be solved by fixing t̂ within the interval. This is the concept underlying

the definition of the Itō integral. The Itō integral is precisely defined as follows:∫ b

a
σ(X(t), t)dw(t) = limn→∞

n

∑
i=0

σ(X(ti), ti)(w(ti+1)− w(ti)); (III.4)

that is, we fix that the stochastic function σ(X(t), t) is to be evaluated at the left endpoint of each

sub-interval [ti, ti+1], hence making the function evaluation unique.

III.3 Probability Distribution for Stochastic Differential Equations

Let X(t) be a continuous-time stochastic process defined by the stochastic differential equation in

(III.1). Evaluating the Itō integral in equation (III.4) will give unique solutions only for unique

realizations of the sample path of W(t). Thus (III.4) can be seen as defining a set of sample paths

for the stochastic process X(t). With this in mind, a definition of the probability distribution for

X(t) can be written to more explicitly characterize its behavior. This is accomplished by solving

the Fokker-Planck-Kolmogorov (FPK) Equation.

Let p(X, t) be the time-dependent probability distribution for the continuous-time stochastic

process X(t). The FPK equation is defined as the following partial differential equation:

δp(X, t)
δt

= −∑
i

δ

δXi
(µi(X, t)p(X, t)) +

1
2 ∑

i,k

δ2

δXiδXk
([(X, t)σ(X, t)T ]ik p(X, t)). (III.5)

The form of the FPK equation does not have as straightforward an intuitive explanation as the

formulation of the Itō integral so we will not go into depth regarding its construction. A proof

of (III.5) can be found in [2], which relies on computing expectations of arbitrarily-constructed

twice-differentiable functions.

Often (III.5) is difficult to solve, yet probabilistic information about the SDE is still desired. In this

case, we can attempt to directly compute the time-dependent expectation m(t) and covariance
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V(t) of the process X(t) as follows:

δm(t)
δt

= E[µ(X(t), t)], (III.6)

δV(t)
δt

= E[µ(X(t), t)(X(t)−m(t))T ] + E[(X(t)−m(t))Tµ(X(t), t)] + E[σ(X(t), t)σ(X(t), t)T ].

(III.7)

The issue with using (III.6) and (III.7) to circumvent the necessity to compute p(X, t) directly using

(III.5) is that the expectation operator is defined by

E[µ(X, t)] =
∫

µ(X, t)p(X, t)dX (III.8)

and thus requires knowledge of p(X, t) to compute. That being stated, we can assume a Gaussian

p(X, t) and use (III.6) and (III.7) to form a Gaussian approximation of the moments.

Another option to derive the probability distribution for (III.1) is to use Monte Carlo simulation

methods. That is, we can compute a large number of sample paths using an SDE numerical solver

(covered in the following section) and fit a parametric probability distribution to the resulting

data. This approach will be covered later in this thesis as the method chosen for approximating

the probability distributions of various gap-junction model responses is discussed.

III.4 Numerical Solvers

Here we give a brief overview of one common numerical solution technique for stochastic

differential equations of the form (III.1). We compute the solution over the interval [0, T] and we

define ∆t = T
N and ti = i∆t, for i = 0, 1, ..., N.

The Euler-Maruyama method is the extension of the Euler method to stochastic differential equations.

Applying the method to the general form of (III.1) gives

Xi = Xi−1 + µ(Xi−1, ti−1)∆t + σ(Xi−1, ti−1)(W(ti)−W(ti−1)), (III.9)

where W(t) is the the realization of the Weiner process at t.

The systems of SDEs in this paper were solved using an implementation of the Euler-Maruyama

method. Although used widely, this method suffers from some of the same problems as its

deterministic counterpart, e.g., a slow rate of convergence as ∆t → 0. Analogous to numerical

ODE and PDE solvers, there exists a whole family of solution methods derived from the Taylor

series expansion of the SDE. For more information on alternate solvers, see [27].
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III.5 Model Framework: Stochastic Gap Junction

We now consider the derivation of a novel stochastic differential equation model from the de-

terministic gap-junction gating formulation in [11]. Although the model in [22] incorporates

the stochasticity of gap-junction gating dynamics, the computation of the model relies on the

simulation of the gating state of M gap junctions coupling adjacent cells. In the 1D cable model

computed in [11], N = 300 cells, each being coupled to its neighboring cells by anywhere from

M = 80 to M = 6, 700 gap junctions, were simulated. These types of simulations would quickly

become computationally expensive if NṀ gap-junction states were required to be computed

individually every time step. By approximating the population-level effects of the stochastic gating

of individual gap junctions using an SDE model, we are able to reduce the computational strain

in data storage and processing involved in stochastically simulating each gap junction’s gating

state while recovering the inherent stochastic noise of the phenomenon not considered in the ODE

formulation.

In this study, propagation of an action potential was modeled on a one-dimensional fiber consisting

of 300 cardiac cells. The model consists of a description of the membrane currents for each

individual cell along with a component describing the voltage-dependent gap-junction coupling

between cells. The membrane current of each cell was described using the Luo-Rudy I model

[17]. This model provides a phenomenological description of the major transmembrane currents.

The gap-junction coupling is described by the current Ijunc(t), which is itself a function of the

proportion of coupled gap-junction channel proteins in one of four defined conformational states,

X = [HH, HL, LH, LL]. Hence, for adjacent cells i and i + 1, state YZ refers to the conducting

state of a connexon on cell i being in state Y and the corresponding connexon on cell i + 1 in state

Z. The conducting states can be in either the high state H or the low state L. The conductances

of each of the four aggregate states are derived using basic principles of circuit theory. The

gap-junction conformation rates are described using exponential functions of the voltage across

each configuration whose parameter values have been estimated experimentally [30].
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Figure 5: Dynamic gap-junction gating schematic from [11]. States {HH, HL, LH, LL} refer to the pairing

of distinct gating configurations, H for high-conducting mode and L for low-conducting model.

Parameters {α1, α2, α3, α4, β1, β2, β3, β4} are rate parameters that govern transitions between the

aggregate gating modes. Parameter values have been estimated experimentally and can be found

in [11].

The model consists of gating states X along with the set of rate parameters: {α1, α2, α3, α4, β1, β2, β3, β4}

and a system of ODEs describing model transitions:

dx1
dt = −(β1 + β2)x1 + α1x2 + α2x3,

dx2
dt = −(α1 + β4)x2 + β1x1 + α4x4,

dx3
dt = −(α2 + β3)x3 +2 x1 + α3x4,

dx4
dt = −(α3 + α4)x4 + β4x2 + β3x3,

where

{x1, x2, x3, x4} = {n(HH), n(HL), n(LH), n(LL)} (III.10)

and n(x) is the proportion of gap junctions in the xi configuration.
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Transition Probability

∆X1 = (−1, 1, 0, 0)T β2x1∆t

∆X2 = (1,−1, 0, 0)T α2x2∆t

∆X3 = (0,−1, 0, 1)T β3x2∆t

∆X4 = (0, 1, 0,−1)T α3x4∆t

∆X5 = (0, 0,−1, 1)T β4x3∆t

∆X6 = (0, 0, 1,−1)T α4x4∆t

∆X7 = (−1, 0, 1, 0)T β1x1∆t

∆X8 = (1, 0,−1, 0)T α1x3∆t

Table 1: Possible transitions in the discretely formulated gap-junction gating model along with associated

probabilities. Transitions are defined to be occurring over a sufficiently small interval ∆t in which it

can be assumed that the probability of more than one transition is of measure 0. The existence of

such an interval is guaranteed if we assume the transitions are governed by a Poisson process.

Consider a discrete analog of the above system; that is, instead of modeling the dynamics of the

proportion of gap junctions in a given gating mode, we model the number of gap junctions in

a given gating mode. In order to derive a stochastic extension of the above system, we study

its behavior over a sufficiently small time step ∆t. If the transition of a single gap junction from

state xi to xk is assumed to follow a Poisson distribution, as is the standard in compartmental

models [6], we can then assume that as ∆t → 0, the probability of more than one gap junction

transitioning states in time interval ∆t also goes to 0. Let ∆Xi = (∆x1, ∆x2, ∆x3, ∆x4)
T represent

the ith possible discrete change in the system. Table 1 defines each such possible transition and

associated probability.

We are then able to define the expected change vector and covariance matrix of the discrete

stochastic system as follows:

E(∆X) = ∑n
i=1 ∆Xi pi

E(∆X(∆X)T) = ∑n
i=1 pi∆Xi(∆Xi)T .

(III.11)
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Note that from this definition the expected change vector is the weighted average of all possible

transitions the system can make. The covariance matrix is a representation of how any two states

change together. It is a symmetric matrix by definition, since the ijth and jith entries both describe

how states i and j change together (co-vary).

We can approximate the continuous-time analogs to the quantities defined in III.5 in the following

manner:

µ(~X, t) = E(∆X)
∆t ,

V(~X, t) = E(∆X(∆X)T)
∆t .

(III.12)

The continuous-time approximations in III.5 can be thought of as a type of limiting process; as we

choose smaller ∆t intervals, the expected distance between the continuous and discrete systems

approaches 0. That is,

lim∆t→0E(| E(∆X)
∆t − µ(~X, t)|2) = 0

and

lim∆t→0E(| E(∆X(∆X)T))
∆t −V(~X, t)|2) = 0

(see ref [2]). Further, it can be shown that V is not only symmetric but positive semi-definite, i.e.,

xTVx ≥ 0, ∀x ∈ R, from which it directly follows that there exists some B such that B2 = V and B

is unique, (see ref [2]).

We may now define the stochastic gap-junction gating model as follows;

Xt+s − Xt =
∫ t+s

t
µ(X, t)dt +

∫ t+s

t
B(X, t)dW. (III.13)

where W(t) is a four-dimensional Wiener process and the second integral in III.3 is defined by the

Itō calculus. Alternatively, we may write III.13 in conventional differential notation,

dXt = µ(Xt, t)dt + B(Xt, t)dWt. (III.14)
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III.6 Implementation Details

The stochastic gap-junction model is integrated into a 1D cable model in which the intracellular

current dynamics for each computational node are described by the Luo-Rudy I current model.

Instead of a diffusive description, as is standard in 1D cable model formulations [7], the coupling

current between nodes in gating configuration x and y is modeled by the stochastic gap-junction

gating model derived in the previous section. This is accomplished by using the Matlab function

fsolve, which uses an implementation of Newton’s method to solve the following implicitly defined

system of equations for each gap-junction unit:

Vjx = −Vj(
gy

gx+gy
)

Vjy = Vj(
gx

gx+gy
),

(III.15)

where

gx = Λxe
−Vj x

Vx

gxy =
gx gy

gx+gy
,

(III.16)

with Vj the local gap-junction voltage, gxy the conductance across the gap junction connecting

nodes in gating state x and y, Vjx the half-channel voltage and Λx the constant maximum

conductance of a half-channel in state x.

The coupling current is then computed as

Ijunc(t) = N < X, G > Vj(t), (III.17)
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where N is the number of gap junctions, X = [x1, x2, x3x4], and G = [gHH , gHL, gLH , gLL].

Due to the heavy computational expenses of this simulation, efforts were made to vectorize the

computation of the covariance matrices and expectation vectors. We define data structures

Ct =

∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

∣∣∣∣∣∣∣∣∣∣∣∣
and

Et =
∣∣∣ e11 e21 e31 e41

∣∣∣ ,

where cij is the m-dimensional vector holding the ijth element of the square root of the covariance

matrix for all m computational nodes and ei1 is the m-dimensional vector holding the ith element

of the expectation vector, both at time step t.

Letting

W =

∣∣∣∣∣∣∣∣∣∣∣∣

W1

W2

W3

W4

∣∣∣∣∣∣∣∣∣∣∣∣
,

where each Wi is an m-dimensional vector of a single Wiener-process realization, the stochastic

gap-junction model can be computed efficiently at each time step in the following manner:

∆Xt = Etdt + CtW, (III.18)

where

∆Xt =

∣∣∣∣∣∣∣∣∣∣∣∣

∆x1

∆x2

∆x3

∆x4

∣∣∣∣∣∣∣∣∣∣∣∣
holds data describing the change in gap junction gating proportions for all four configurations,

for each node m. This process of vectorizing the data lends to efficient computation in Matlab by

allowing the use of built-in vector and matrix operations.

All simulations were run with parameter values describing intracellular current dynamics given

by the Luo-Rudy 1 model. A cable of m = 300 computational nodes was used in all simulations

and a time step of ∆t = 0.01ms was used in the integration of the model, accomplished with the
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forward Euler method. The stochastic gap-junction model was simulated using an implementation

of the Euler-Maruyama method. Parameter values for the gap-junction model were taken to be

those supplied in the original deterministic formulation.
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IV. Results: Stochastic Gap Junction Connectivity

Gap-junction connectivity allows direct electrical coupling between adjacent cardiac cells and

promotes the propagation of action potentials through cardiac tissue. It has been shown that gap

junctions change conformation, and as a result conductive properties, as a function of local voltage

[11]. Further, it has been shown that the conformational changes in such proteins are stochastic in

nature [21]. Here, we formulate a novel approach to modeling gap-junction gating behavior by

introducing a stochastic differential equation-based description for the proportion of gap junctions

in one of four gating states. This description of cell-to-cell coupling is integrated into a 1D cable

model, where the intracellular current dynamics for each cell are computed using the Luo-Rudy

1 model [17]. Since our model is stochastic in nature, we would like to obtain a probabilistic

description of several phenomena of interest as well as analyze the effects that varying numbers of

gap junctions have on the characteristics of these distributions. We begin the analysis of our model

by investigating stochastic effects on conduction block, where we devise a binomial experiment to

probabilistically evaluate the likelihood of conduction block in the poorly coupled (small number

of gap junctions) case. Next, we assess the effect of stochastic gating on the conduction velocity

of the action potential by computing the speed at which action potentials propagate from cell

to cell, again in the poorly coupled case. We then derive probability distributions modeling

the elapsed time between the maximum value (in magnitude) of the gap-junctional current of

two adjacent gap junctions as well as the gap-junctional conductance as a function of time after

depolarization.

IV.1 Conduction Block

We begin the analysis of our model by investigating stochastic effects on conduction block, which

is a tissue-level phenomenon in which an action potential’s propagation is halted or blocked.

Conduction block is known to occur in tissue that, due to genetic reasons or a diseased state, is

poorly coupled on the cellular level, that is, the number of gap junctions electrically coupling the

cell is reduced dramatically [14]. Because of the small number of gap junctions, the stochastic

effects are most pronounced in the poorly coupled case, so we hypothesize that the stochasticity

in our model will be influential in regimes that allow conduction block to occur.

We begin by determining the number of gap junctions, N, in which conduction block begins to

occur. To accomplish this, we use a bisection algorithm over the range N ∈ {50, 51, ..., 90}, as
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Figure 6: Convergence diagram for the bisection method used in determining the threshold number of gap

junctions to induce conduction block in the deterministic gap-junction model. We investigate the

range N ∈ {50, 51, ..., 90} in accordance with the what has been reported in literature and find that

block occurs between 57 and 58 gap junctions.

this is the region in which block begins to occur in [11]. We assess if the given number induces

conduction block by using a method that searches the spatio-temporal voltage data to determine

if and where block occurs. Note that the stochastic component of the differential-equation model

describing gap-junction dynamics was removed temporarily while performing this search to

ensure that the resulting block-inducing number is independent of any stochastic fluctuations

specific to a given trial. The threshold for conduction block is found to occur between 57 and 58

gap junctions, where 58 gap junctions is the lower bound that allows propagation through the

entire cable. The convergence traces for the bisection method are displayed in figure 6.

Having determined the threshold number of gap junctions for inducing block, we now implement

the stochastic description of gap-junction gating dynamics and study the effect on conduction

block near this threshold. To obtain a probabilistic description of conduction block, we construct a

binomial experiment in which for each trial an action potential is initialized at one end of the cable

and its propagation is studied. A success is defined as the simulation exhibiting no conduction

block, while a conduction block at any position in the cable is a failure. Data was gathered from a

total of 25 simulations run for each of several values of N in a range close to where block occurs.

The results of the experiment are displayed in Table 2. As the number of gap junctions increases
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Number of Gap Junctions Block No Block p̂

52 25 0 0.0

54 24 1 0.04

56 20 5 0.20

57 20 6 0.24

58 11 14 0.44

60 2 23 0.92

70 0 25 1.0

Table 2: Results of binomial experiments for several different numbers of gap junctions. Notice that as the

number of gap junctions is increased, the probability of conduction block becomes negligible.

the binomial success parameter p tends towards 1, while as N decreases p tends toward 0. This

positive relationship is expected, as with increasing values of N over the threshold for conduction

block in the deterministic formulation, it becomes increasingly less likely that random stochastic

fluctuations will block propagation.

To validate the probabilistic behavior of the stochastic gap-junction model’s predictions on conduc-

tion block, we compare them to those of the deterministic formulation. Recall that the deterministic

formulation of the model predicts conduction block to onset at N = 57 gap junctions. Further,

we expect the stochastic model to fluctuate around the deterministic one, since the source of

randomness is modeled as Gaussian white noise. In other words, the probabilistic behavior of the

stochastic gap-junction model should have well defined average properties that actually recover

the predictions of the deterministic system.

We begin by making a normal approximation to the binomial distribution of conduction block

data, as shown in Figure 7. For a fixed number of gap junctions, conduction block not occurring in

the deterministic model is analogous to the proportion of trials in our binomial experiment that

result in a success being larger than 0.5 in the stochastic model, as the number of trials becomes

arbitrarily large. This is because the average properties of the stochastic system should define

the deterministic one; thus, p > 0.5 is equivalent to no block or p = 1 in the binary deterministic

setting. We test the hypothesis that the binomial experiment data collected for N = 57 and for

N = 58 come from a distribution with p > 0.5. The results are summarized in Table 3.

The p-value measures the probability for obtaining a statistic as extreme or more extreme than the

one obtained from a given hypothesized distribution. At a significance level of 0.05, the p-value
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Number of Gap Junctions p-value for H0 : p < 0.5

57 0.24 4.94x10−4

58 0.44 0.2756

Table 3: Testing the fit of the binomial data to a distribution with p > 0.5, which would indicate no conduction

block in a binary system. The p-value for the experiment with N = 57 indicates that the default

binary behavior of the system promotes conduction block, which is in agreement with our findings

in analyzing the deterministic system.

for the case of 57 gap junctions indicates that it is highly unlikely that the data came from an

underlying distribution with p > 0.5, as 4.94x10−4 � 0.05. For the case of 58 gap junctions, the

p-value is computed to be 0.2756, which indicates that the hypothesis that the data results from an

underlying distribution with p > 0.5 is valid at any reasonable significance level.

We can also approximate the functional relationship between the binomial probability of success

and the number of gap junctions in a given simulation. In order to promote convergence in the

fitting algorithm, the number of gap-junctions was normalized to fall between 0 and 1 using

IV.1, where Nmax = 70 and Nmin = 52, the maximum and minimum number of gap junctions

considered in our simulations.

N′ = N − Nmin
Nmax − Nmin

(IV.1)

pN ≈
1

1 + ae−bN (IV.2)

A logistic dependence between the binomial success parameter and the number of gap-junctions

was postulated (IV.2) and curve-fitting functionality in Matlab was used to determine the function

parameter values a and b that minimized the residual. The Levenberg-Marquardt algorithm was

implemented to solve the nonlinear optimization problem. The optimized parameter values were

found to be a = 327.8 and b = 17.7, giving the model an r2 = 0.9876 fit to the simulation data.

Figure 8 shows a plot of the data and logistic functional fit over the normalized number of gap

junctions investigated. The high r2 value indicates a strong fit of the model to the binomial data.

The derived logistic functional relationship between the number of gap junctions N and the

binomial success parameter p can now be used as a type of statistical emulator. That is, if we

desire to estimate p for any number of gap junctions between 52 and 70, we need not run the

computationally expensive Monte Carlo simulation of our model to obtain the data necessary
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Figure 7: Normal approximations of the binomial data gathered for stochastic conduction block trials. The

spread of the curves indicate the data for N = 57 gap junctions is from a distribution whose

average behavior would promote conduction block, in accordance with expectations based on the

deterministic model.

Figure 8: Plot of the binomial success probability as a function of the normalized number of gap junctions

along with the logistic model of the dependence.

25



for direct estimation. Instead, we can leverage the logistic function to provide an inexpensive

prediction for p needing only the parameters a and b as well as the desired number of gap

junctions N.
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IV.2 Conduction Velocity in the Poorly Coupled Case

Gap junctions provide the channels that electrically couple cardiac cells. The strength of this

electrical coupling directly influences the speed at which the action potential propagates through

tissue, referred to as the conduction velocity. When analyzing conduction velocity in which

the gap-junction gating proportion is modeled as a stochastic process, the speed of propagation

is also a stochastic process with realizations at each computational node (cell) in the cable.

Thus, to characterize the conduction velocity, we must obtain a probabilistic description of this

process.

Let {VN
i }M

i=1 be the stochastic process describing the conduction velocity on a 1D cable of M

cells each coupled by N gap junctions. Note that due to the structure of the model, the only

coupling between cells is through gap junctions connecting adjacent cells. Thus we can assume no

auto-correlation in the process; that is,

cov(VN
k , VN

j ) ≈ 0 for k 6= j (IV.3)

Further, the source of stochasticity in the model is Gaussian white noise, which is normally

distributed with a mean of zero. This implies that the stochastic fluctuations in model states will

be about the predictions of the original deterministic formulation, which allows only constant

cell-to-cell conduction velocity. Together with the homogeneity in the distribution of the number

of gap junctions (each cell-to-cell coupling is through a constant N gap junctions) this allows us

to conclude that {VN
i }M

i=1 must be a stationary process with respect to both space and time; that

is,

(IV.4)

E[VN
k ] = E[VN

j ]

Var[VN
k ] = Var[VN

j ]

for all j, k ∈ [1, 2, ..., m].

From IV.3 and IV.4, we have shown {VN
i }M

i=1 to be a stationary process. We are now able to use

theory developed for such processes in order to characterize its distribution. In particular, we are
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able to produce an unbiased estimation of the mean and variance of the process directly from the

mean and variance of the sample realizations.

A Monte Carlo method is used to generate sets of process realizations for several values of N

near the threshold for conduction block, determined experimentally through the bisection scheme

presented in the previous section. In each simulation, the model is run for 1000ms with a time

step ∆t = 0.01ms. The cable is comprised of M = 300 computational nodes (cells) and each

cell-to-cell junction has an instance of the stochastic gap-junction model describing coupling

dynamics computed in parallel to increase computational speed. The intercellular distance was

taken to be a constant 100µm, in accordance with the value used in [11]. An implementation

of the forward Euler method was used to integrate the cable model with an Euler-Maruyama

scheme used to solve the stochastic gap-junction model. The voltage is supplied to the cable by

instantiating the voltage of the first cell to −30mV. The parameter values used in the Luo-Rudy I

description of cellular currents are taken to be the same as [17].

Compiling the results of our simulation, Table 4 displays the average mean and standard deviation

for a sample of 25 process realizations for several different numbers of gap junctions. We find

that increasing the number of gap junctions per cell increases the mean conduction speed while

reducing the variance of the process. Figure 9 shows a single process realization over several values

of N. As N increases, there is an evident smoothing in the magnitude of stochastic fluctuations as

well as an upward trend in where the process realizations reside. This information is more easily

discernible in Figure 10, which shows a clear positive linear relationship between the average

conduction velocity and the number of gap junctions. Further, the variance of the process as a

function of the number of gap junctions suggests an exponential decay relationship.

As stated, the mean of the stochastic process {VN
i }M

i=1 should recover the conduction velocity

of the deterministic formulation. Therefore, the positive relationship between mean conduction

velocity and the number of gap junctions is in agreement with the positive relationship between

conduction velocity and the number of gap junctions in Ref. [11]. The decay relationship between

the standard deviation of the conduction velocity and the number of gap junctions indicates a

smoothing in stochastic fluctuations as increasing numbers are considered. This result is consistent

with the smoothing observed in the calcium current at increasing numbers of CaRUs in the

stochastic CaRU gating model [31]. Although the stochastic gap junction and stochastic CaRU

models have different cellular gating proteins, the fundamental smoothing tendencies are identical.
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Number of Gap Junctions Per Cell Mean (cm s−1) Standard Deviation (cm s−1)

58 47.67 ∗ 10−3 12.65 ∗ 10−3

60 52.23 ∗ 10−3 9.12 ∗ ∗10−3

70 64.55 ∗ 10−3 5.2 ∗ 10−3

80 77.33 ∗ 10−3 4.60 ∗ 10−3

Table 4: The aggregate mean and standard deviation values for the conduction velocity in the stochastic

gap-junction model. The mean conduction velocity increases and the standard deviation of the

process decreases with increasing values of N. The inverse relationship between N and the standard

deviation is the result of smoothing effects from many coupled stochastic units.

Figure 9: Process realizations for several values of N. The magnitude of stochastic fluctuations tends to

decrease for increasing values of N while the mean of the process increases.
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Figure 10: Aggregate mean and 2-sigma error bars for the conduction velocity for several values of N. The

mean speed of conduction increases with increasing N while the standard deviation of the process

decays in an exponential-like manner. In other words, the process approaches the deterministic

approximation as N → ∞.

IV.3 Probabilistic Description of Gap-junction Current

Along with ephaptic coupling, the gap-junctional current is one of the two most important modes

of coupling between cardiac cells [19]. Without it, the propagation of action potentials among

cells, and as a result coordinated contraction, would be more difficult to achieve. The two previous

sections showed that the stochastic description of gap-junction gating dynamics resulted in the

necessity for conduction block to be described probabilistically as well as for conduction velocity

to be modeled as a stochastic process. Both of these phenomena are fundamentally high-level

results of the stochastic nature of the gap-junction current. In particular, if we define the collection

{AN
i }M

i=1, where AN
i is the random variable representing the time between gap junctions i and

i + 1 reaching their maximum (in magnitude) current values for a regime with N gap junctions

and M cells, then both conduction block and conduction velocity are intimately related to this

process.

Due to the independence of gap-junction dynamics, we can assume each AN
i is governed by the

same probability distribution for a fixed N. Thus, {AN
i }M

i=1 is fundamentally a process modeling

the waiting time between two stochastic events, in our case, the time in which two consecutive gap
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Figure 11: (Top panel) Frequency histogram of waiting-time data collected from the subset of simulations

that experienced no conduction block for N = 58 gap junctions. (Bottom panel) The gamma pdf

curves constructed by the maximum likelihood estimate, 95 % upper and lower bounds for shape

and scale parameters k and θ.

junctions produce their maximum current. In operations research and econometrics applications,

the probability distributions of waiting times are often modeled using a gamma-distribution, with

shape parameter k and scale parameter θ. We begin by modeling the waiting-time distribution for

the case of N = 58 gap junctions. To conduct analysis, we collect simulation data from our model

with N = 58 gap junctions. We discard data from trials in which conduction block occurred, as

waiting times for nodes after block would be meaningless. The Monte Carlo simulation was run

until data were collected from 25 trials in which no conduction block occurred.

Figure 11 (top panel) shows a frequency histogram of the waiting time data collected from

simulations. Matlab functionality was used in order to determine the maximum likelihood

estimates for the gamma distribution shape and scale parameters k and θ, displayed in Table 5

along with the first two moments of the distribution. The resulting gamma pdf curves for all

3 parameter combinations are plotted in Figure 11 (bottom panel). The strong positive skew of

the data indicates that wait times to the right of the median have larger spread than those to the

left of the median. The right tail can be interpreted as stochastic fluctuations, that is, trials in

which wait times were blocked by stochastic reductions of the proportion of gap junctions in the

high-conducting (HH) gating mode. Thus we expect a reduction in the skew of the data as the
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k θ µ = kθ (ms) σ2 = kθ2 (ms)

MLE 2.13 1.56 3.32 5.18

95 % upper bounds 2.03 1.48 3.00 4.45

95 % lower bounds 2.23 1.64 3.66 6.00

Table 5: Maximum likelihood estimates (MLE) along with 95 % confidence upper and lower bounds for

gamma-distribution shape and scale parameters k and θ modeling waiting-time data collected from

simulations with N = 58 gap junctions. The mean µ and variance σ2 computed as functions of

gamma shape and scale parameters.

number of gap junctions is increased and stochastic fluctuations are smoothed out.

Akin to analysis on conduction block and velocity, it would be useful to get a sense of how the

probabilistic behavior of waiting-time distributions changes with respect to the number of gap

junctions under consideration. We have seen that the stochastic behavior of our model is most

pronounced when the number of gap junctions is small, that is, in the poorly coupled regime. The

distribution of waiting times is no different.

In Figure 12, we plot the gamma pdf generated from the maximum likelihood estimates for shape

and scale parameters k and θ based on data gathered for several numbers of gap junctions. Notice

the spread of the distribution decreases inversely with respect to N, although the time at which

the pdf reaches its maximum, tmax, is approximately constant at ≈ 2ms. As the number of gap

junctions increases, the current has more avenues to propagate between cells and hence the long

waiting times, realized in the pdf as the strong right skew, become increasingly rare events.

Table 6 compiles the shape/rate parameters, first two moments and tmax for several values of N

around conduction block. There is a decrease in both the mean and the variance of the distribution

as N increases while tmax holds relatively constant.
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N k θ µ σ2 time of maximization (ms)

54 1.63 2.58 4.21 10.85 1.87

57 1.70 2.22 3.77 8.38 1.93

58 2.13 1.56 3.32 5.18 1.91

60 5.62 0.40 2.25 0.90 2.01

Table 6: Maximum likelihood estimates (MLE) for gamma-distribution shape and rate parameters k and θ

along with the first two moments and the waiting time that maximizes the distribution. Although the

pdfs vary in shape, all are maximized at ≈ 2 ms, the waiting time in the deterministic formulation

of the model.

Figure 12: The maximum likelihood gamma distribution fits for N = 54, 57, 58 and 60 gap junctions. The

spread of the pdf decreases as N increases. Further, all curves reach their maximum at ≈ 2ms, the

waiting-time in the deterministic model.
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IV.4 Probabilistic Description of Gap-junction Conductance

Conductance is a measure of the ease with which electrical current is able to pass, that is, the

inverse of electrical resistance. Due to the stochastic voltage-induced inhibited gating in our

model, the depolarization of cell i will induce a stochastic transient decrease in conductance in

the gap junction connecting cell i to cell i + 1. A probabilistic description of this transient fall

and subsequent rise in gap junction conductance is desired as a function of the time elapsed after

depolarization of the previous cell.

Although there is no method that is universally accepted for detecting the instant of depolarization,

various voltage threshold and slope criteria are used for this purpose. In this study, we will use a

threshold of −40mV as the marker for depolarization. That is, we use the time at which a cell’s

voltage, previously at resting potential, climbs above −40mV as the time of depolarization (t0).

We then collect the gap-junction conductance data until it rises back near the conductance at

resting potential. Figure 13 shows several time series profiles for post-depolarization conductance

data gathered at a particular node in the middle of the cable over separate simulations, all with a

constant number of N = 60 gap junctions. The conductance plateau period realized in the top and

middle conductance profiles is not present in the bottom conductance profile. This is an indication

that the channel gating stochasticity is not simply inducing noise around a well defined mean, but

that the stochasticity can actually induce a qualitative difference in the shape of the conductance

time series, namely, the presence or absence of a plateau period.

To obtain the data necessary to derive the desired conductance probability distribution, we take

simulation data from 3 trials, each with N = 60 gap junctions. For each conductance time series,

we set t = 0 to be the time at which the ith cell is depolarized and proceed to collect conductance

data for 32ms. This time normalization is done to eliminate correlation among the time series data

and hence we are able to treat the conductance data for each gap junction as independent, greatly

reducing the number of simulations needed to accumulate the data, as each simulation now will

produce 299 independent realizations.

Since the source of stochasticity is modeled as Gaussian white noise, we can assume no auto-

correlation within each time series data set. Thus, we are able to produce an unbiased estimator

for the mean and the variance of the process from the sample mean and variance per time instance

observation. We then have time-parametrized estimators for the mean and standard deviation

that can be used to generate the normal probability distribution function for the time-dependent

gap-junction conductance.
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Figure 13: Time-series profiles for gap junction conductance data gathered from 3 simulation runs for the

gap junction connecting cell 150 and 151. The model was run with N = 60 gap junctions. Time 0

refers to the time at which depolarization occurs in the cell at position 150 in the cable. Notice the

drastically different conductance profiles between the top, middle and the bottom.

Figure 14 displays the time-dependent gap-junction conductance Gaussian probability surface.

The large spread in the distribution for t < 10ms is a representation of the uncertainty in the

process displaying conductance plateau behavior, as shown in Figure 13. The spread tightens

as t → 32ms as the conductance rises back to the pre-depolarization conductance distribution.

This distribution can be used as a characterization of model behavior as well as leveraged

directly to generate samples of gap-junction conductance without the need to directly compute

the model. Generating samples directly from the distribution can assist in the computationally

efficient incorporation of stochastic gap-junction gating realized as gap-junction conductance, or

equivalently, gap-junction resistance. Many larger-scale cardiac tissue models assume constant or

deterministic gap-junction resistance [7], [11] to reduce computational requirements. Sampling

techniques simulate stochastic elements with the advantage of not needing to compute them

directly.
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Figure 14: Gaussian probability surface describing the time-dependent gap-junction conductance distribution

for the ith gap junction. t0 is taken to be the time of depolarization for the ith cell. Notice the

large spread in the distribution for t < 10ms. This is indicative of the uncertainty associated with

the stochastic bifurcation realizations with and without the plateau in conductance. The spread

tightens as t→ 32 as both forms return to the resting conductance distribution.

36



V. Discussion

In this section we discuss several ways to leverage the distributions derived in section IV. We

begin by discussing situations in which sampling the distribution describing the process of interest

can allow for the incorporation of stochastic effects into higher-level tissue simulations, at a

reduced computational expense. We then shift our attention to validating model predictions via

comparisons to experimental data, in particular, waiting-time distributions for single gap-junction

gating-mode switches. We conclude the section by introducing some preliminary results on

extending the use of stochastic differential equations to model CaRU gating.

V.1 Leveraging Distributions for Computational Efficiency

With a stochastic description of gap-junctional gating dynamics, both conduction block and

conduction velocity in turn become stochastic processes, whose distributions were constructed in

the previous section. These probabilistic representations can be leveraged in order simulate the

effect of stochastic gap-junctional gating on macro-cardiac phenomena in a more computationally

efficient manner.

Models used to investigate tissue-level phenomena, such as spiral-wave breakup, often employ

minimalistic models of cellular current dynamics for computational feasibility [9], [7]. Action

potential propagation can be modeled on a continuous domain, whereas cell-to-cell coupling is

accomplished via a smoothing diffusion term, or on a discrete domain, where gap junctions are

explicitly incorporated as local changes in resistance between cells [12]. Although it is known that

gap-junction gating conformations alter the resistance between cells, and that gating conformations

respond to both local voltage and local ionic concentrations and are inherently stochastic, these

properties are often overlooked in tissue-level analysis, due in part to computational costs of

simulating each gap-junction state individually.

We propose that gap-junction stochasticity can be efficiently incorporated into models by sampling

the distributions constructed in analyzing the simulation data of our model. By initializing a

desired number of gap junctions, N, coupling cells in a 1D, 2D, or 3D model of action potential

propagation, stochastic gating effects can be incorporated by sampling from the appropriate

N-indexed gap-junctional conductance (or resistance) distribution. That is, for a model with M

gap junctions, M samples from a time-dependent gap-junction conductance distribution would

be necessary at each time step. In contrast with solving M systems of SDEs at each time step or
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even NM stochastic Markov simulations, computational and data storage demands are eased via

sampling methods. If groups of cells are being simulated, stochastic conduction block and velocity

can also be incorporated directly simply through sampling of the N-indexed conduction block or

velocity distributions.

Emulator functions, such as the one constructed to estimate the binomial success parameter based

on the number of gap junctions (see Figure 8), can also be constructed for the estimation of

distribution parameters for conduction velocity, gap-junction current, and gap-junction conduc-

tance based on the number of gap junctions. Once such emulator functions are constructed, this

technique allows for more rapid modeling over a larger number of gap junctions, as each change

in N corresponds to an estimation of distribution parameters. This removes the necessity for a

new computationally expensive Monte Carlo simulation for every value of N desired.

As stated, stochastic gating effects are most pronounced in the poorly coupled case, i.e., a

reduced number of gap junctions. Such a reduction in the number of gap junctions (gap junction

remodeling) is associated with many cardiac diseases that can induce arrhythmia and itself is

considered to be arrhythmogenic [14]. Hence, these techniques would be useful when analysis of

tissue-level propagation in such compromised physiological states is desired.

V.2 Waiting Time Distribution

The gating dynamics of gap junctions are stochastic processes of local voltage and ionic concentra-

tions. The distributions associated with the length of time channels stay in the high-conducting

state are referred to as dwell times. In [29], it was shown that a mouse connexin hemi-channel’s

dwell times follow an exponential distribution whose decay parameter increases with increasing

voltage, as displayed in Figure 15. Since the more time a gap junction spends in the high conduct-

ing state, the more current is allowed to travel through to the adjacent cell, we expect the dwell

times to be related to the wait-times defined in Section IV.3. As seen in Figures 11 and 12, the

wait-time distributions in our model data conform well to a gamma distribution, with shape and

scale parameters dependent upon the number of gap junctions.

Recall that wait times model the elapsed time between the maximum (in magnitude) gap-junctional

current, Ij, of the gap junctions of two adjacent cells. Since the majority of the Ij results from

the summation of gap junctions in the high-conducting state, whose dwell times in turn are

exponential distributions, Ij is the summation of the current contributions of a set of exponentially

distributed random variables and thus follows an Erlang distribution, which is a special case of
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Figure 15: Experimental dwell time data for mouse gap junctions in the high-conducting state from [29]. Each

panel records the number of gap junctions in the high-conducting state at each time observation.

The curves represent best-fit exponential decay functions to the data. In panel A, the gap junction

voltage Vj, was varied between 10 and 25mV. In B,C and D Vj was varied between 30 and 35mV,

40 and 45mV and 50 and 55mV respectively. Notice the decrease in the spread of the exponential

distribution as the voltage is increased.
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the gamma distribution. Therefore, the conformity of the wait-time data to a gamma distribution

is to be expected based upon the underlying exponential distribution of experimentally measured

dwell times.

V.3 Stochastic Calcium Gating

Intracellular calcium dynamics play a critical role in the initiation and regulation of the cardiac

action potential. As mentioned, calcium-induded calcium release (CICR) is regulated by the

gating of membrane L-type Ca2+ channels and RyR channels that line the Ca2+-storing organelle,

the sarcoplasmic reticulum. The gating modes of the L-type and RyR channels can be modeled

as a single composite structure known as the calcium release unit (CaRU) [10]. Analogous to

the gating dynamics of gap-junction channels, it known that the gating dynamics of L-type and

RyR channels are inherently stochastic functions of the local Ca2+ concentration and membrane

voltage.

In order to evaluate the probabilistic behavior of CaRU gating, we can apply the approach used

throughout this thesis for modeling gap junctions to formulate a stochastic differential equation-

based description of gating dynamics of collections of CaRUs from the deterministic description

given in [13]. As in the gap-junction gating model, we are then able to define distributions for

quantities or processes of interest. Here, we present preliminary results from efforts to determine

the probabilistic behavior of the intracellular Ca2+ concentration from the contribution of a small

number of CaRUs.

We devise a Monte Carlo-based scheme to generate data to estimate the time-dependent distribu-

tion for Ca2+. The model was simulated for a total of 100 trials, each with a fixed number of 20

CaRUs. As in the gap-junction model, the system of stochastic differential equations describing

gating dynamics was solved via an implementation of the Euler-Maruyama method while the

ODEs used in the original model to describe the remaining cellular currents were integrated by

the forward Euler method. The simulation was run for 500ms with a time step of ∆t = 0.01ms. All

model parameter values were taken to be those used in the original model formulation [13].

Figure 16 shows the parametric functional fits to the mean and variance of the Ca2+ concentration

data gathered via the Monte Carlo simulation. The mean (top panel) was modeled as an exponen-

tial decay process, while the variance data was fit with a seventh-order interpolating polynomial.

Fitting the variance data to both exponential and gamma distribution models was tested but

ultimately discarded as neither could accurately capture enough of the variation in the data. Table
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Figure 16: Fitting functional forms to the mean (top panel) and variance (bottom panel) of the time-dependent

Ca2+ concentration data generated in Monte Carlo simulation. The model was simulated over 100

trials and the first two moments of the current data were computed. The mean data were fit with

an exponential decay function, while the variance data were fit to an interpolating polynomial.
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parameter model r2

σ(t) 0.92

µ(t) 0.95

Table 7: r2 statistic measuring what proportion of the variability in the data can be explained by each fit.

The high coefficient of determination indicates a high level of explanatory ability for the mean and

variance parametric models.

7 displays goodness-of-fit data for the time-dependent mean and variance functional fits. The

values of the coefficient of determination indicate the fits explain over 90% of the variation from

the data.

The stochasticity in the model results from idealized white noise, which suggests the resulting

probability distribution of the gating currents is Gaussian [2]. Due to the independence of Wiener

process samples used to integrate the SDE system, we assume there is no temporal covariance

in Ca2+ concentration. Postulating a time-dependent Gaussian distribution with no covariance

in either dimension, we may use the derived time-dependent parametric forms µ(t) and σ(t) to

approximate the time-dependent normal probability surface by using

p(Cai, µ(t), σ(t)) =
1

σ(t)
√

2π
e
− (Cai−µ(t))2

2σ(t)2 . (V.1)

Figure 17 shows a projection of the probability surface for Ca2+. Notice that as the action potential

progresses in time, the mean Ca2+ concentration decays and the variance of the process is reduced,

visualized here as a tightening of the color gradient.

As with the probabilistic analysis of the stochastic gap-junction model, defining distributions for

the intracellular Ca2+ concentration not only provides a probabilistic description of the model but

also allows for the option of sampling from that distribution instead of computing the quantities

directly, saving computational resources. The ability to sample distributions for stochastic model

quantities leads to the possibility of more computationally efficient integration of stochastic

subcellular currents into tissue level simulations. This will allow for more efficient analysis of

subcellular stochasticity on tissue-level phenomenon. Ref. [24] simulates CaRU stochasticity on a

3D grid of 20,000 units and shows that such stochasticity can have an effect on the phase selection

of action potential alternans (beat-to-beat irregularities in the action potential waveform) on the
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Figure 17: Gaussian probability surface for the time-dependent intracellular Ca2+ concentration. Fit functions

were computed for mean and standard deviation data from the model simulation. The resulting

time-dependent parametric forms were used to construct the probability surface.

cellular level, a macro-phenomenon. We propose that through characterizing the distribution

of stochastically determined currents and sampling techniques, analysis of micro-structural

stochasticity on macro-phenomena can be more efficiently scalable.
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VI. Conclusion

In this thesis, we derived a novel stochastic-differential-equation-based description of gap-junction

gating dynamics. Stochasticity in the form of Gaussian white noise was introduced to the

deterministic formulation of gap-junction dynamics from Ref. [11] and we derived several

distributions associated with model quantities of interest. Around the maximum number of gap

junctions, N, for conduction block in the deterministic formulation, we determine a sigmoidal

relationship between the probability, p, for no conduction block and N, with p→ 1 as N → ∞ and

p→ 0 as N → 0. Conduction velocity on a 1D cable becomes a stationary stochastic process in our

model, as it is a function of gap-junction resistance, and we determined the speed increases and

variance decreases as N increases. We also use Monte Carlo simulation data to derive probability

distributions modeling time-dependent maximum gap-junction current and time-dependent gap-

junction conductance. The former is found to be a gamma distribution whereas the latter is

modeled as a normal surface.

These derived distributions may be leveraged for incorporating stochastic effects via sampling

techniques in larger, tissue-level cardiac simulations at a reduced computational cost. Further, we

validated the modeling of time-dependent maximum gap-junction current as a gamma distribution

via analysis of the summation of experimental gap-junction dwell-time data. We also introduced

some preliminary results for the time-dependent distribution of intracellular Ca2+ concentration

in a derived stochastic CaRU model.

One potential avenue of future work would be the implementation of stochastic gap-junction

conductance into tissue-level bidomain models [7] via sampling distributions. The bidomain

model allows such as an implementation as the inter-and intracellular dynamics are already

formulated to be solved on separate domains. This could be an avenue to analyze stochastic effects

on larger-scale tissue-level cardiac phenomena, such as spiral wave formation/breakup as well as

phase selection in alternans [26]. Further, experimental data gathered on conduction block and

velocity in tissue samples exhibiting poor cell-to-cell coupling (possibly in diseased state) could be

of use in order to validate more of the distributions derived in the model. Statistical emulators,

such as that modeled in Figure 8, could be derived for gap-junction ranges of interest over other

distribution parameters for more rapid prototyping of samples.

In our model, we implement stochasticity in the form of Gaussian white noise in gating-mode

dynamics. Although this may be an adequate approximation, stochasticity resulting from ionic

concentration-based gating is largely overlooked in this study. Interesting extensions of this work
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include extending the domain to simulate two- or three-dimensional tissue sections. In such

regimes, the effect of stochastic gap-junction gating could be analyzed on emergent phenomena

such as spiral wave (2D) and scroll wave (3D) breakup. The preliminary work presented on

stochastic CaRU gating could be incorporated into 1D, 2D, or 3D tissue models as well, in which

distributions could be derived for this source of stochasticity’s effect on phase selection in sub-

cellular alternans, as stochastic Ca2+ release has been indicated to have an effect on such processes

[26].
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