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ABSTRACT 

A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid 

medium. Control over the wetting, evaporation, and deposition patterns left by colloidal 

suspensions is valuable in many biological, medical, industrial, and agricultural applications. 

Understanding the governing principles of wetting and evaporative phenomena of these colloidal 

suspensions may lead to greater control over resultant deposition patterns. Perhaps the most 

familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring 

pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from 

dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. 

who discovered that these patterns occur when outward radial flows driven by evaporation at the 

triple contact line dominate over other effects. 

While the presence of coffee-stain patterns is undesirable in many printing and medical 

diagnostic processes, it can also be advantageous in the production of low cost transparent 

conductive films, the deposition of metal vapor, and the manipulation of biological structures. 

Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control 

over the size and morphology of evaporative deposition patterns left by aqueous colloidal 
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suspensions.  Several methods have been developed to control the evaporation of colloidal 

suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric 

(EWOD) is one promising method that has been used to control colloidal depositions by applying 

either an AC or DC electric field. EWOD actuation has the potential to dynamically control 

colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain 

effect. It may also allow for independent control of the fluidic interface and deposition of 

particles via electrowetting and electrokinetic forces. Implementation of this technique requires 

that the colloidal droplet be separated from the active electrode by a dielectric layer to prevent 

electrolysis. A variety of polymer layers have been used in EWOD devices for a variety of 

applications. In applications that involve desiccation of colloidal suspensions, the material for this 

layer should be chosen carefully as it can play an important role in the resulting deposition 

pattern.  

An experimental method to monitor the transient evolution of the shape of an evaporating 

colloidal droplet and optically quantify the resultant deposition pattern is presented. Unactuated 

colloidal suspensions will be desiccated on a variety of substrates commonly used in EWOD 

applications. Transient image profiles and particle deposition patterns are examined for droplets 

containing fluorescent micro-particles. Qualitative and quantitative comparisons of these results 

will be used to compare multiple different cases in an effort to provide insight into the effects of 

polymer selection on the drying dynamics and resultant deposition patterns of desiccated colloidal 

materials. 

It was found that the equilibrium and receding contact angles between the surface and the droplet 

play a key role in the evaporation dynamics and the resulting deposition patterns left by a 

desiccated colloidal suspension. The equilibrium contact angle controls the initial contact 

diameter for a droplet of a given volume. As a droplet on a surface evaporates, the evolution of 

the interface shape and the contact diameter can generally be described by three different 

regimes. The Constant Contact Radius (CCR) regime occurs when the contact line is pinned 

while the contact angle decreases. The Constant Contact Angle (CCA) regime occurs when the 

contact line recedes while the contact angle remains constant. The Mixed regime occurs when the 

contact radius and angle both reduce over time. The presence of the CCA regime allows the 

contact line to recede creating a more uniform deposition. However, not all droplets move into 

the CCA regime. Some remain in the CCR regime creating a coffee-stain pattern. In order to 
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transition into the CCA regime, the dynamic contact angle of the droplet must be reduced to an 

angle close to the receding contact angle. 

Transient interface shapes and deposition patterns were examined on four surfaces: (i) Glass, (ii) 

Kapton HN polyimide tape, (iii) SU-8 3005, and (iv) Teflon AF. Glass has a low equilibrium 

contact angle and a very low receding contact angle resulting in a large uniform coffee-stain 

deposition. Kapton HN and SU-8 3005 have similar equilibrium contact angles that result in 

similar initial contact diameters. However, Kapton HN pins at that initial diameter due to a low 

receding contact angle producing a smaller more intense coffee-stain. SU-8 3005 has a large 

receding contact angle that allows for the transition into the CCA regime which results in a 

smaller, more uniform, and more intense spot.  Teflon AF has the largest equilibrium and 

receding contact angle producing the smallest, most uniform, and most intense spot. Results 

presented here suggest that a lower receding contact angle is beneficial in areas where the coffee-

stain effect needs to be enhanced while a larger receding contact angle is beneficial in areas 

where the coffee-stain needs to be suppressed. 

Preliminary results are also presented examining droplets actuated via AC electrowetting to 

examine the effect of electrode geometry and applied voltage on electrowetting behavior and 

colloidal depositions in these cases. It was found that the Young-Lippmann equation needs to be 

modified to satisfy the modified capacitance per unit area of a system with different electrode 

geometries. 
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NOMENCLATURE 

Symbol Meaning 

𝑇  Temperature 

𝑃  Pressure 

𝑉  Volume 

𝐴  Surface area 

𝑛  Composition 

𝐺  Gibbs free energy 

𝛾  = [
𝛿𝐺

𝛿𝐴
]

𝑇,𝑃,𝑛
 , Surface tension (i.e. Interfacial tension) 

𝜃  Contact angle 

𝜃𝑒𝑞  Equilibrium contact angle between the solid-liquid and liquid-vapor interface 

𝑐𝑜𝑠𝜃𝑒𝑞  =
𝛾𝑆𝐿−𝛾𝑆𝑉

𝛾𝐿𝑉
 , Young’s equation    

𝐸  Surface energy (i.e. interface energy) per unit area 

𝑆𝑒𝑞  = [𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒]𝑑𝑟𝑦 − [𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒]𝑤𝑒𝑡 , Equilibrium spreading parameter 

𝑆𝑒𝑞  = 𝛾𝑆𝑉 − (𝛾𝑆𝐿 + 𝛾𝐿𝑉) , Equilibrium spreading parameter 

𝜃𝑎  Advancing contact angle 

𝜃𝑟  Receding contact angle 

𝐻  = 𝜃𝑎 − 𝜃𝑟, Hysteresis  

𝑔  Gravity 

𝜌  Density 

𝐿  Characteristic length 

𝐵𝑜  =
Δ𝜌𝑔𝐿2

𝛾
 , Bond number (i.e. Eövötos number 𝐸𝑜) 

𝑐  Vapor concentration 

𝑅  Radial distance from the center of the droplet 

𝐷  Diffusion coefficient 

𝑚  Mass 

𝑡  Time 

−
𝑑𝑚

𝑑𝑡
  = −4𝜋𝑅2𝐷

𝑑𝑐

𝑑𝑅
 , Rate of evaporative mass loss of a spherical droplet 

𝑐𝑆  Vapor concentration at the sphere surface 

𝑐∞  Vapor concentration infinite distance away 
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𝑅𝑆  Radial distance from the center of the drop to the surface 

−
𝑑𝑚

𝑑𝑡
  = 4𝜋𝑅𝑠𝐷(𝑐𝑠 − 𝑐∞) , Rate of evaporation of a spherical droplet 

−𝜌 (
𝑑𝑉

𝑑𝑡
) = 4𝜋𝑅𝑆𝐷𝑐𝑆 , Rate of evaporation of a spherical droplet when 𝑐∞ = 0 

𝑓(𝜃)  Evaporative factor for a droplet on a surface 

− (
𝑑𝑉

𝑑𝑡
)  =

4𝜋𝑅𝑆𝐷

𝜌
(𝑐𝑆 − 𝑐∞)𝑓(𝜃), Volume decrease rate for a spherical drop on a surface 

𝛽  = (1 − 𝑐𝑜𝑠𝜃)2(2 + 𝑐𝑜𝑠𝜃) , Radial distance factor for spherical cap 

𝑅𝑠  = (
3𝑉

𝜋β
)

1/3
 , Radius of spherical cap 

𝑟𝑏  = 𝑅𝑠𝑠𝑖𝑛𝜃, Contact radius of spherical cap 

ℎ𝑠𝑝ℎ  = 𝑅𝑠(1 − 𝑐𝑜𝑠𝜃) = 𝑟𝑏 tan (
𝜃

2
) , Droplet height of a spherical cap 

ℎ  Height of liquid-vapor interface 

𝑟  Radial distance 

𝐽  Evaporative flux 

𝑣(𝑟, 𝑡)  = −
1

𝜌𝑟ℎ
∫ 𝑑𝑟 𝑟

𝑟

0
(𝐽(𝑟, 𝑡)√1 + (

𝛿ℎ

𝛿𝑟
)

2
+ 𝜌

𝛿ℎ

𝛿𝑡
) , Vertically averaged radial flow 

𝑈  Applied voltage 

𝜃0  Apparent contact angle of the system at zero applied voltage 

𝜃𝑈   Voltage-dependent contact angle in the system 

𝜀𝑟  Dielectric constant of the insulator 

𝜀0  Vacuum permitivity 

𝑑  Thickness of insulating layer 

𝑐  ≡
𝜀𝑟𝜀0

𝑑
, Capacitance per unit area between the fluid droplet and the electrode 

𝜂  ≡
𝑐𝑈2

2𝛾𝐿𝑉
≡

𝜀𝑟𝜀0

2𝑑𝛾𝐿𝑉 
𝑈2 , Dimensionless electrowetting number 

𝑐𝑜𝑠𝜃𝑈  = 𝑐𝑜𝑠𝜃0 + 𝜂 , Young-Lippmann (Y – L) equation 

𝐴𝑑  Area of driving electrode 

𝐴𝑟  Area of reference electrode 

𝐴𝑡  Total area of electrode 

𝑐𝑜𝑠𝜃𝑈 =
𝜀𝑟𝜀0

2𝛾𝐿𝑉𝑑
(

𝐴𝑑

𝐴𝑡
(

𝐴𝑟

𝐴𝑑+𝐴𝑟
)

2
+

𝐴𝑟

𝐴𝑡
(

𝐴𝑑

𝐴𝑑+𝐴𝑟
)

2
) 𝑈2 + 𝑐𝑜𝑠𝜃0, Modified Y – L equation 

𝑦  Vertical distance of electric field 

ℎ  Droplet height 

𝐸  = −𝛿𝑈/𝛿𝑦 ≈ 𝑈/ℎ , Approximate DC electric field 

𝑞  Charge on a particle 
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𝐹 ↓  = 𝑞𝐸 , Vertical force induced by a DC voltage induced electric field 

𝜇  Liquid viscosity 

𝑎  Particle radius 

𝑣𝑒𝑝  ≈
𝑞𝑈

6𝜋ℎ𝜂𝑎
 , Electrophoretic velocity 

𝐹 ↑  = 6𝜋𝜇𝑎𝑣𝑒𝑝 , Stokes-type viscous force 

1/𝑘  Debye length 

𝜁 =
𝑞

4𝜋𝜀𝑟𝜀0𝑎
−

𝑞

4𝜋𝜀𝑟𝜀0(𝑎 + 
1

𝑘
)

=
𝑞

4𝜋𝜀𝑟𝜀0𝑎(𝑘𝑎 + 1)
 , Zeta-potential of  a spherical particle 

𝑞  = 4𝜋𝑎𝜀𝑟𝜀0𝜁 , Effective charge of a particle when 𝑘𝑎 is smaller than unity 

𝑣𝑒𝑝  =
2

3

𝜀𝑟𝜀0

𝜇
𝜁

𝑈

ℎ
 , Electrophoretic velocity for particles on the order of nanometers 

𝛿ℎ

𝛿𝑡
  ≈ −𝐾 , Approximate linear constant 𝐾of the droplet height decrease over time 

𝐽0  Evaporative flux of a flat meniscus 

𝑣𝑎𝑑𝑣(𝑟)  ≈
𝑟

2ℎ
(𝐾 −

𝐽0

𝜌
) , Advective velocity of a particle 

𝑡𝑎𝑑𝑣  Advective timescale 

𝑡𝑒𝑝  Electrophoretic timescale 

𝑑𝑎𝑑𝑣  Advective distance 

𝑑𝑒𝑝  Electrophoretic distance 

𝑅̅  =
𝑡𝑎𝑑𝑣

𝑡𝑒𝑝
≈

𝑣𝑒𝑝

𝑣𝑎𝑑𝑣

𝑑𝑎𝑑𝑣

𝑑𝑒𝑝
≈

𝜀𝑟𝜀0

𝜂𝑟ℎ̇
𝜁𝑈 , Advective and electrophoretic timescale ratio 

𝐼  Intensity 

𝐼𝐵  Average background Intensity 

𝐼 ̅  Average spot intensity 

𝐼/𝐼 ̅  Normalized intensity 

𝐷𝐼  Initial contact diameter 

𝐷𝐹  Final spot diameter of deposition 

𝐷𝐼/𝐷𝐹  Diameter ratio 

𝑇𝑇  Total evaporation time 

𝜏  = 𝑡/𝑇𝑇 , Normalized time 

𝐷  Measured diameter 

𝜃  Measured contact angle 

𝐷/𝐷0  Normalized diameter  

𝐴𝑒1  Electrode area of a simple coplanar electrode configuration 

𝐴𝑔1  Ground wire area of a simple coplanar electrode configuration 
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𝐴𝐷  Total droplet area 

𝐶1  =
𝜀𝑟𝜀0𝐴𝑒1𝐴𝑔1

𝑑(𝐴𝑒1𝐴𝑔1)𝐴𝐷
 , Capacitance per unit area of a simple coplanar electrode 

𝑐𝑜𝑠𝜃𝑈  =
𝐶1𝑈2

2𝛾𝐿𝑉
+ 𝑐𝑜𝑠𝜃0 , Modified Y – L equation for a simple coplanar electrode 

𝐴𝑒2+  Electrode area when a droplet is centered between two electrodes 

𝐴𝑔2+  Ground wire area when a droplet is centered between two electrodes 

𝐴𝑒2−  Electrode area when a droplet is centered on an electrode 

𝐴𝑔2−  Ground wire area when a droplet is centered on an electrode 

𝐶2  =
(

𝜀𝑟𝜀0𝐴𝑒2+𝐴𝑔2+

𝑑(𝐴𝑒2+𝐴𝑔2+)𝐴𝐷
+

𝜀𝑟𝜀0𝐴𝑒2−𝐴𝑔2−

𝑑(𝐴𝑒2−𝐴𝑔2−)𝐴𝐷
)

2
 , Capacitance per unit area of a coplanar IDE 

𝐶2+  Capacitance per unit area when a droplet is centered between two electrodes 

𝐶2−  Capacitance per unit area when a droplet is centered on an electrode 

𝐶2  =
𝐶2++𝐶2−

2
 , Capacitance per unit area of a coplanar IDE 

𝑐𝑜𝑠𝜃𝑈  =
𝐶2𝑈2

2𝛾𝐿𝑉
+ 𝑐𝑜𝑠𝜃0 , Modified Y – L equation for a coplanar IDE 
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1.0 INTRODUCTION  

1.1 Colloids 

Colloids are defined as heterogeneous systems where a small constituent of one insoluble 

substance (dispersed phase) is dispersed throughout another medium (continuous phase). Colloids 

are ubiquitous in everyday life; such as the milk that we put in our coffee or tea, the marmalade 

we spread on our toast, and the shaving cream we use in the morning. Even our blood is classified 

as a colloidal suspension. The nineteenth century Scottish chemist, Thomas Graham (1805 – 

1869), first introduced the word colloid while making fundamental discoveries using technology 

that was a rudimentary predecessor to modern-day dialysis machines [1].  

The field of colloid science is vast including gels, emulsions, foams, sols, and aerosols (Fig. 1.1). 

Both the dispersed phase and continuous phase can be composed of solids, liquids, or gases. The 

scope of this thesis will be colloidal mixtures where solid particles (dispersed phase) are 

suspended in a liquid medium (continuous phase). The focus of this work will be to better 

understand the motion of the dispersed phase of the colloid as small droplets of fluid evaporate on 

a surface. 

 

 

Figure 1.1: Various colloid examples including: (a) gel – cheese, (b) emulsion – milk, (c) foam – whipped cream, 

(d) sol - paint, and (e) aerosol – fog. 
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The interfacial surface area-to-volume ratio becomes important when looking at a colloidal 

system consisting of two or more phases. A colloidal particle has a large surface area-to-volume 

ratio compared to the bulk medium it is suspended in [2,3]. A cube shaped “particle” with 

characteristic length 1 𝑐𝑚 has a total surface area of 1 𝑐𝑚2. If this cube is broken up into smaller 

cubes of characteristic length 1 𝜇𝑚 it would have a total surface area of 600 𝑚2. As the size of a 

particle is reduced, the surface area increases. This is accompanied by a large surface area-to-

volume ratio when comparing two particles of the same mass. When surface area-to-volume 

ratios are large, forces that scale with surface area (e.g. diffusion) dominate over forces scaling 

with volume (e.g. gravity) [4]. The scope of this work will be on spherical colloidal particles with 

a micrometer characteristic length. Colloidal dispersions and particle behavior can be better 

understood by considering specific parameters of the particle: (i) size, (ii) shape, (iii) surface area, 

and (iv) surface charge [2,3]. Attractive and repulsive forces between particles must also be 

considered (e.g. Van der Waals, Electrostatic). 

Even when a colloid is at equilibrium, the dispersed phase in the suspension exhibits random 

motion due to collisions with the continuous phase [5,6]. This motion is named Brownian Motion 

after the Scottish botanist Robert Brown (1773-1858) who observed the random motion of 

particles when studying grains of pollen of the plant Clarkia Puchella suspended in water under a 

microscope [7]. When a small droplet of fluid rests on a surface, the motion of the suspended 

material can then be influenced by interactions with a surface. This motion is further complicated 

as the droplet begins to evaporate and the motion in the dispersed phase is affected by evaporative 

and surface tension driven flows in the continuous phase. 

A fundamental understanding of the motion of the dispersed phase in a colloidal suspension and 

the deposition pattern it leaves after the droplet dries is critical for a variety of practical 

applications [8] including: medical diagnostics [9–12], fabrication of flexible electronic devices 

[13], inkjet printing [14–16], and wastewater treatment [17] (Fig. 1.2). 
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Figure 1.2: Various colloidal suspension and deposition pattern uses in practical applications including: (a) 

flexible electroluminescent device using carbon nanotubes [13], (b) rectilinear twin-line depositions of conductive 

silver nanoparticles [15], and (c) array of transparent conductive rings using silver nanoparticles [16]. 
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1.2 Wetting Phenomenon 

Wetting is understood as the relative ability of a liquid to maintain contact, i.e. wet, the surface of 

another solid or immiscible fluid. This wetting phenomenon is a common occurrence we can 

observe in nature and everyday life. Wetting behavior governs how rain drops roll off a leaf, how 

dew forms in the early morning, and how paint drips down the side of a freshly coated wall. An 

understanding of the behavior has led to advances in biological [9–12,18,19], and industrial 

applications [13–17,20–28].  

When a small volume of fluid is placed on a surface, the area of contact is a function of at least 

the droplet volume, and the composition of the droplet, the surface, and the surrounding medium. 

If the droplet is not moving, it is referred to as a sessile droplet (Fig. 1.3). The wettability of a 

liquid on a surface and wettability studies generally involve measuring contact angle 𝜃 between 

the solid-liquid and liquid-vapor boundaries. When the contact angle is large, a surface is 

described as being hydrophobic, or water repellent. A droplet will bead up on a hydrophobic 

surface (Fig. 1.3a). When the contact angle is small a surface is described as being hydrophilic. A 

droplet will tend to spread out, or even form a film on a hydrophilic surface (Fig. 1.3b) [20]. 

The following section will describe the fundamental forces that govern wetting and wettability 

[20,29–36] and applicable research [21–25].   

 

 

Figure 1.3: (a) Hydrophobic and (b) hydrophilic droplet of fluid placed on a surface with contact angle 𝜃 between 

solid-liquid and liquid-vapor boundary. 
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1.2.1 Surface Tension, Surface Thermodynamics, & Contact Angle 

Surface tension (i.e. interfacial energy) is a contractile force that acts to minimize the surface area 

of any surface. Surface tension 𝛾 can be represented thermodynamically as the change in Gibbs 

free energy 𝐺 per surface area 𝐴 when temperature 𝑇, pressure 𝑃, and composition 𝑛 are held 

constant (Eq. 1.1): 

𝛾 = [
𝛿𝐺

𝛿𝐴
]

𝑇,𝑃,𝑛
 (1.1) 

At equilibrium, the interfaces between the solid, liquid, and vapor phases deform to minimize the 

interfacial energies. In a seminal work by Thomas Young [30], “An essay on the cohesion of 

fluids” the repeatability of the contact angle of a droplet on a surface was observed. Young 

described these observations as the interfacial tensions between phases. This work remains the 

foundation of modern wetting and capillary phenomena. The sessile droplet resting on a solid, 

smooth surface free from contamination in a vapor medium is assumed to be in thermodynamic 

equilibrium (mechanical, chemical, and thermal equilibrium) [29]. Under these assumptions, a 

sessile droplet at equilibrium state can be described by Young’s equation, Equation 1.2 (Fig. 1.4):  

𝑐𝑜𝑠𝜃𝑒𝑞 =
𝛾𝑆𝐿−𝛾𝑆𝑉

𝛾𝐿𝑉
, (1.2) 

where 𝛾𝑆𝐿 , 𝛾𝐿𝑉 , and 𝛾𝑆𝑉 are the interfacial tensions at the solid-liquid, liquid-vapor, and solid-

vapor interface, respectively, the equilibrium contact angle 𝜃𝑒𝑞 is between the solid-liquid and the 

liquid-vapor interface at the Triple Contact Line (TCL). The TCL is the interface between the 

solid, liquid, and vapor phases of a droplet on a surface producing a contact angle dependent on 

the relative interfacial tensions of the system. 
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Young’s theory was further developed by Dupre introducing the reversible work of adhesion 

using thermodynamics and the principle of minimum energy [31]. If the three interfacial tensions 

are known, the state of wetting may be understood by looking at the spreading parameter. The 

equilibrium spreading parameter 𝑆𝑒𝑞 is the measure of the difference between the surface energy 

(i.e. interface energy) per unit area 𝐸 of a dry and wet substrate (Eq. 1.3 & Eq. 1.4) [29]: 

𝑆𝑒𝑞 = [𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒]𝑑𝑟𝑦 − [𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒]𝑤𝑒𝑡 , or (1.3) 

𝑆𝑒𝑞 = 𝛾𝑆𝑉 − (𝛾𝑆𝐿 + 𝛾𝐿𝑉) . (1.4) 

Wetting studies incorporating 𝑆𝑒𝑞 can help understand the interplay between surface energy of 

the system at the TCL, and the amount a liquid will spread on a surface. Complete wetting occurs 

when 𝑆𝑒𝑞 = 0, and partial wetting/non-wetting occurs when 𝑆𝑒𝑞 ≤ 0 (Fig. 1.5). The dewetting 

phase is similar to the wetting phase, however there is a macroscopic vapor layer between the 

solid and liquid [8,29]. 

 

Figure 1.4: Illustration of liquid 𝐿 resting a solid 𝑆 in an ambient vapor 𝑉 with an equilibrium contact angle 𝜃𝑒𝑞  

between the solid-liquid and liquid-vapor interface and interfacial tensions 𝛾𝑆𝑉 ,  𝛾𝐿𝑉 , and 𝛾𝑆𝐿 acting at the Triple 

Contact Line (TCL). 
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Spreading and substrate wettability are often characterized by the equilibrium contact angle 𝜃𝑒𝑞 

[32]. For instance, non-wetting (low wettability, hydrophobic) is observed for 90° ≤ 𝜃𝑒𝑞 < 180° 

(Fig. 1.5a). Partial wetting (high wettability, hydrophilic) is observed for 0° < 𝜃𝑒𝑞 < 90° (Fig. 

1.5b). If 𝜃𝑒𝑞 = 0, then 𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉 and this equilibrium would correspond to the complete 

wetting (i.e. spreading) of a liquid on a surface (Fig. 1.5c). The dewetting on a surface is less 

common and observed at 𝜃𝑒𝑞 = 180° [8,20].  

Observed values of equilibrium contact angle often vary from theoretical predictions due to 

surface defects from chemical and physical heterogeneities [8,29,33]. Dussan proposed the idea 

of differing microscopic and macroscopic contact angles at the TCL due to surface irregularities 

[33] (Fig. 1.6). Work by de Gennes brought together a number of concepts on static and dynamic 

wetting including a reversible change at the TCL, neglecting the long-ranged intermolecular 

forces acting at the TCL. Young’s equation assumes that the sessile droplet is resting on a solid 

smooth surface free from contamination. However this assumption is generally not the case so 

𝜃𝑒𝑞 is better understood as the macroscopic equilibrium contact angle that we observe [8,21]. 

 

Figure 1.5: Illustration of liquid 𝐿 wetting a surface 𝑆 in an ambient vapor 𝑉 with an equilibrium contact angle 𝜃𝑒𝑞 

where: (a) non-wetting, (b) partial wetting, and (c) complete wetting occurs [8]. 
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1.2.2 Contact Angle Hysteresis 

Understanding of surface wetting is not limited to the equilibrium case. As a sessile droplet dries, 

fluid volume, contact angle, and contact area can all change with time. This behavior is not 

completely characterized by the equilibrium contact angle [20]. When a sessile droplet on a 

substrate is not at equilibrium, the contact angle produced is called the dynamic contact angle. 

Characterizing dynamic contact angles provides insight into droplet behavior on specific 

substrate-ambient environments. 

A sessile droplet initially placed on a substrate via a thin syringe needle (Fig. 1.7a) can be 

manipulated to produce dynamic contact angles. As the volume of the droplet is increased, the 

TCL is initially pinned while the contact angle increases (Fig. 1.7b). As the angle increases, there 

is an increase in the outward force at the contact line. Eventually the force is increased enough so 

the contact line moves forward (i.e. advances) on the substrate while the contact angle is constant 

(Fig. 1.7c). The contact angle made on the surface as the contact line advances is known as the 

 

Figure 1.6: Two static sessile droplet configurations, A and B, on a solid surface with a sine wave deformation 

illustrating the actual (microscopic) contact angle 𝜃𝑆 may differ from the observed (macroscopic) contact angle 𝜃 

[33]. 
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advancing contact angle 𝜃𝑎 and is greater than the equilibrium contact angle 𝜃𝑒𝑞. When the 

volume of the sessile droplet is decreased the TCL is initially pinned while the contact angle 

decreases (Fig. 1.7d). As the angle decreases there is an increase in the inward force at the contact 

line. Eventually the force is increased enough so the contact line moves backwards (i.e. recedes) 

on the substrate while the contact angle is constant (Fig. 1.7e). The contact angle made on the 

surface as the contact line recedes is known as the receding contact angle 𝜃𝑟. Receding contact 

angles are less than the corresponding equilibrium contact angle 𝜃𝑒𝑞 [34]. As the drop recedes it 

becomes so small that it is distorted by the capillary forces acting upon it at the tip of the needle 

(Fig. 1.7f). The difference between 𝜃𝑎 and 𝜃𝑟 is called the hysteresis 𝐻 (Eq. 1.5): 

𝐻 = 𝜃𝑎 − 𝜃𝑟 . (1.5) 

Contact angle hysteresis is generally attributed to surface roughness and/or heterogeneities [20]. 

In Young’s equation (Eq. 1.2), three interfacial tensions 𝛾𝑆𝐿 , 𝛾𝐿𝑉 , and 𝛾𝑆𝑉 at the TCL result in 

the equilibrium contact angle 𝜃𝑒𝑞 based on an ideal, homogeneous surface. Young’s equation can 

be misleading because it does not account for surface topography. The measured static contact 

angle is generally not equal to 𝜃𝑒𝑞 [8,29,33,35]. Wenzel’s equation and Cassie-Baxter’s relation 

angles provides a prediction for the apparent contact angle of a droplet on a rough and 

heterogeneous surface, respectively [20]. The measured contact angle of a sessile droplet resting 

on a surface was found to be generally between the advancing contact angle 𝜃𝑎and the receding 

contact angle  𝜃𝑟 in [35]. 
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Figure 1.7: Illustration of an advancing contact angle 𝜃𝑎 and a receding contact angle 𝜃𝑟 where (a) an initial sessile 

droplet is placed on a surface, (b) the volume is increased while the contact line is pinned and 𝜃 increases, (c) the 

contact line advances while 𝜃 remains constant giving 𝜃𝑎, (d) the volume is decreased while the contact line is 

pinned and 𝜃 decreases, (e) the contact line recedes while 𝜃 remains constant giving 𝜃𝑟, and (f) the droplet 

becomes distorted [34]. 
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Many techniques have been developed for preparation of homogeneous solid surface including 

vapor deposition, dip coating, surface polishing, solvent casting, heat pressing, and using self-

assembled monolayers. However, an overall guideline on how to develop a smooth and 

homogeneous a surface that does not impact the equilibrium contact angle has not yet been 

developed [20]. 

Research encompassing wetting and interfacial phenomenon is  a present question in the 

scientific community [9–36]. The creation of biomimetic artificial surfaces that are 

superhydrophobic and self-cleaning has been prominent in literature [23]. There has been 

development of superhydrophobic substrates based off of a lotus leaf structure with 𝜃𝑒𝑞 > 150° 

[21] (Fig. 1.8a), and the development of polystyrene based microstructures fabricated based off of 

superhydrophobic rose petals [22] (Fig. 1.8b-c). Figure 1.8d presents a water droplet on a 

superhydrophobic adhesive fabricated microstructure based off of the rose petal. Advancements 

into the wetting behavior of different fluids on surfaces can advance many technologies that 

involve creating new materials that require anti-fogging and self-cleaning [24]. Additionally, 

Fabrication of superwetting nanowire membranes that could be practical in  an oil spill cleanup 

[25].  

The evaporation of colloidal droplets placed on substrates is important for many practical 

applications. Understanding this phenomena may provide a means to control evaporative forces 

and the deposition of the dispersed phase within the droplet [26]. 

 

 

Figure 1.8: Examples of advancements in wetting behavior on different surfaces including SEM images of: (a) 

water-repellent leaf surfaces (Nelumbo nucifera) [21], (b) periodic array of micropapillae on the surface of a rose 

petal, (c) similar PS rose petal structure, and (d) superhydrophobic adhesive water drop on PS rose petal structure 

[22]. 
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1.3 Evaporation of Sessile Droplets, Colloidal Suspensions, & Control 

over Resultant Deposition Patterns 

A liquid drop deposited on a solid substrate limited by the TCL is known as a sessile droplet. The 

focus of this work is the examination of the evaporation of microliter sized sessile droplets. In 

these size ranges, surface tension forces generally dominate over gravitational forces due to a 

small characteristic length 𝐿. The Bond number 𝐵𝑜 (or  Eövötos number 𝐸𝑜) is the dimensionless 

parameter measuring the ratio of body forces (e.g. gravitational force) over surface tension forces 

(Eq. 1.6): 

𝐵𝑜 =
𝐵𝑜𝑑𝑦 𝐹𝑜𝑟𝑐𝑒𝑠

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒𝑠
=

Δ𝜌𝑔𝐿2

𝛾
 , (1.6) 

where Δ𝜌 is the difference between densities of two phases, 𝑔 is the gravitational acceleration, 𝐿 

is the characteristic length of the system, and 𝛾 is the surface tension. The surface energy of the 

solid surface may be calculated by the contact angle of a sessile droplet on a substrate. Over time 

a sessile drop will evaporate, reducing the initial contact angle based on the atmospheric 

condition of the medium the sessile droplet is in. Sessile droplet evaporation plays a crucial role 

in many engineering applications including fuel injection into combustion engines [26], 

micro/nano fabrication [18,37], ink-jet printing [14–16,27], medical diagnostic processes [9,19], 

and the manufacturing of novel optoelectronic materials [28].  

In many applications particles are dispersed in a liquid medium (i.e. colloidal suspension). When 

the contact line of the evaporating suspension is pinned the particles deposit at the TCL forming 

what is known as a “coffee stain”. The presence of the coffee stain pattern is undesirable in many 

printing [14–16,27] and medical diagnostic processes [9,19]. Controlling the interactions between 

the liquid, particles, and substrate can lead to control over evaporative deposition patterns. 

Manipulation of the size and morphology of the stain is important in many applications as well. 

Suppression of the coffee stain effect has been achieved using several methods including addition 

of surfactants [38], enhancement of surface tension effects [39,40], surface modification [41], 

alteration of particle shape [42], and application of an electric field [43–45]. 

While coffee stains are undesirable in many applications, they have recently been used to produce 

low cost transparent conductive films by controlling colloidal deposition of carbon nanotubes 
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[13] and conductive inks [14–16]. Feature sizes were reduced by exploiting the coffee stain effect 

to create parallel lines from printed rivulets [14,15] and overlapping conductive rings from 

droplets [13,16]. Improving the uniformity of “coffee ring” stains may also be beneficial for 

controlled deposition of metal vapor [46] and biological structures [47]. 

The wide variety of applications for the enhancement or suppression of the coffee stain effect 

requires understanding how sessile droplets and colloidal suspensions evaporate, and the 

formation of resultant deposition patterns left on a variety of surfaces.  

1.3.1 Evaporation of Sessile Droplets 

The evaporation of a sessile droplet controlled by diffusion in still air can help us understand the 

more complicated evaporative process when air is moving and convection is present. When a 

volume of fluid with a small Bond number is used, surface tension dominate over gravity and the 

droplet rests on the solid surface in a semispherical shape with a constant radius (i.e. spherical 

cap). Using a sessile droplet model with a spherical cap assumption can lead to understanding 

more about the influence of geometry on the system. Additionally, evaporation of sessile droplets 

in industrial applications tend to have multiple liquid components. This multicomponent system 

results in preferential vaporization of the more volatile component. Only one liquid component is 

assumed for the equations presented here. 

The basic case of a drop evaporating by diffusion was first derived by Maxwell in 1877. The 

mathematical model assumed the droplet was a spherical bulb and was floating in still air. The 

evaporative mass loss rate is given as [26] (Eq. 1.7): 

−
𝑑𝑚

𝑑𝑡
= −4𝜋𝑅2𝐷

𝑑𝑐

𝑑𝑅
 , (1.7) 

where 𝑐 is the vapor concentration,  𝑅 is the radial distance from the center of the droplet, 𝐷 is the 

diffusion coefficient of the vapor, 𝑚 is the mass, and 𝑡 is the time. Integrating Equation 1.7 based 

off boundary conditions where 𝑐 = 𝑐∞ and 𝑐 = 𝑐𝑆 at 𝑅 = 𝑅∞ and = 𝑅𝑆 , respectively gives the 

rate of evaporation (Eq. 1.8): 
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−
𝑑𝑚

𝑑𝑡
= 4𝜋𝑅𝑠𝐷(𝑐𝑠 − 𝑐∞) , (1.8) 

where 𝑐𝑠 is the concentration of vapor at the sphere surface, 𝑐∞ = 0 is the vapor concentration of 

the drop at an infinite distance from the drop,  𝑅𝑠 is the radius from the center to the surface of 

the spherical droplet.  

Equation 1.8 can be rewritten as (Eq. 1.9): 

−𝜌 (
𝑑𝑉

𝑑𝑡
) = 4𝜋𝑅𝑆𝐷𝑐𝑆 , (1.9) 

where 𝜌 and 𝑉 are the density and volume of the liquid, respectively.  

Maxwell’s work assumes a spherical bulb of fluid suspended in a still medium and does not 

incorporate the presence of a substrate underneath the droplet. Introduction of a substrate prevents 

vapor from diffusing in the downward direction. Picknett and Bexon added a factor 𝑓(𝜃) for the 

decrease in the rate of drop evaporation due to the surface a droplet is placed upon. The rate of 

volume decrease over time is given by (Eq. 1.10) [26]: 

− (
𝑑𝑉

𝑑𝑡
) =

4𝜋𝑅𝑆𝐷

𝜌
(𝑐𝑆 − 𝑐∞)𝑓(𝜃) , (1.10) 

 where 𝑉is the volume of a spherical cap.  The shape of the spherical cap is characterized by the 

contact angle 𝜃, the radius of the sphere 𝑅𝑆, the contact radius 𝑟𝑏, and the droplet height ℎ𝑠𝑝ℎ 

(Fig. 1.9) [26]. The radial position can be expressed as (Eq. 1.11 – 1.13): 

𝑅𝑠 = (
3𝑉

𝜋β
)

1/3
 and (1.11) 

𝑟𝑏 = 𝑅𝑠𝑠𝑖𝑛𝜃 , where (1.12) 

𝛽 = (1 − 𝑐𝑜𝑠𝜃)2(2 + 𝑐𝑜𝑠𝜃) = 2 − 3𝑐𝑜𝑠𝜃 + cos3 𝜃 . (1.13) 
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While the height of the spherical cap of fluid on a solid surface can be expressed as two equations 

based off of the radii and the contact angle (Eq. 1.14 – 1.15): 

ℎ𝑠𝑝ℎ = 𝑅𝑠(1 − 𝑐𝑜𝑠𝜃) and (1.14) 

ℎ𝑠𝑝ℎ = 𝑟𝑏 tan (
𝜃

2
) . (1.15) 

Several authors have advanced the numerical models of sessile droplet evaporation based on a 

wide array of diverse experimental situations. Complete derivations, and references to advanced 

droplet evaporation models and investigations may be found in [26]. Wetting dynamics and 

evaporation vary depending on the substrate, liquid, and medium that the system is in. Different 

evaporative regimes may be observed as a result. 

 

 

Figure 1.9: Illustration of a spherical cap droplet on a substrate characterized by the contact angle 𝜃, the radius of 

the sphere 𝑅𝑆, the contact radius 𝑟𝑏, and the droplet height ℎ [26]. 
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1.3.2 Evaporative Regimes 

When a droplet is resting on a surface in a surrounding medium it may experience different types 

of evaporative regimes. That may be based off of many variables involving the solid, liquid, and 

vapor phases of a colloidal suspension. The particle shape, size, and composition can affect how 

it interacts with the surface, and liquid medium. The volume and composition of the liquid 

medium are two of the factors that are attributed to how the liquid evaporates. However, how this 

liquid interacts with the solid surface, and vapor medium are critical to how the droplet beads up, 

or spreads on the surface directly affecting evaporation. The interplay between these phases is 

complex and leads to many different evaporative patterns.  

The different evaporative regimes for a simple sessile droplet were first proposed by Picknett and 

Bexon [26] and are illustrated in Figure 1.10 [48]. When the TCL is pinned the contact angle 

decreases while the radius is held constant (i.e. CCR regime) (Fig. 1.10a). When the TCL slips, 

the contact angle is constant while the radius decreases (i.e. CCA regime) (Fig. 1.10b). A mixed 

mode exists where the radius or contact angle would both change over time (Fig. 1.10c). 

Understanding the influence of the substrate on the liquid may help predict these regimes. 

Influencing the timing of these regimes can change where particles deposit when an aqueous 

colloidal suspension evaporates. 

 

 

Figure 1.10: Evaporative regimes as proposed by Picknett and Bexon where there is a (a) Constant Contact Radius 

(CCR), (b) Constant Contact Angle (CCA), or (c) mixed mode [48]. 
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1.3.3 Evaporation of Aqueous Colloidal Suspensions & Coffee Stain Formations 

Colloidal materials are microscopic, insoluble particles evenly dispersed throughout a solution.  A 

colloidal particle has a large surface area-to-volume ratio compared to the bulk medium it is 

suspended in [2,3]. As the size of a particle is reduced, the surface area-to-volume ratio increases. 

For a given volume fraction (or mass fraction) of particles, the surface area will increase as the 

particle size decreases. When surface area-to-volume ratios are large, forces that scale with 

surface area (e.g. diffusion) dominate over forces scaling with volume (e.g. gravity) [4].  

As a colloidal suspension evaporates, neutrally buoyant particles will follow the flow of the 

droplet. However, when the particles become so small, attractive Van der Waals forces can result 

in aggregation and clustering of particles, so tuning the ionic strength may be necessary for 

certain applications [49].  

As a droplet containing colloidal materials dries, different pattern formations may occur. 

Evaporation of particles dispersed in a liquid medium (i.e. colloidal suspension) is relevant in a 

variety of applications [9–37]. The addition of particles to the evaporation of a sessile droplet has 

a large impact on the dynamics that occur at the contact line and has been studied extensively in 

the past years. However, the interactions between the particles, fluid, and substrate are not fully 

understood. 

When the majority of the particles are often deposited around the periphery of the droplet a 

phenomenon known as the “coffee stain” effect occurs [9,50–56]. The formation of this pattern is 

the result of contact line pinning and the interplay between evaporative and surface tension 

effects in the droplet (Fig. 1.11). When the contact line is pinned, the evaporative flux 𝐽 in the 

droplet is highest at the outer edge. This creates a radially outward flow that deposits particles at 

the contact line. Evaporation at the contact line also creates a temperature 𝑇 drop across the 

droplet. This temperature gradient gives rise to a surface tension gradient driven flow that can 

resuspend particles in the droplet (i.e. Marangoni Flow). When the evaporative flow dominates, 

particles are deposited at the contact line in a coffee stain pattern. 
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Deegan et. al. first attributed coffee stain formation to capillary flows and evaporative flows [50–

52]  (Fig. 1.12a) where vapor leaves the droplet of radius 𝑅  at a velocity 𝑣(𝑟, 𝑡) at contracting 

height ℎ(𝑟, 𝑡) based on the evaporative flux 𝐽(𝑟, 𝑡). A mathematical model was developed to 

define the quantities responsible for the evaporation of an aqueous colloidal suspension [52]. 

Assuming an axisymmetric droplet, the vertically averaged radial flow of the fluid 𝑣 of the 

droplet can be represented by (Eq. 1.16): 

𝑣(𝑟, 𝑡) = −
1

𝜌𝑟ℎ
∫ 𝑑𝑟 𝑟

𝑟

0
(𝐽(𝑟, 𝑡)√1 + (

𝛿ℎ

𝛿𝑟
)

2
+ 𝜌

𝛿ℎ

𝛿𝑡
) , (1.16) 

where 𝑡 is time, 𝜌 is the density of the liquid, 𝑟 is the radial distance, ℎ is the position of the 

liquid-vapor interface (i.e. height), and  𝐽 is the rate of mass loss per unit surface area per unit 

time (i.e. evaporative flux). Additional derivation of the evaporative flux and height may be 

found in [52]. 

Many hydrophilic surfaces pin at the TCL resulting in a decrease in contact angle while the radius 

is held constant over time (i.e. CCR regime) (Fig. 1.10a). This pinning gives rise to the collection 

of particles along the periphery (Fig. 1.12b) resulting in a coffee stain formation. However, some 

hydrophobic surfaces have a TCL that slips during evaporation resulting in a decrease in the 

radius while the contact angle is held constant (i.e. CCA regime) (Fig. 1.12b). This slipping of the 

contact radius leads to the sweeping in of particles resulting in distribution patterns similar to 

Figure 1.12c. 

 

Figure 1.11: Side view schematic of drying sessile drop showing radially outward flow (solid arrow) and 

temperature 𝑇 across the droplet (solid line) created by the evaporative flux 𝐽 on the surface of the droplet (dashed 

line). Marangoni flow (dashed arrow) is driven by surface tension gradients due to the temperature gradient across 

the droplet [9]. 
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Control over evaporative and surface tension effects leads to the control of the deposited solute 

which has advantages in many applications including medical diagnostics [9–12], fabrication of 

flexible electronic devices [13], inkjet printing [14–16], and wastewater treatment [17]. 

 

 

Figure 1.12: Outward flow of colloidal droplet during evaporation illustrating (a) the quantities responsible for 

evaporation where vapor leaves the droplet of radius 𝑅  at a velocity 𝑣(𝑟, 𝑡) at contracting height ℎ(𝑟, 𝑡) based on 

the evaporative flux 𝐽(𝑟, 𝑡) [50], and a schematic representation of the evaporation of a colloidal droplet on a (b) 

hydrophilic, and (c) hydrophobic surface [53]. 
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1.5 Methods of Suppressing and Enhancing Coffee Ring Formation 

In many applications particles are dispersed in a liquid medium (i.e. colloidal suspension). When 

the contact line of the evaporating suspension is pinned, the particles deposit at the TCL forming 

what is known as the coffee stain. The presence of the coffee stain pattern is undesirable in many 

printing [27] and medical diagnostic processes [9,19]. Controlling the interactions between the 

liquid, particles, and substrate can lead to control over evaporative deposition patterns. 

Manipulation of the size and morphology of the stain is important in many applications. 

Suppression of the coffee stain effect has been achieved using several methods including addition 

of surfactants [38], enhancement of surface tension flow via temperature gradients [39,40], 

surface modification [41], alteration of particle shape [42], and application of an electric field 

[43–45]. 

In [38], modification of the droplet composition resulted in the manipulation of both the size and 

morphology of the deposition pattern. Increasing the amount of surfactant added to the droplet 

resulted in a decreased initial surface tension 𝜎0, and three distinct drying regimes were produced 

(Fig. 1.13). The resultant deposition patterns observed were attributed to the change in contact 

line dynamics during evaporation. Theoretical and empirical results both suggested that the 

addition of surfactants led to a dense layer of micellar-protrusions on the colloid and substrate 

surface that acted as a barrier to pinning.  

 

 

Figure 1.13: Top view images of resultant deposition patterns of colloids (top) and side view (bottom) schematic 

images of droplets on a substrate with different surfactant concentrations and initial surface tension 𝜎0 of (a) 72, (b) 

48, and (c) 39 mN m-1 [38]. 
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Influencing the flow fields within the droplet may lead to control over droplet deposition 

morphology and size. The surface tension driven flow induced by temperature gradients (i.e. 

Marangoni flow) can be reversed by controlling the temperature profile across a droplet, and can 

thus control the deposition of an aqueous colloidal suspension [39] (Fig. 1.14). 

 

Modification of the surface that a sessile droplet rests on influences the interactions between 

particles, liquid, and substrate. A hydrophobic silicon pillar array was used as the substrate during 

single-drop evaporation of a colloidal suspension of latex spheres [41] (Fig. 1.15). The coffee 

ring was suppressed by forming a porous gel foot at the contact line due to the Wenzel wetting 

state induced by the silicon pillar array resulting in an inward mass transport depositing particles 

in the center of the spot. 

 

 

Figure 1.14: Evaporation of an octance droplet with Marangoni flows due to control of temperature profiles, (a) 

experimental image, and (b) predicted [39]. 

 

Figure 1.15: Side view schematic of Wenzel evaporative state due to silicon pillar array where the drop diameter 

remains constant, the contact angle decreases, and a circulatory field distributes the particles to the center of the 

droplet [41]. 



-22- 

 

In [42], suppression of the coffee stain was influenced by the modification of particle shapes 

within the aqueous colloidal suspension. Both ellipsoidal (Fig. 1.16a) and spherical (Fig. 1.16b) 

particles were used with major-minor axis aspect ratios ∝ equal to 3.5 and 1.0, respectively. The 

aqueous colloidal suspension containing spherical particles pinned at the TCL and produced a 

coffee ring deposition pattern. However, the suspension with ellipsoidal particles produced a 

uniform deposition. The ellipsoidal particles significantly deformed the pinned contact line and 

produced a strong interparticle capillary interaction that led to this distribution pattern (Fig. 1.16). 

 

 

The use of surfactants [38], temperature gradients [39,40], surface modification [41], particle 

shape modification [42] all have unique ways of modifying the size and morphology of an 

aqueous colloidal deposition pattern. However, this work focuses on characterizing the deposition 

profile of colloids and the manipulation of profiles with the application of electric fields; 

Electrowetting (EW). 

 

 

Figure 1.16: (a – b) Top view images of final deposition pattern of an aqueous colloidal suspension with (a) 

ellipsoids (𝛼 = 3.5) and (b) spheres (𝛼 = 1.0). (c) Diagram of the evaporative flux on the droplet (blue arrows), the 

shape of the droplet if allowed to recede (dashed line), the capillary flow (black arrow) due to a pinned contact line 

and reduced contact angle [42]. 
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1.5.1 Electrowetting 

Electrowetting on dielectric (EWOD) devices are microfluidic devices that manipulate fluid 

interfaces by applying electric fields (Fig. 1.17) [43–45,50–52,54,57–66]. EWOD devices consist 

of a flat conductive electrode patterned onto a substrate generally using photolithographic 

techniques. The electrode is covered with electrically insulating dielectric and hydrophobic 

layers. The droplet placed on the EWOD device beads up on the hydrophobic surface. When a 

voltage is applied, the electrowetting effect will cause the droplet to spread.  

Application of the field results in an electrowetting force on the interface that decreases the 

apparent contact angle from 𝜃0 to 𝜃𝑈. In order for this manipulation to take place, a ground 

electrode must be present in the system. Typical configurations for sessile droplets include direct 

insertion of a ground wire into the fluid (Fig. 1.17a) or the addition of a ground electrode in the 

same plane as the actuation electrode (Fig. 1.17b). 

 

 

 

Figure 1.17: Sketch of typical electrowetting on dielectric (EWOD) setup with an (a) inserted ground wire or (b) 

co-planar ground wire. As a voltage is applied through the droplet the apparent contact angle changes from 𝜃0 to 

𝜃𝑈. 
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Once a voltage is applied between the electrode of an EWOD device the apparent contact angle of 

the droplet decreases. This electrowetting process is described by the Young-Lippmann (or 

electrowetting) equation (Fig. 1.18) (Eq. 1.17) [57]: 

𝑐𝑜𝑠𝜃𝑈 = 𝑐𝑜𝑠𝜃0 + 𝜂 . (1.17) 

Here 𝜃𝑈 represents the voltage-dependent apparent contact angle in the system, θ0 represents the 

apparent contact angle of the system at zero voltage, and η is the dimensionless electrowetting 

number. The elctrowetting number is a ratio of electrical energy at the solid-liquid interface to the 

interfacial energy at the liquid-medium interface (Eq. 1.18): 

𝜂 =
𝑐𝑈2

2𝛾𝐿𝑉
 , (1.18) 

where 𝛾𝐿𝑉 represents the interfacial tension between the fluid droplet and the ambient medium, U 

represents the voltage, and c is the capacitance per unit area between the fluid droplet and the 

electrode for a typical inserted ground wire setup given by (Eq. 1.19): 

𝑐 =
𝜀𝑟𝜀0

𝑑
 , (1.19) 

where 𝜀𝑟 is the dielectric constant of the insulator, 𝜀0 represents vacuum permittivity, and d is the 

thickness of the insulating layer.  

 

 

Figure 1.18: Schematic of a generic electrowetting setup at zero applied voltage (dashed line), and with an applied 

voltage (solid line). An electric field at the contact line is presented (red arrows) [57]. 
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1.5.2 AC Actuation 

The application of an Alternating Current (AC) [43,44] electric field has been used to modify the 

evaporation and pattern formation of colloidal suspensions. Eral et. al. used a transparent Indium 

Tin Oxide (ITO) electrode patterned device covered in a 5 𝜇𝑚 layer of SU8 with an advancing 

and receding contact angle of 𝜃𝑎 = 85° and 𝜃𝑟 = 60°, respectively. A root-mean-square voltage 

of 𝑉𝑟𝑚𝑠 = 200 𝑉 was applied to a colloidal droplet at varying frequencies to understand the effect 

of AC electrowetting on particle deposition during evaporation (Fig. 1.19).  As a voltage is 

applied to the colloidal droplet, the apparent contact angle reduces increasing the surface area of 

the droplet, and increasing the evaporative flux. 

The observed suppression of the coffee stain was attributed to (i) prevention of pinning at the 

TCL and (ii) internal flow fields produced by the AC that counteracted the evaporative flux. 

Experimental results observed are in Figure 1.20 [44]. 

 

 

Figure 1.19: Illustration of (a) a colloidal droplet on a surface, (b) evaporation without electrowetting (EW), (c) the 

resultant coffee stain formation, (d) evaporation with AC EW in the conventional setup, (e) the resultant 

deposition, (f) evaporation with AC EW in an interdigitated electrode set up, and (f) the resultant deposition [44]. 
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In [43] a regime map was created to study the effects of volume fraction of particles to fluid 𝜙 

and the size of the particles on the ability to suppress the coffee stain formation with AC EW 

(Fig. 1.21). 

 

 

Figure 1.20: Top down deposition patterns of an aqueous colloidal suspension containing 5𝜇𝑚 diameter 

polystyrene particles after (a) no electrowetting (EW), and AC EW with 𝑉𝑟𝑚𝑠 = 200 𝑉 at frequencies of (b) 6 Hz, 

(c) 1 kHz, (d) 100 kHz, and (e) 100 kHz + 100 Hz Modulation [44]. 

 

Figure 1.21: Regime map of coffee stain suppression for polystyrene particles based on volume fraction 𝜙 and 

particle size using AC EW where voltage is 300 V at 1 kHz frequency. The green solid circles represent successful 

suppression of the coffee stain, and the red open circles represent unsuccessful suppression [43]. 
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Interestingly, Eral et. al. used two different geometries (Fig. 1.19): inserted ground, and a co-

planar ground wire. It is unclear whether they differentiate between the two cases, but it seems 

implied that the applied voltage was the same in both cases. Other works suggest that the 

electrowetting force changes with electrode pattern [64–66]. However in [43,44], the effect of 

electrode geometry has not been studied in the cases presented. The regime map presented in [43] 

was also generated at a single voltage. While they did not see an electrophoretic / dielectric force 

in the AC case, the presence of that force on the particles should be dependent on many factors 

(i.e. applied voltage, electrode geometry, electrode orientation, particle type, carrier fluids, et 

cetera). All of these factors should be considered. 

In [65], a coplanar electrode pattern was used that is similar to the coplanar electrode pattern 

presented in [43,44] (Fig. 1.22). A ~50 Å thick chromium and ~1000 Å thick gold metal layer 

was used for the electrodes. Silicon dioxide at a thickness of  ~3000 Å was used as the dielectric 

layer. Cytop® at a thickness of  ~2000 Å was used as the hydrophobic layer. 

 

 

Figure 1.22: A sessile droplet on a coplanar electrode: (a) top view of electrode arrangement, (b) side view of 

electrode arrangement with an applied voltage, and (c) a representation of the apparent contact angle when a 

voltage is applied [65]. 
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When modeling the apparent contact angle change due to an EW force, the capacitance per unit 

area between the electrode and the fluid droplet is very important. The capacitance per unit area 

governs the electrowetting behavior as shown in Equations 1.17 – 1.19. When modifying the 

electrode shape and geometry the capacitance per unit area changes, and the Young-Lippmann 

equation must be modified to properly model the behavior of the droplet under actuation. The 

Young-Lippmann equation was modified in [65] to account for the gap area of insulating material 

between electrodes by using Equation 1.20: 

𝑐𝑜𝑠𝜃𝑈 =
𝜀𝑟𝜀0

2𝛾𝐿𝑉𝑑
(

𝐴𝑑

𝐴𝑡
(

𝐴𝑟

𝐴𝑑+𝐴𝑟
)

2
+

𝐴𝑟

𝐴𝑡
(

𝐴𝑑

𝐴𝑑+𝐴𝑟
)

2
) 𝑈2 + 𝑐𝑜𝑠𝜃0 , (1.20) 

where 𝜃𝑈 and 𝜃0 are the apparent contact angle at an applied voltage 𝑈 and at zero applied 

voltage, respectively, 𝜀𝑟 and 𝜀0 are the dielectric constant of the insulator and a vacuum, 

respectively, 𝛾𝐿𝐺 is the interfacial surface tension at the liquid-vapor interface, 𝑑 is the dielectric 

layer thickness, and 𝐴 corresponds to the area, where 𝐴𝑑 is the area of the driving electrode, 𝐴𝑟 is 

the area of the reference electrode, and 𝐴𝑡 is the total area of the electrode.  Various gap areas 

were modeled in [65], and plotted versus experimental data illustrating the importance of the 

capacitance per unit area on the apparent contact angle change that was not presented in [43,44] 

(Fig. 1.23). 

 

 

Figure 1.23: The apparent contact angle change of an EWOD setup with coplanar electrodes at various gap spaces. 

Experimental data and theoretical curves are presented [65]. 
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1.5.3 DC Actuation 

Particles suspended in a polar liquid may acquire a charge resulting in different particle-particle 

and particle-medium interactions. Application of a DC voltage deforms the droplet interface and 

provides a net force on particles within the droplet, inducing an electrokinetic motion that drives 

the particles to the electrode with the opposite charge (i.e. electrophoresis, EP). Many factors 

influence how these particles deposit including: (i) particle size, (ii) particle charge, (iii) DC field 

strength, and (iv) DC field direction.  

This electrophoretic phenomenon has been used to suppress the coffee stain effect with a ground 

electrode inserted into a 3 𝜇𝐿 colloidal droplet (Fig. 1.24) [45].  In [45], the application of a DC 

EW field on 25 nm TiO2 particle-laden sessile droplet applies an EP force on the particles. The 

EP force dominates over the advective force driven by evaporation (Fig. 1.24a). As such, particles 

are drawn down to the surface much faster than they are drawn out to the TCL. The resultant 

deposition patterns observed were more uniform due to a continuous and smoother recession of 

the contact line by applying a constant electrowetting force on the contact line (Fig. 1.24b) The 

DC EW also effectively suppressed a “stick-slip” regime where the contact line pins and unpins 

repeatedly (Fig. 1.24c). 

 

 

Figure 1.24: (a) Side view image of sessile droplet under DC electrowetting actuation with the advective and 

electrophoretic force acting on the nanoparticle during evaporation. Top view images of evaporative deposition 

pattern of 0.1 % TiO2-water nanofluid after (b) DC EW with voltage 𝑉 = 18 𝑉 and (c) free evaporation [45]. 
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The relative strength of the advective and electrophoretic forces has been studied by comparing 

their characteristic velocities [45,67–69]. The electrophoretic velocity 𝑣𝑒𝑝 used in [45] was based 

on two forces. A vertical force from the DC voltage 𝑈 induced electric field 𝐸 acted on the 

nanoparticle toward the surface, 𝐹 ↓= 𝑞𝐸, where 𝐸 = −𝛿𝑈/𝛿𝑦 ≈ 𝑈/ℎ, 𝑞 is the charge on the 

particle, 𝑦 is the vertical distance, and ℎ is the droplet height. A Stokes-type viscous force, 

𝐹 ↑= 6𝜋𝜇𝑎𝑣𝑒𝑝 acted against this, where 𝜇 is the liquid viscosity, and 𝑎 is the particle radius. The 

balance of these forces gives Equation 1.20: 

𝑣𝑒𝑝 ≈
𝑞𝑈

6𝜋ℎ𝜇𝑎
 , (1.20) 

An isolated spherical particle has a zeta-potential that can be calculated using Equation 1.21: 

𝜁 =
𝑞

4𝜋𝜀𝑟𝜀0𝑎
−

𝑞

4𝜋𝜀𝑟𝜀0(𝑎 + 
1

𝑘
)

=
𝑞

4𝜋𝜀𝑟𝜀0𝑎(𝑘𝑎 + 1)
 , (1.21) 

where 𝜀𝑟 is the permittivity of the fluid, 𝜀0 is the vacuum permittivity, and 1/𝑘 is the Debye 

length. The particle size plays a significant role on the electrophoretic velocity [45,67–69].  When 

𝑘𝑎 is smaller than unity, the effective charge of the particle can be represented by Equation 1.22: 

𝑞 = 4𝜋𝑎𝜀𝑟𝜀0𝜁 , (1.22) 

The electrophoretic velocity 𝑣𝑒𝑝 used in [45] was valid for particles on the order of nanometers, 

and was calculated using Equation 1.23: 

𝑣𝑒𝑝 =
2

3

𝜀𝑟𝜀0

𝜇
𝜁

𝑈

ℎ
  , (1.23) 

A simplified model derived from Deegan et. al. was used to quantify the advective velocity 𝑣𝑎𝑑𝑣 

found in [45] (Eq. 1.24): 

𝑣𝑎𝑑𝑣(𝑟) ≈
𝑟

2ℎ
(𝐾 −

𝐽0

𝜌
) , (1.24) 
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where 𝑟 is the radius of the droplet, 𝐾 is the linear constant of the droplet height change over 

time, 𝐽0 is the evaporative flux of a flat meniscus, and 𝜌 is the liquid density. 

To compare the importance of the advective force and the electrophoretic force, a ratio 𝑅̅ of 

timescales 𝑡 based on the advective and electrophoretic velocity was used (Eq. 1.25): 

𝑅̅ =
𝑡𝑎𝑑𝑣

𝑡𝑒𝑝
≈

𝑣𝑒𝑝

𝑣𝑎𝑑𝑣

𝑑𝑎𝑑𝑣

𝑑𝑒𝑝
≈

𝜀𝑟𝜀0

𝜂𝑟ℎ̇
𝜁𝑈 . (1.25) 

Qualitatively, when 𝑅̅ is large, the particles move to the surface at a faster rate than they move to 

the contact line, resulting in a more uniform deposition.  

An electrophoretic effect was characterized by 𝑣𝑒𝑝 ≈ 100.0 𝜇𝑚/𝑠 with a corresponding 

migration distance and characteristic time of 1.4 𝑥 10−3 𝑚 and 10 𝑠, respectively. The advective 

effect was characterized by 𝑣𝑎𝑑𝑣 ≈ 10.0 𝜇𝑚/𝑠 with a corresponding migration distance and 

characteristic time of 1.0 𝑥 10−3 𝑚 and 100 𝑠, respectively. 

No previous work in this area has examined repulsive DC fields which could recirculate the 

particles. However, using an inserted ground in these cases may cause deposition on the inserted 

electrode and not the substrate, so the EW setup and geometry should be considered. 

Additionally, recirculation may have two effects: (i) enhancing of the “coffee stain” formation in 

a droplet that was in the CCR regime by bringing more of the particles to the ring or (ii) 

enhancing the uniformity and reducing the size of a spot that was normally in the CCA regime by 

further unpinning the contact line allowing it to move more freely. 
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2.0 GAPS IN THE RESEARCH 

Electrowetting on dielectric (EWOD) has been successfully used to control the deposition 

patterns left by the dispersed phase in colloidal suspensions using both AC and DC. In EWOD 

applications, the introduction of an electric field can alter the interface shape of a sessile droplet 

provided that the droplet is (i) grounded and (ii) separated from the active electrode by a 

dielectric layer to prevent electrolysis. 

Application of an AC field at moderate frequencies has resulted in a transient electrowetting 

(EW) force on the Triple Contact Line (TCL) without applying a net force to the dispersed phase. 

This suppresses the coffee stain effect by delaying contact line pinning of the liquid on the 

substrate which results in smaller, more uniform depositions.  

Application of a DC field results in a constant EW force on the TCL while introducing a net 

electrophoretic force on the dispersed phase within the droplet. It has been shown that an 

attractive electrophoretic force can dominate over evaporative effects typically seen in coffee 

stain depositions. This results in a large uniform deposition on the substrate. 

While both AC and DC actuation schemes have been used to successfully suppress the coffee 

stain effect, several fundamental questions remain open. A partial list of outstanding questions is 

listed below: 

1. How does surface selection affect the resultant deposition pattern observed in 

electrowetting assisted desiccation? Electrowetting on dielectric requires the 

introduction of a dielectric layer between the droplet and the actuation electrode. 

Many polymers have been used in electrowetting on dielectric studies including 

Cytop, Teflon, SU-8, SiO2, and Parylene. Selection of these materials should be 

optimized for applications interested in suppressing or enhancing the coffee-stain 

effect. 

 

 

 



-33- 

 

2. How do the shape and orientation of the actuation and ground electrodes affect 

the wetting behavior of a droplet?  Eral et. al. discuss the use of both an inserted 

ground electrode and a co-planar interdigitated electrode array. These cases are 

discussed in a manner that suggests that the cases are interchangeable, while other 

electrowetting studies have found that electrode geometry is an important factor in 

the evolution of apparent contact angle with applied voltage. 

 

 

3. How does the observed desiccation pattern change with the amplitude of the 

applied voltage? The reduction in apparent contact angle due to the electrowetting 

force is not infinite. At some applied voltage, contact angle saturation occurs and the 

observed apparent contact angle no longer follows the Young-Lippmann equation. 

This saturation would not necessarily occur for the electrophoretic force. All studies 

in both AC and DC actuation select an applied voltage that is above the saturation 

voltage. The effect of applied voltage in these cases has not been studied. 
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3.0 RESEARCH QUESTION  

Electrowetting (EW) actuation may offer the ability to enhance or suppress of the coffee stain 

effect in a variety of applications. However, implementation of this technique requires that the 

colloidal droplet be separated from the active electrode by a dielectric layer [43–45,50–52,54,57–

66] to prevent electrolysis. The addition of a dielectric polymer surface is an important variable 

for colloidal deposition [9–37]. Once a polymer layer is implemented, Electrowetting on 

Dielectric (EWOD) actuation has the potential to dynamically control colloidal deposition left by 

desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for 

independent control of the fluidic interface and deposition of particles via EW and electrokinetic 

forces.  

EW assisted desiccation of colloidal suspensions has been achieved using multiple electrode 

geometries [43–45]. While no distinction is made between the performance of different electrode 

geometries in [43,44], pervious works have shown that electrode geometry affects the EW force 

[64–66] and thus would affect colloidal deposition. 

The major goal of this thesis is to examine the question: What are the effects of polymer 

selection on the drying dynamics and resultant deposition patterns of desiccated colloidal 

materials? 

To answer this question, this work seeks to experimentally characterize of the desiccation of 

colloidal droplets on substrates that are commonly used in EWOD applications. Characterization 

of the behavior of these systems in the unactuated case is the first step toward understanding the 

effect of surface selection on deposition patterns in EW assisted desiccation. 

This thesis will also present preliminary data that demonstrates that the effects of  

1. Electrode geometry and orientation; and 

2. Magnitude of the applied voltage 

on EWOD actuation of colloidal suspensions to determine if these applications are worthy of 

further study. 
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4.0 EXPERIMENTAL METHODOLOGY 

This investigation seeks to understand the effects of surface selection and electrowetting actuation 

on the deposition patterns left by desiccated colloidal solutions. In an effort to provide a clear 

description of the experimental methodology used in this investigation, the this chapter provides a 

detailed description of the 

1. Experimental facility used; 

2. Device fabrication protocol; 

3. Preparation of aqueous colloidal suspensions; 

4. Electrowetting control system; 

5. Data collection; and  

6. Data analysis. 

A diagram of the experimental methodology is shown in Figure 4.1. 

 

 

Figure 4.1: Schematic diagram of experimental methodology. 
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4.1 Fluids and Substrates 

4.1.1 Colloidal Suspensions 

Deionized water was used as the solvent for all colloidal suspensions in this investigation. It was 

obtained from the Semiconductor & Microsystems Fabrication Laboratory (SMFL) at Rochester 

Institute of Technology (RIT) with a conductivity of 18.2 𝑥 10−6 Ω/cm. 

In all cases examined here, 1.1 ± 0.035 𝜇𝑚 diameter fluorescent carboxylate-modified 

polystyrene microspheres (Catalog Number: F-8823, Lot Number: 1173400) with a charge of 

0.0175 𝑚𝑒𝑞/𝑔 are used as the colloidal material. Aqueous colloidal suspensions at a volume 

fraction of 0.05 % were prepared by diluting a 2 % stock solution of commercially prepared 

polystyrene particles (Life Technologies) in deionized water. The 2 % stock solution was placed 

in an ultrasonic bath (Bransonic 1800) for 15 minutes prior to dilution. Diluted solutions were 

sonicated for 15 minutes in an ultrasonic bath before deposition of an aqueous colloidal 

suspension onto a substrate for desiccation. Similar solutions and methods were presented in [45].  

4.1.2 Substrates 

Substrate preparation was completed in the SMFL at RIT.  Substrates were prepared to obtain 

flat, uniform surfaces with limited surface defects.   

Glass substrates were cleaned in a soap clean solution. A lint-free cleanroom wipe was used to rid 

the surface of dirt and residues. Glass substrates were rinsed thoroughly with DI water, and dried 

by a nitrogen gun. Isopropanol was used to remove oils, and organic residues. After the 

isopropanol clean, substrates were rinsed with DI water, and dried again with a nitrogen gun.  

Silicon substrates were cleaned using a basic Radio Corporation of America (RCA) clean in the 

Metal Oxide Semiconductor (MOS) RCA Bench.  This RCA clean is used to remove organic 

containments, particles, thin oxide layer, light mobile ions, and heavier metal ions. First, the 

substrate is placed in a Piranha clean, a 3:1 mixture of sulfuric acid (H2SO4) and hydrogen 

peroxide (H2O2), at 100°𝐶. The Piranha clean is used to remove most organic matter. Next, the 

substrates are rinsed with DI for 5 minutes.  The substrates are then placed in the Standard Clean 

1 (SC-1), a 5:1:1 solution of DI water (H2O), aqueous ammonium hydroxide (NH4OH), and 
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aqueous hydrogen peroxide (H2O2), at 75°𝐶. The SC-1 is used to remove organic matter, and 

particles, however a thin layer of oxide is grown chemically by the hydrogen peroxide. The 

substrates are rinsed in DI for another 5 minutes, and placed in a 50:1 solution of H2O, and 

Hydrofluoric acid (HF) for 1 minute to remove the thin oxide layer. Next, the substrates are 

placed in the Standard Clean 2 (SC-2), a 5:1:1 solution of DI H2O, aqueous hydrochloric acid 

(HCl), and aqueous H2O2 at 75°𝐶. The SC-2 is used to remove metallic contaminants. Finally, the 

substrates are rinsed for 5 minutes, and then placed in the Spin Rinse/Dryer (SRD). 

Substrates were left bare or coated with a polymer layer to compare a range of equilibrium/resting 

contact angles on hydrophilic to hydrophobic surfaces (Table 4.1).  Surfaces investigated include: 

Glass, Kapton HN, SU-8 3005, and Teflon Amorphous Fluoropolymer (AF). 

 

4.1.3 EWOD Device Fabrication 

Device fabrication was completed in the SMFL at RIT. A side view of the device layout is 

presented in Figure 4.2a, and an example completed device is presented in Figure 4.2b. 

Silicon substrates are scribed, and a basic RCA clean is performed in the MOS RCA Bench as 

explained in section 4.1.3 (Fig. 4.3a).  The clean silicon wafers have a layer of Silicon Dioxide 

(SiO2) grown to a thickness of approximately 5000 Å, electrically insulating the substrate (Fig. 

4.3b). The SiO2 growth is completed in the Bruce Furnace with a wet oxidation process. The wet 

oxidation process uses hydrogen gas, and oxygen which produces steam to increase the rate of 

SiO2 growth. 

A metal layer is deposited using the CVC 601 DC Sputter Tool with a Physical Vapor Deposition 

(PVD) process. Electrodes are formed by depositing and patterning a 8000 Å layer of aluminum 

(Fig. 4.3c). Sputter deposition is a PVD process where energetic ions generated in a DC plasma 

are accelerated towards a “target”. Energy is transferred into the target material allowing it to 

Table 4.1: Equilibrium contact angle 𝜃0 of Teflon AF, SU-8 3005, Kapton HN, and Glass. 

Surface Teflon AF SU-8 3005 Kapton HN Glass 

𝜃0 [°] 120.49 ± 5.35 88.68 ± 4.68 88.65 ± 5.01 23.87 ± 4.68 
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sputter onto your substrate. Dummy wafers are included in this process to measure the actual 

thickness of the Al sputter with the Tencor P2 Profilometer.  

The metal layer was patterned using standard photolithographic techniques (Fig. 4.3d-h). A 

positive photoresist (PR) is spun onto the aluminum using the CEE Manual Photoresist Spinner at 

a thickness of 1.5𝜇𝑚 (Fig. 4.3d). The PR was measured with the Nanometrics 

Spectrophotometer. The photoresist was covered with a positive mask that will define the 

geometry of the electrodes and exposed to UV light with the Karl Suss MA150 Contact Aligner 

(Fig. 4.3e). The exposed photoresist was removed after being developed in the CEE Manual 

Photoresist Developer (Fig. 4.3f). The exposed metal was etched in the Aluminum Etch Wet 

Bench (Fig. 4.3g) and inspected at the Leica Inspection Station to make sure the aluminum was 

completely removed and no undercutting was present. The photoresist was stripped in the 

Positive Resist Solvent Strip Wet Bench (Fig. 4.3h).  

A SiO2 dielectric layer was used when an insulating layer was needed. The dielectric layer was 

deposited using a Plasma Enhanced Chemical Vapor Deposition (PECVD) process using the 

AME P5000. Tetraethyl Orthosilicate (TEOS) is used as source to deposit the silicon dioxide 

(Fig. 4.3i). TEOS is heated up to 390 °C, the wafer is brought into the chamber, and is subject to 

a Radio Frequency (RF) Plasma. This layer is patterned using standard photolithographic 

techniques similar to the metal layer to expose the bond pads (Fig. 4.3j). However the etching of 

the silicon dioxide is completed in the Drytek 482 Quad Etcher (i.e. Reactive Ion Etcher). 

Various hydrophobic layers are deposited over the patterned electrodes with the SCS Manual 

Photoresist Spinner (Fig. 4.3k). In certain cases, the dielectric layer acted as a hydrophobic layer. 

The overall process flow is presented in Figure 4.3. 
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Figure 4.2: (a) Side view sketch of electrowetting on dielectric device, and (b) Top view of sample fabricated 

device consisting of a silicon substrate electrically insulated by silicon dioxide, patterned aluminum electrodes, and 

coated with SU-8 3005 as a dielectric/hydrophobic surface. 
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Figure 4.3: Process flow for EWOD device fabrication. 
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4.1.5 Substrate Surface Preparation 

Surface homogeneity can affect the deposition pattern left by desiccated colloidal droplets. Using 

the same surface, but slightly varying how the surface is cleaned can greatly affect the droplet 

evaporation, and colloidal desiccation profiles obtained.  A uniform, homogeneous surface is 

highly important for repeatable experiments [8,29,33,35]. Proper cleaning of the four surfaces 

(Glass, Kapton HN Polyimide Tape, SU-8 3005 Photoresist, and Teflon AF) observed in this 

thesis was paramount to the consistency and repeatability between experiments.  

I first observed the importance of surface cleanliness on evaporation dynamics and deposition 

patterns when deciding on a cleaning procedure for glass slides. Two cases are presented in 

Figure 4.4 where aqueous colloidal suspensions of polystyrene are desiccated on two glass slides 

with differing cleaning protocols: (i) Glass Cleaning Protocol (GCP) A, and (ii) Glass Cleaning 

Protocol (GCP) B.  

In GCP A, the substrate was rinsed with DI water for a minimum of five minutes, and dried via 

air gun. In GCP B, the substrate was immersed in an acetone bath. This bath was placed in an 

ultrasonic bath for 15 minutes. The glass substrates were rinsed with IPA, and dried via nitrogen 

air gun. Finally, an aqueous (10-1-1) solution of (𝐷𝐼 𝐻20 − 𝑁𝐻4𝑂𝐻 − 𝐻2𝑂2) was prepared. 

Substrates are placed in solution for ten minutes, followed by a DI water rinse, and nitrogen air 

gun dry. Two 1 𝜇𝐿 colloidal suspensions of 1.1𝜇𝑚 diameter fluorescent PS particles were 

deposited onto the two glass substrates. At least 4 depositions were obtained of each cleaning 

protocol. Fluorescent images were acquired using Leica MZ16F fluorescence stereomicroscope, 

and a Sony DFW-V500 color camera. Image processing was completed to quantify the intensity 

over the radial position of the deposition profile in MATLAB and will be discussed in depth in 

Section 4.3 

A representative fluorescent image of the deposition pattern left on a substrate subjected to GCP 

A is presented in Figure 4.4a. The resultant spot exhibits a typical coffee stain pattern. The 

intensity peaks sharply along the outer edge of the droplet (Fig. 4.4b). High intensity is indicative 

of fluorescence which occurs due to the presence of particles in a particular location. In these 

cases, the contact line remains pinned and the evaporative flow dominates over the Marangoni 

flow, which results in a coffee stain type pattern.  
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A representative fluorescent image of the deposition pattern after the rigorous cleaning protocol is 

presented in Figure 4.4c. Here, desiccation results in a concentric ring pattern. The fluorescence 

intensity has multiple smaller peaks as distance from the droplet center increases (Fig. 4.4d). This 

pattern observed resembles the slip-stick pattern discussed in [45].The intensity of the peaks seen 

here indicate that particles are more weakly concentrated in several rings rather than strongly 

concentrated at the original periphery. In this case, the contact line is initially pinned and 

colloidal material is deposited at the periphery. At some point, the contact line becomes unpinned 

and recedes. It becomes pinned again and colloidal material is then deposited at the new 

periphery. This process repeats itself, creating the concentric ring pattern shown in Figure 4.4c. 

This preliminary work was published at the ASME 2015 International Technical Conference and 

Exhibition on Packaging and Integration of Electronic and Photonic Microsystems and ASME 

2015 12th International Conference on Nanochannels, Microchannels, and Minichannels 

(InterPACKICNMM2015). 

 

 

Figure 4.4: (a, c) Fluorescent deposition patterns left after the evaporation of an aqueous colloidal suspension on 

glass substrates and (b, d) dimensionless intensity versus radial position. Substrates were cleaned with (a-b) CP A 

and (c-d) CP B giving a coffee ring distribution and a slip-stick pattern. 
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This work showcased the ability to affect the deposition of particles on a substrate by just 

changing the way the surface was prepared. As a result of this work, glass surfaces were 

subsequently cleaned of organic residues and particulates prior to droplet desiccation. Prior to the 

deposition of aqueous colloidal suspensions, the substrates were cleaned with: (i) a soap clean 

solution, (ii) an Isopropanol bath (removal of organics), (iii) rinsed with DI H2O for at least 5 

minutes (removal of particulates), and (iv) dried with a nitrogen gun. 

Kapton HN polyimide film tape was prepared in two ways: (i) Kapton CP A (KCP A), and (ii) 

Kapton CP B (KCP B). During KCP A the glass substrate was cleaned as previously stated to 

remove organics and particulates from the surface the Kapton tape would adhere to. The Kapton 

tape was then rolled onto the surface with a rubber roller to avoid bubbles and deformations in the 

surface. During KCP B an additional surface clean was implemented. The surface of Kapton was 

cleaned in the same manner that the Glass substrate was: with an Isopropanol bath (removal of 

organics), rinsed with DI H2O for at least 5 minutes (removal of particulates), and dried with a 

nitrogen gun. These two cleaning procedure resulted in quite significant droplet profile 

depositions (Fig. 4.5). The fluorescent images produced were taken using a Leica SP5 Spectral 

Confocal Laser Scanning Microscope. 

 

 

Figure 4.5: Fluorescent deposition patterns left after the evaporation of an aqueous colloidal suspension on Kapton 

HN where the surface was cleaned in accordance to (a) KCP A and (b) KCP B. 
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A fluorescent image of the deposition pattern left on a substrate subjected to KCP A is presented 

in Figure 4.5a. The resultant deposition pattern gives a thin highly intense coffee ring pattern with 

high non-uniformity along the periphery. A fluorescent image of the deposition pattern left on a 

substrate subjected to KCP B is presented in Figure 4.5b. The resultant deposition pattern gave a 

thicker less intense coffee stain pattern, however the periphery was extremely uniform. As a 

result of this work, when depositing on Kapton HN polyimide film tape, KCP B was used. 

For certain polymers the cleaning of the surface prior to desiccation was observed to foul the 

surface. A deposition pattern on Teflon AF that has been cleaned (Fig. 4.6a) in the same methods 

as Kapton HN, performs differently compared to the surface that has not been cleaned (Fig. 4.6b). 

The Teflon AF surface becomes fouled easily resulting in the wetting of the droplet to the 

hydrophilic surface, rather than the initial hydrophobic surface. As a result, in Figure 4.6a the 

droplet spread out to wet the surface resulting in a very large coffee stain formation with very 

little solute distributed in the center of the spot. However, in Figure 4.6b the solute deposits in a 

very uniform manner. The fluorescent images produced were taken using a Leica SP5 Spectral 

Confocal Laser Scanning Microscope. 

 

 

Figure 4.6: Fluorescent deposition patterns left after the evaporation of an aqueous colloidal suspension on Teflon 

AF where the surface was (a) fouled due to attempted cleaning and (b) not cleaned. 
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As a result of this work, when depositing on Teflon AF and SU-8 3005 that was just processed in 

the cleanroom, the surface did not undergo any additional cleaning. 

These results show that surface preparation can influence colloidal deposition on the substrate. As 

such, care was taken to prepare each substrate in a consistent matter. Desiccation experiments 

were also repeated a minimum of 10 times. The average properties and statistical analysis for 

each case are presented below in the Results section. 

4.2 Control System 

Cases involving the application of an electric field in EWOD devices were completed using a 

control system consisting  of a National Instruments PXI system (NI PXI-5402, NI PXI-4072), 

and a Trek PZD700A high voltage amplifier (Fig. 4.7).  

A frequency signal is generated by the NI PXI-5402 Arbitrary Function Generator. The amplitude 

of this signal is amplified with a gain of 200 by a Trek PZD700A high voltage amplifier. Output 

voltage is monitored by the NI PXI-4072 Flex DMM and LCR Meter. The monitor voltage is 

the 1𝑉/200𝑉 “step down” voltage output given by the amplifier. Amplified actuation signals 

used in this investigation ranged between 0 and 500 𝑉𝑅𝑀𝑆 at a frequency of 1 𝑘𝐻𝑧.  

 

 

Figure 4.7: Control System consisting of a National Instruments PXI system (NI PXI-5402, NI PXI-4072), and a 

Trek PZD700A high voltage amplifier used during the application of an electric field in EWOD devices. 
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4.3 Data Collection and Analysis 

The goal of this work is to quantitatively compare the deposition patterns left by desiccated 

colloidal suspensions on a variety of polymer substrates suitable for electrowetting on dielectric 

application. The transient evolution of the droplet interface during desiccation is also observed to 

better understand the formation of the patterns left by these suspension. Fluorescent confocal 

images of the desiccated deposition pattern are used to provide a quantitative analysis of the 

radial distribution of colloidal material deposited on the surface. These data are compared for a 

variety of surfaces in an effort to understand the effects of surface selection in electrowetting 

assisted desiccation and to provide guidelines for selecting the appropriate polymer for 

applications that enhance or suppress the coffee stain effect. 

4.3.1 Transient Optical Measurements 

The transient profile of the droplet interface during deposition was monitored using a Ramé-Hart 

Model 250 Standard Goniometer/Tensiometer with DROPimage Advanced software (Fig. 4.8). 

The droplet stage on this device was leveled and locked in place prior to desiccation. A test 

droplet was deposited to obtain the correct focal plane and each subsequent droplet was placed in 

this same plane (Fig. 4.8a).  

 

 

Figure 4.8: Process flow for transient optical measurements and analysis consisting of (a) Ramé-Hart 250 standard 

goniometer / tensiometer, (b) transient data collection, (c) MATLAB statistical analysis, and (d) general output of 

contact angle 𝜃 and normalized diameter 𝐷/𝐷0 versus normalized time 𝜏. 
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During desiccation, transient measurements of contact angle and contact diameter were calculated 

optically using Ramé-Hart DROPimage Advanced software. A purely numeric calculation for 

contact angles were calculated using numerical derivation of the profile at a specified contact 

point. The contact point is where the droplet touches the substrate, i.e., the baseline. The contact 

angle was calculated by selecting a circular profile using a least squares curve fit [36]. Transient 

measurements were determined at a time interval of 0.5 s. This procedure was repeated 10 times 

for each surface examined (Fig. 4.8b). 

Transient contact angle and contact diameter measurements from multiple trials on the same 

surface were exported into MATLAB (Fig. 4.8c). Custom code was then used to determine 

average values and standard deviations for the contact angles 𝜃 and normalized contact diameters 

𝐷/𝐷0 versus normalized time 𝜏 (Fig. 4.8d). This procedure was repeated for each individual 

surface. The custom MATLAB code may be found in Appendix B.  

4.3.2 Optical Measurements of Deposition Patterns 

Fluorescent images of deposition profiles left by the desiccation of colloidal droplets presented in 

this work were acquired using a Leica SP5 Spectral Confocal Laser Scanning Microscope located 

in the Confocal Microscopy Lab (CML) at RIT (Fig. 4.9 a,b).  

Image acquisition parameters were based on the size and fluorescent properties of the particles 

used. The Argon Laser is adjusted using the Acousto Optical Tunable Filter (AOTF) to image 

each sample at an excitation wavelength of 496 nm. A Leica HyD detector was used to image the 

range of wavelengths between 515 and 550 nm.  

Low temporal and high spatial resolutions were used to define each individual particle in the 

deposition pattern. Each individual pixel was smaller than the size of the particles used in this 

experiment, so the intensity of each particle could be resolved. The gain was adjusted for each 

image in order to present the greatest amount of fluorescent data without oversaturation of the 

image. When analyzing the images the gains of the more intense images were normalized to the 

less intense images by taking a ratio of the gain values, so every image was based off of the 

lowest gain ratio scale. Gain values and corresponding gain ratios used are presented in Table 4.2. 
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Additionally, each surface characterized was measured to find the average intensity of the 

background that would be included in the imaged depositions. The background intensity of many 

biological samples that are generally fluorescently imaged have been found to be significant due 

to the added intensity from cell culture mediums and other components fluorescing. This 

fluorescence adds to the overall signal measured, and needs to be subtracted from the overall 

signal to produce accurate and precise quantitative data [70,71]. The representative background 

intensity was subtracted from each image processed, and the average intensity of the background 

of three characteristic surfaces is presented in Table 4.3. Each value has been multiplied by the 

gain factor represented in Table 4.2.  

 

Images acquired in the CML were analyzed with a custom code in MATLAB (Appendix B) to 

produce fluorescent intensity profiles of droplet depositions based on the radial position (Fig. 

4.9c,d). Each deposition was not perfectly circular (Fig. 4.9b), so a methodology was created to 

better represent the image intensity of a non-uniform circular deposition (Fig. 4.10).  The image 

was broken up into angular sectors (Fig. 4.10a), swept across the entire profile of the droplet (Fig. 

4.10b), and sectioned into radial divisions (Fig. 4.10c). The image was quantified based on the 

percentage of the radial position from the center of the deposition to the radius following the 

contour of the deposition (Fig. 4.10d). 

Table 4.2: Gain values and gain ratios used for image analysis for Teflon AF, SU-8 3005, Kapton HN, and Glass. 

Surface Teflon AF SU-8 3005 Kapton HN Glass 

Gain Value 10 20 100 100 

Gain Ratio 100/10 100/20 1 1 

 

Table 4.3: Background intensity 𝐼𝐵 of TeflonAF, SU-8 3005, Kapton HN, and Glass. 

Surface Teflon AF SU-8 3005 Kapton HN Glass 

𝐼𝐵 [bit] 2.90 ± 0.30 6.42 ± 1.51 0.95 ± 0.11 0.65 ± 0.12 

 



-49- 

 

 

 

 

Figure 4.9: Process Flow for optical measurements and analysis of deposition profiles including (a – b) 

Fluorescent Image acquisition, (c) MATLAB image analysis, and (d) a general output of image intensity versus 

radial position. 

  

Figure 4.10: Schematic of image intensity analysis completed in MATLAB consisting of: (a) breaking up an 

image into angular sectors, (b) sweeping across entire profile, (c) breaking angular sectors into radial divisions, and 

(d) analyzing image intensity based on radial position. 
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The custom code created in MATLAB analyzed each fluorescent image produced in the CML. 

The fluorescent image was processed by: 

(i) Reading in the original image (Fig. 4.11a); 

(ii) Converting the RGB image to grayscale; 

(iii) Setting a grayscale threshold via the Otsu Method [72]; 

(iv) Converting the grayscale image to black and white; 

(v) Finding the largest boundary and the center point (Fig. 4.11b); 

(vi) Calculating the average intensity and radius of the image; 

(vii) Dividing the image up into 100 angular sectors (Fig. 4.12); 

(viii) Sectioning each angular sector into 100 annular divisions → annular sectors (Fig. 4.12); 

(ix) Calculating the intensity of each angular sector as a function of the local radius; and  

(x) Calculating the average intensity along the radial segment of each image (Fig. 4.9d).  

At least 10 images were repeated on all surfaces analyzed producing image intensity versus radial 

position of an image (Fig. 4.9b).  

 

 

Figure 4.11: Fluorescent Image Analysis Process Flow in MATLAB: (a) input of original RGB image, conversion 

to grayscale, conversion to BW using the Otsu Method [72], (b) boundary and center point location, (c) resultant 

average intensity and radius of total droplet. 



-51- 

 

 

 

 

 

 

Figure 4.12: Schematic representation of the breakdown of a droplet into angular sectors that get broken up into 

angular divisions resulting in annular sectors. A 6 x 6 matrix division is illustrated, however during image analysis 

all images were broken up into 100 angular sectors and 100 annular divisions. 
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5.0 RESULTS & ANALYSIS  

Control of aqueous colloidal deposition has advantages in combustion engines [26], micro/nano 

fabrication [18,37], and the manufacturing of novel optical and electronic material [28]. The 

presence of the coffee stain pattern is undesirable in many printing [14–16,27] and medical 

diagnostics processes [9,19]. Suppression of the coffee stain effect has been achieved by the 

application of an electric field [43–45]. While coffee stains are undesirable in many applications, 

they have recently been used to produce low cost transparent conductive films by controlling 

colloidal deposition of conductive inks [14–16] and carbon nanotubes [13].  Feature sizes were 

reduced by exploiting the coffee stain effect to create parallel lines from printed rivulets [14,15] 

and overlapping conductive rings from droplets [13,16]. Enhancement of the coffee stain effect 

may also be beneficial for controlled deposition of metal vapor [46] and biological structures 

[47].  

The wide variety of applications for the enhancement or suppression of the coffee stain effect 

requires deposition on a variety of surfaces. Electrowetting on Dielectric (EWOD) actuation has 

the potential to dynamically control colloidal deposition left by desiccated droplets to either 

suppress or enhance the coffee stain effect. It may also allow for independent control of the 

fluidic interface and deposition of particles via Electrowetting (EW) and electrokinetic forces. 

This work will observe the transient evolution of a droplet interface shape during desiccation as 

well as the resulting colloidal deposition. Qualitative and quantitative comparisons of these 

results will be used to compare multiple different cases in an effort to provide insight into the 

questions posed above. Unactuated colloidal suspensions will be desiccated on a variety of 

substrates commonly used in EWOD applications.  

Preliminary results will also be presented examining droplets actuated via AC EW to examine the 

effect of electrode geometry and applied voltage on EW behavior and colloidal depositions in 

these cases. 
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5.1 Effect of Surface Selection on Colloidal Droplet Desiccation 

EWOD actuation has the potential to dynamically control the contact line [43] and the motion of 

particles [45] in a colloidal suspension as it dried. This means of actuation has been used to 

suppress the coffee stain effect with AC [43,44] and DC [45] actuation. As such, it has the 

potential to independently control the fluidic interface and deposition of particles via EW and 

electrokinetic forces. A fundamental understanding of this phenomenon may also be used to 

develop an actuation scheme that can be used to enhance the coffee stain effect.  

A dielectric material is required for EW actuation in order to prevent electrolysis. In some cases, 

an additional hydrophobice layer is added above the dielectric layer to increase the equilibrium 

contact angle of the fluid [73]. Recent works that use EW actuation to control colloidal deposition 

have used multiple polymer surfaces without a rationale for the selection of a specific polymer 

[43–45]. Since pervious works have shown that surface selection is an important criterion for 

colloidal deposition [8,30,31,35], it is reasonable to examine how these depositions form on 

substrates that are commonly used in electrowetting on dielectric applications. 

Surface interaction with aqueous colloidal suspensions plays an important role in formation of 

deposition profiles. It seems likely that surface selection is an important parameter that should be 

selected carefully based on experimental or theoretical data. 

5.1.1 Transient Interface Shape and Deposition Profile Left during Colloidal 

Droplet Desiccation on Glass and SU-8 3005 

Surface interaction with aqueous colloidal suspensions plays an important role in formation of 

deposition profiles [26,41]. Transient interface shape and deposition profile observations can help 

understand how colloidal suspensions interact with various surfaces. 

An aqueous colloidal suspension containing 1.1 𝜇𝑚 diameter fluorescent carboxylate-modified 

polystyrene microspheres was prepared at a volume fraction of 0.05%. A 1𝜇𝐿 droplet was 

desiccated on Glass and SU-8 3005 to understand the effect that adding a polymer coating has on 

colloidal deposition. For each case, at least 10 trials were performed. Every transient deposition 

was observed using a Ramé-Hart Model 250 Standard Goniometer/Tensiometer with 

DROPimage Advanced software to better understand the transient interface shape. Each 
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deposition profile left by the colloidal droplet desiccation was imaged using a Leica SP5 Spectral 

Confocal Laser Scanning Microscope in the Confocal Microscopy Laboratory (CML). 

Colloidal deposition patterns for Glass and SU-8 3005 are shown in Figure 5.1. Addition of an 

SU-8 3005 layer plays an important role in the resultant distribution of colloidal material on the 

surface.  

On Glass, the resultant deposition pattern resembles a typical coffee stain deposition, with the 

majority of particles deposited at the periphery of the spot (Fig. 5.1a).  The initial average contact 

diameter 𝐷𝐼 = 2.85 ± 0.52 𝑚𝑚 is approximately the same as the final deposition diameter 𝐷𝐹 =

2.86 ± 0.23 𝑚𝑚 with 𝐷𝐼/𝐷𝐹 = 0.99 ± 0.05 [−]. On SU-8 3005, the resultant deposition pattern 

appears to be smaller, more uniform, and more intense than the deposition profile observed on 

Glass (Fig. 5.1b). Interestingly, the deposition on SU-8 3005 resulted in an initial contact 

diameter 𝐷𝐼 = 1.58 ± 0.12 𝑚𝑚  and a final deposition diameter 𝐷𝐹 = 0.76 ± 0.06 𝑚𝑚, and a 

corresponding 𝐷𝐼/𝐷𝐹 = 2.09 ± 0.07 [−]. The observed diameter reduction suggests the contact 

line moves in the SU-8 3005 case, but not on Glass. 

 

 

Figure 5.1: Top down view of deposition profile left during colloidal droplet desiccation on (a) Glass and (b) SU-8 

3005. The initial contact diameter of the droplet is represented by a dashed line. 
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Fluorescent Images acquired via the CML (Fig. 5.1) were analyzed with a custom MATLAB 

code producing quantitative data about the resultant desiccation shape, size, and intensity profile 

(Table 5.1).  On Glass, the average spot intensity 𝐼 ̅of the resultant deposition pattern was 

calculated to be 3.59 ± 1.53 [𝑏𝑖𝑡]. On SU-8 3005, the average intensity 𝐼 ̅of the resultant 

deposition pattern was calculated to be 243.42 ± 22.10 [𝑏𝑖𝑡].  

The SU-8 3005 spot is much more intense than the spot on Glass due to the smaller final diameter 

of the desiccation. The collection of fluorescent particles in a smaller overall final diameter 

results in a larger mean intensity. 

 

The average intensity and average final diameter data was used to normalize the intensity values 

and the radial positions presented in Figure 5.2. The deposition of material on Glass resembles a 

traditional coffee stain pattern with a maximum intensity of 17.85 [𝑏𝑖𝑡] occurring at the 

periphery of the deposition. This maximum intensity is 397.8 % larger than the average intensity 

of the spot (Fig. 5.2a). Interestingly, the deposition pattern observed on SU-8 3005 was 

significantly more uniform. The maximum intensity of 293.22 [𝑏𝑖𝑡] occurred at the center of the 

droplet and was only 20.5% greater than the mean. This maximum intensity held constant from 

0% to around 30% of the radial position. At this point the intensity appeared to follow a 

decreasing trend up until around 98% of the radial position where the intensity drops off to a 

minimum value of 49.17 [𝑏𝑖𝑡]. The minimum intensity occurring at the periphery of the droplet 

is 20.2% of the mean intensity (Fig. 5.2b). 

As shown in Figures 5.1 b and 5.2 b, the deposition left on SU8 is smaller, more intense and more 

uniform. Not only that, the final diameter of the SU-8 3005 deposition decreased to 48.1 % of the 

Table 5.1: Equilibrium contact angle 𝜃0, average initial diameter 𝐷𝐼, average final diameter 𝐷𝐹, diameter ratio 

𝐷𝐼/𝐷𝐹, and average Intensity 𝐼 ̅of Glass and SU-8 3005. 

Surface Glass SU-8 3005 

𝜃0 [°] 23.87 ± 4.68    88.68 ± 4.68    

𝐷𝐼 [𝑚𝑚] 2.85 ± 0.52 1.58 ± 0.12 

𝐷𝐹 [𝑚𝑚] 2.86 ± 0.23 0.76 ± 0.06 

𝐷𝐼/𝐷𝐹 [−−] 0.99 ± 0.05 2.09 ± 0.07 

𝐼̅ [𝑏𝑖𝑡] 3.59 ± 1.53 243.42 ± 22.10    
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initial diameter while the initial and final diameters on Glass are approximately equal. This 

suggests that drying dynamics, and particle deposition on SU-8 3005 are significantly different 

than those on Glass. In order to understand more clearly how the particles deposit on the substrate 

transient observations of the interface shape is needed. 

 

 

    Figure 5.2: Normalized image intensity 𝐼/𝐼 ̅versus radial position (solid dots) with three standard deviations 

(dashed lines) for (a) Glass and (b) SU-8 3005. 
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Transient deposition was observed using a Ramé-Hart Model 250 Standard 

Goniometer/Tensiometer with DROPimage Advanced software to better understand the transient 

interface shape of the sessile droplet on Glass and SU-8 3005. Backlit images of side view 

interface profiles for droplets containing 1.1 𝜇𝑚 diameter fluorescent microspheres are presented 

in Figure 5.3. Droplets were desiccated on Glass (Fig. 5.3-Ia-g) and on SU-8 3005 (Fig. 5.3-IIa-g) 

with a total evaporation time of 417 ± 62 𝑠𝑒𝑐 and 759 ± 143 𝑠𝑒𝑐, respectively. The total 

evaporation time was used to calculate the normalized time 𝜏 given in the side view transient 

interface shape profile presented in Figure 5.3. 

 

 

Figure 5.3: Side view images of evaporating colloidal droplet on (I) Glass and (II) SU-8 3005 at (a) 𝜏 = 0.0,  

(b) 𝜏 = 0.1, (c) 𝜏 = 0.2, (d) 𝜏 = 0.3, (e) 𝜏 = 0.5, (f) 𝜏 = 0.7, (g) 𝜏 = 0.9. Red dashed lines indicate the 

initial contact area of the droplet on the substrate. 
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The contact angle 𝜃 and normalized diameter 𝐷/𝐷0 (where 𝐷0 = 𝐷𝐹) profiles presented in Figure 

5.4 were produced using a custom code in MATLAB that analyzed the side view images of 

evaporating colloidal droplets on Glass and SU-8 3005. The total drying time was used to 

calculate the normalized time 𝜏 presented these graphs.  

 

Quantitative analysis of the transient contact angle and normalized contact diameter of the 

droplets desiccated on glass with corresponding regimes is presented in Figure 5.4a,b.  For the 

droplets desiccated on glass, the desiccation process can be segmented into two observable 

regimes. These regimes are representative of the: (i) Constant Contact Radius (CCR) and (ii) 

mixed mode regimes observed in [26,48]. From 𝜏 = 0.0 − 0.2 the Triple Contact Line (TCL) is 

pinned (Fig. 5.3-Ia-c). As a result the contact angle decreases from 𝜃0 ≈ 24° to 𝜃 ≈ 19° while 

the contact diameter remains at a constant 𝐷 ≈ 2.84 𝑚𝑚 (Fig. 5.4a,b). This CCR regime we 

 

Figure 5.4: (a,c) Contact angle (𝜃) and (b,d) normalized diameter (𝐷/𝐷0) of evaporating colloidal droplet on Glass 

and SU-8 3005 as a function of normalized time (𝜏). 
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observe occurs when the contact line is pinned. Reductions in the droplet volume are due to 

evaporative flux at the TCL resulting in a decreased contact angle over time. As the contact angle 

decreases more, the evaporative flux increases bringing more solute to the pinned TCL. At 

approximately 𝜏 = 0.2 the contact angle and contact diameter both decrease with time (Fig. 

5.4a,b) until the droplet is so small that the software cannot observe the droplet anymore (Fig. 

5.3-Id-g). While the Ramé-Hart DROPImage Advanced software is unable to measure contact 

angles below approximately 20° reliably [74], transient side view images in Figure 5.3-Ia-c seems 

to be consistent with the CCR regime and Figure 5.3-Id-g  seems to be consistent with the mixed 

phase described in [26,48] where the contact angle and diameter both reduce over time. The 

software picks up a decrease in the diameter that could be due to the inability for the software to 

detect lower contact angles resulting in inaccuracies in measurements at these low contact angles. 

The deposition profiles presented repeatedly gave coffee-stain patterns where the particles are 

drawn to the TCL indicating a pinned contact line for the majority of the desiccation. 

Quantitative analysis of the transient contact angle and normalized contact diameter of the 

droplets desiccated on SU-8 3005 with corresponding regimes is presented in Figure 5.4c,d.  For 

the droplets desiccated on SU-8 3005, the desiccation process can be segmented into three 

observable regimes. These regimes are representative of the: (i) CCR, (ii) Constant Contact Angle 

(CCA), and (iii) mixed mode regimes observed in [26,48]. In the CCR regime, the Triple Contact 

Line (TCL) is pinned from 𝜏 = 0.0 − 0.2 (Fig. 5.3-IIa-c). Here, the contact angle decreases from 

𝜃0 ≈ 89° to 𝜃 ≈ 72° while the contact diameter remains at a constant 𝐷 ≈ 1.58 𝑚𝑚 (Fig. 

5.4c,d). During this regime, the contact line is pinned and the reduction in volume caused by 

evaporation at the TCL results in a reduction in the contact angle over time. As the evaporative 

flux draws the particles to the pinned TCL, the Marangoni flow acts in the opposite direction to 

resuspend the particles due to the temperature gradient across the droplet. During this regime 

particles may be deposited at the TCL, however it is unable to view these particles optically with 

the software in current use.  

As the contact angle decreases, the force pulling in the contact line increases. In this case, that 

force eventually overcomes contact line friction and the TCL slips free. A constant contact angle 

and receding diameter is observed from 𝜏 = 0.2 − 0.6 (Fig. 5.3-IIc-e) (i.e. CCA regime). Here, 

the contact angle stays at approximately 72° while the diameter recedes to around 45% of the 

initial diameter (Fig. 5.4c,d). If particles were deposited onto the surface at the TCL during the 

CCR regime, the slipping and recession of the TCL may have resuspended these particles. This 
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conclusion can be drawn from the lack of fluorescent particles left on the substrate at the initial 

diameter as observed in Figure 5.1b. 

For 𝜏 = 0.6, both the contact angle and contact diameter decrease with time (Fig. 5.3-IIf,g). This 

is characteristic of the mixed regime that occurs due to either the combination of the contact line 

slipping and the contact angle decreasing or intermittent changes between both the CCA and CCR 

regime (Fig. 5.4c,d). It is theorized that the particles deposit onto the substrate at some point 

during this regime. From the transient measurements, the deposition profile is observed to reduce 

to 48.1 % of the initial diameter just before the droplet enters the third regime (Fig. 5.4d) at 

around 𝜏 = 0.6. The evaporative flux continues to bring particles to the TCL, but at this point the 

particles start to deposit onto the surface. When observing the transient side view images, the 

droplet continues to reduce in diameter, and move inwards (Fig. 5.3-IIf,g). As the diameter 

decreases, more particles continue to deposit onto the surface while the contact line recedes 

inwards. The result is a greater amount of solute built up at the center than the edge of the 

resultant deposition. A larger overall intensity at the center of the deposition is observed (Fig. 

5.2b). The larger deposition at the center may be attributed to more time to deposit in the center 

of the droplet or the Marangoni flow resuspending particles and bringing them to the center of the 

droplet to pack there. There are many forces at play when this contact line is pulling inwards and 

the small volume of fluid makes it difficult to observe what occurs during this regime. To 

understand how these particles deposit at this regime, a different method of transient observations 

that can individually resolve each particle is necessary for future experiments. 

In future experiments, a potential improvement to this experimental setup could be the 

incorporation of a camera below or above the substrate to optically observe and track individual 

particles moving at the TCL (e.g. particle image velocimetry). Incorporation of a particle image 

velocimetry (PIV) transient observation can lead to better understanding of the packing order at 

the TCL, and motion of the streamlines in the colloidal suspension during evaporation. However, 

at this time the Digital Microfluidics Laboratory (DMFL) did not have this capability. Future 

collaboration with other partners at RIT with this technology should be pursued to improve 

qualitative and quantitative observations of evaporating colloidal suspensions. 

For desiccated droplets, understanding the transition into different evaporative regimes is 

necessary for understanding how these colloidal suspensions deposit onto different substrates. 

The receding contact angle is of particular importance as it governs when the contact line will 
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unpin (Fig. 5.5). Both Glass and SU-8 3005 started in the CCR regime. In the CCR regime, the 

Contact Radius (CR) stays the same while the Contact Angle (CA) decreases. Since SU-8 3005 

has a larger receding CA (i.e. smaller hysteresis) it makes it more likely to have a moving contact 

line. When the contact line recedes early in the process, suppression of the coffee stain is more 

likely because there is not a lot of the solute from the dispersed phase built up at the TCL. The 

moving contact line sweeps the solute inward resulting in most of the deposition occurring at the 

end of the process after the contact line has receded.  Therefore, when depositing a fluid on a 

substrate with a large receding contact angle and a small hysteresis the resultant spot after total 

evaporation is observed to be smaller than the original diameter given by the equilibrium contact 

angle. The receding CA on Glass was too low to even be measured accurately (i.e.  < 20°). The 

low receding CA resulted in the contact line remaining pinned for the majority of the process. 

Therefore, most of the solute is deposited at the periphery. Deposition of the solute at the 

periphery decreases the mobility of the contact line more by acting like a wedge. Since the CA 

continues to decrease, the height at the edge of the droplet is further reduced. This increases the 

evaporative flux at the contact line, which brings more solute to the edge of the droplet. One 

method to predict the evaporative regimes that a droplet on a surface will experience could be to 

measure the receding contact angle. 

 

 

Figure 5.5: Advancing and receding contact angle of SU-8 3005. Black arrow shows the direction of fluid. 
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The small receding contact angle on Glass makes it harder for the contact line of a droplet to 

move on the substrate and was observed to stay pinned at the TCL resulting in a deposition 

pattern at the same diameter as the original contact diameter. The small hysteresis on SU-8 3005 

makes it easier for the TCL of the droplet to move on the substrate and sweep the solute inward 

resulting in a smaller resultant deposition diameter than the original diameter given by the 

equilibrium contact angle.  

In the case of Glass and SU-8 3005, the resultant deposition pattern appears to be a function of: 

(i) the equilibrium contact angle and (ii) receding contact angle. The equilibrium contact angle 

determines the initial diameter of the droplet. A decrease in the contact angle to a contact angle 

must occur for the contact line to move. However, the contact angle of the droplet must be 

reduced to some value close to the receding contact angle for the contact line to unpin. If the 

receding contact angle is very large (i.e. small hysteresis) the contact line has more of an ability 

to move. Therefore, the resultant spot after total evaporation is observed to be smaller than the 

original diameter when depositing a fluid on a substrate with a large receding contact angle.  

The comparison of desiccation of colloidal suspensions on Glass and SU-8 3005 suggests that,  

1. Initial contact diameter can be determined from the droplet equilibrium CA; 

2. Reduction in contact diameter can be predicted from the receding CA; 

3. Smaller depositions are expected to have a higher intensity; and 

4. Droplets with mobile contact lines are expected to produce more uniform 

depositions. 

Transition into a regime where the contact angle has been decreased to a value close to the 

receding contact angle (e.g. the CCA region) is beneficial for applications seeking to suppress the 

appearance of the coffee ring formation. This transition is easier for solid-liquid systems that have 

a smaller hysteresis and larger receding contact angle. Conversely, applications who seek to 

enhance the coffee stain pattern would benefit for the selection of a material that has a very large 

hysteresis and small receding contact angle resulting in a pinned TCL. These surfaces may move 

directly from the CCR region to the mixed region. Since different surfaces may be more 

appropriate for different applications, a method to identify which surfaces transition from the 

CCR to the CCA and mixed regimes, and at what point is necessary. Transient observations of the 

interface during deposition are required to understand how the final deposition pattern is formed. 
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5.1.2 Transient Interface Shape and Deposition Profile Left during Colloidal 

Droplet Desiccation on Multiple Surfaces 

Section 5.1.1 shows that adding a polymer layer has the potential to impact transient interface 

shape and deposition patterns left during colloidal droplet desiccation. Surface interaction with 

aqueous colloidal suspensions plays an important role in formation of deposition profiles. 

Transient interface shape and deposition profile observations can help understand how colloidal 

suspensions interact with various surfaces. Selection of a polymer layer in EWOD assisted 

colloidal droplet desiccation is important and care should be taken in the selection process. 

Results presented above suggest that the evaporative characteristics of an aqueous colloidal 

droplet may be predicted by characterizing the hysteresis of the continuous phase of the 

appropriate colloidal suspension. The coffee ring effect may be suppressed when transitioning 

into a regime where the contact angle has been decreased to a value close to the receding contact 

angle (e.g. the CCA region). However, the coffee ring effect may be enhanced when a material 

has a very small receding contact angle resulting in a pinned TCL. These surfaces may move 

directly from the CCR region to the mixed region. Observing the transient interface shape and 

deposition profile on multiple surfaces can be used to test the viability of these predictions. 

The comparison of colloidal deposition on glass and SU-8 3005 suggests that the relative size, 

average intensity, and intensity distribution of the colloidal deposition can be predicted using the 

(i) equilibrium contact angle and (ii) receding contact angle. This section will use those 

parameters to predict the colloidal deposition patterns left on Teflon AF and Kapton HN 

polyimide film tape. Teflon AF was chosen as it is commonly chosen as a hydrophobic layer in 

digital microfluidic applications, while Kapton HN is a common material used in flexible 

electronics. The measured equilibrium contact angle 𝜃0, advancing contact angle 𝜃𝑎, and receding 

contact angle 𝜃𝑟 are presented in Table 5.2. 
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While the equilibrium contact angle is similar for Kapton HN and SU-8 3005, the receding 

contact angle for Kapton HN is significantly lower. The 𝜃𝑟 for Kapton HN was too low to even 

be measured accurately (i.e.  < 20°) just like 𝜃𝑟 for Glass. Kapton HN is predicted to (i) have an 

initial contact diameter similar to SU-8 3005, (ii) have a pinned TCL for the majority of the 

process, and (iii) have more deposition at the periphery. 

Teflon AF has an equilibrium and receding contact angle that is larger than both SU-8 3005 and 

Glass. Teflon AF is predicted to (i) have a smaller initial contact diameter than SU-8 3005 due to 

the large 𝜃0, (ii) have a TCL that unpins and recedes much more easily than the TCL of SU-8 

3005, and (iii) have a more overall uniform deposition pattern of particles. The recession of the 

TCL is due to the smaller hysteresis and larger receding contact angle measured. 

An aqueous colloidal suspension containing 1.1 𝜇𝑚 diameter fluorescent carboxylate-modified 

polystyrene microspheres was prepared at a volume fraction of 0.05%. A 1 𝜇𝐿 droplet was 

desiccated on Glass, SU-8 3005, and Kapton HN to understand the effect that adding a polymer 

coating has on colloidal deposition. A 2 𝜇𝐿 droplet was desiccated on Teflon AF due to the 

hydrophobicity of the surface and the inability for a 1 𝜇𝐿 droplet to disengage from the pipette tip 

and wet the Teflon AF surface. For each case, at least 10 trials were performed. Every transient 

deposition was observed using a Ramé-Hart Model 250 Standard Goniometer/Tensiometer with 

DROPimage Advanced software to better understand the transient interface shape. Each 

deposition profile left by the colloidal droplet desiccation was imaged using a Leica SP5 Spectral 

Confocal Laser Scanning Microscope in the Confocal Microscopy Laboratory (CML). 

 

Table 5.2: Equilibrium contact angle 𝜃0 and receding contact angle 𝜃𝑟 of Glass, Kapton HN, SU-8 3005, and Teflon 

AF. 

Surface Glass  Kapton HN  SU-8 3005 Teflon AF 

𝜃0 [°] 23.87 ± 4.68 86.05 ± 5.01 88.68 ± 4.68 120.49 ± 5.35 

𝜃𝑎 [°] N/A N/A 97.64 ± 4.17 124.62 ± 3.90 

𝜃𝑟 [°] N/A N/A 65.89 ± 5.55 111.92 ± 4.20 
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The total evaporation times for aqueous colloidal suspensions on Glass, Kapton HN polyimide 

film tape, SU-8 3005, and Teflon AF are 417 ± 62 𝑠, 678 ± 99 𝑠, 759 ± 143 𝑠, and 2475 ±

498 𝑠𝑒𝑐 respectively (Fig. 5.6). It is worth noting that the increased evaporation time in Teflon 

AF is not only due to the larger contact angle, but also due to the larger volume used. 

Addition of a polymer layer plays an important role in the resultant distribution of colloidal 

material on the surface. Representative colloidal deposition patterns for Glass, Kapton HN, SU-8 

3005, and Teflon AF are shown in Figure 5.7.  

Like Glass, the deposition pattern on Kapton HN resembles a coffee stain deposition. The initial 

average contact diameter 𝐷𝐼 = 1.64 ± 0.11 𝑚𝑚 is approximately the same as the final deposition 

diameter 𝐷𝐹 = 1.64 ± 0.12 𝑚𝑚 with 𝐷𝐼/𝐷𝐹 = 1.00 ± 0.09 [−]. The observed diameter did not 

seem to reduce suggesting a pinned TCL on Kapton HN. The larger initial contact angle of 

Kapton HN resulted in a smaller initial contact diameter than the contact diameter observed on 

Glass. 

 

Figure 5.6: Total drying time of colloidal droplets on Glass, Kapton HN, SU-8 3005, and Teflon AF. 
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Like SU8, Teflon AF has a large receding contact angle. The resultant deposition pattern on 

Teflon AF appears to be smaller, more uniform, and more intense than the deposition profile 

observed on Glass and Kapton HN. The deposition on Teflon AF resulted in an initial contact 

diameter 𝐷𝐼 = 1.54 ± 0.10 𝑚𝑚  and a final deposition diameter 𝐷𝐹 = 0.73 ± 0.11 𝑚𝑚, and a 

corresponding 𝐷𝐼/𝐷𝐹 = 2.11 ± 0.34 [−]. The observed diameter reduction suggests the contact 

line moves in the Teflon AF case as predicted by a high receding contact angle. However, the 

large initial contact angle of Teflon AF did not result in a significantly smaller initial contact 

 

Figure 5.7: (a) Top down view of deposition profile, (b) Average Diameter (D) of colloidal droplet during 

desiccation, and (c) diameter ratio of initial diameter 𝐷𝐼 to final diameter 𝐷𝐹 on Glass, Kapton HN, SU-8 3005, and 

Teflon AF. The initial contact diameter of the droplet is represented by a white dashed line. 
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diameter when compared to SU-8 3005. This is attributed to the larger (2 μL) volume used for 

Teflon AF depositions, while SU-8 3005 depositions used 1 μL sized volumes. If a smaller 

volume of fluid is used for Teflon AF, a smaller initial diameter should occur and smaller final 

deposition pattern may occur. 

Fluorescent Images acquired via the CML (Fig. 5.7a) were analyzed via MATLAB producing 

quantitative data about the resultant desiccation shape, size, and intensity profile (Table 5.3).   

The average spot intensity 𝐼 ̅of the resultant deposition pattern on Glass, Kapton HN, SU-8 3005, 

and Teflon AF are presented in Table 5.3 and Figure 5.8. As predicted, Kapton HN had a larger 

average intensity than Glass due to the smaller initial contact diameter. Teflon AF had a 

significantly larger average intensity due to the large equilibrium and receding contact angle 

producing a small, uniform, and intense spot. This increased intensity of the Teflon AF spots 

presented is also attributed to the larger volume of fluid used during desiccation resulting in more 

particles concentrating in the final deposition.  

 

The average intensity and average final diameter data was used to normalize the intensity values 

and the radial position given in Figure 5.9. 

Table 5.3: Equilibrium contact angle 𝜃0, average initial diameter 𝐷𝐼, average final diameter 𝐷𝐹, diameter ratio 𝐷𝐼/
𝐷𝐹, and average intensity 𝐼 ̅of Glass, Kapton HN, SU-8 3005, and Teflon AF. 

Surface Glass Kapton HN SU-8 3005 Teflon AF 

𝜃0 [°] 23.87 ± 4.68    86.05 ± 5.01    88.68 ± 4.68    120.49 ± 5.35      

𝐷𝐼 [𝑚𝑚] 2.85 ± 0.52 1.64 ± 0.11 1.58 ± 0.12 1.54 ± 0.10 

𝐷𝐹 [𝑚𝑚] 2.86 ± 0.23 1.64 ± 0.12 0.76 ± 0.06 0.73 ± 0.11 

𝐷𝐼/𝐷𝐹 [−−] 0.99 ± 0.05 1.00 ± 0.09 2.09 ± 0.07 2.11 ± 0.34 

𝐼̅ [𝑏𝑖𝑡] 3.59 ± 1.53 11.92 ± 5.74    243.42 ± 22.10  870.09 ± 195.90 
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Figure 5.8: Average intensity of Glass, Kapton HN, SU-8 3005, and Teflon AF. 

 

Figure 5.9: Normalized intensity 𝐼/𝐼 ̅versus radial position of (a) Glass, (b) Kapton HN, (c) SU-8 3005, and (d) 

Teflon AF. 
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As predicted, the deposition observed on Kapton HN resembles a traditional coffee stain pattern 

similar to the coffee stain produced when depositing on Glass. However, the equilibrium contact 

angle of Kapton HN is similar to SU-8 3005 so the initial contact diameter is smaller and more 

intense than observed on Glass. Here, the maximum intensity (27.78 [𝑏𝑖𝑡]) occurred at the 

periphery of the deposition and was 133.1 % larger than the average intensity of the spot. 

However, the variance in droplet intensity for Kapton HN is much greater than that of Glass. This 

may be attributed to surface imperfections on the Kapton HN polyimide film tape inhibiting the 

outward radial motion of the particles to the periphery. The imperfections on Kapton HN are 

varied resulting in this large variance of intensity in the center of the coffee-stain.  

As predicted, the deposition pattern observed on Teflon AF was smaller, more intense, and more 

uniform than the pattern observed on SU-8 3005. Like SU8, the deposition pattern observed on 

Teflon AF exhibits evidence of a receding contact line. The final diameter of the Teflon AF 

deposition is 110% smaller than the initial diameter. The maximum intensity of 911.45 [𝑏𝑖𝑡] 

occurred at the center of the droplet, but was only  4.8 % greater than the mean. This maximum 

intensity had a very slight decrease from 0 % to around 60 % of the radial position. At that point 

the intensity appeared to stay fairly constant up until 90 % of the radial position where the 

intensity drops off. The minimum intensity occurs at the periphery of the droplet with a value of  

277.17 [𝑏𝑖𝑡] that is 31.9 % of the mean intensity. The increased intensity in the deposition on 

Teflon is expected due to the higher equilibrium contact angle and droplet volume. Interestingly, 

the variance in the Teflon AF spot is greater than SU-8 3005. Additionally, Teflon AF did not 

produce a large variability in the intensity over the deposition profile as observed in SU-8 3005. 

Although there is a greater intensity at the center of the deposition on Teflon AF, it is not as 

significant of an increased intensity as observed for SU-8 3005. 

Transient deposition was observed using a Ramé-Hart Model 250 Standard 

Goniometer/Tensiometer with DROPimage Advanced software to better understand the transient 

interface shape. Backlit images of side view interface profiles for droplets containing 1.1 𝜇𝑚 

diameter fluorescent microspheres are presented in Figure 5.10. Droplets were desiccated on 

Glass (Fig. 5.9-Ia-g), Kapton HN (Fig. 5.10-IIa-g), SU-8 3005 (Fig. 5.10-IIIa-g), and Teflon AF 

(Fig. 5.10-IVa-g). The total evaporation time was used to calculate the normalized time 𝜏 given in 

the side view transient interface shape profile presented in Figure 5.10. 
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The contact angle 𝜃 and normalized diameter 𝐷/𝐷0 where 𝐷0 = 𝐷𝐹 profiles presented in Figure 

5.11 were produced using a custom code in MATLAB. The total drying time was used to 

calculate the normalized time 𝜏 presented these graphs. The resultant deposition patterns observed 

in Figure 5.7a are predicted to be a function of the hysteresis, equilibrium contact angle, and 

receding contact angles. The equilibrium contact angle determines the initial diameter of the 

droplet. The hysteresis affects how close the receding contact angle is to the equilibrium contact 

angle. The receding contact angle affects the change in contact angle. A decrease in contact angle 

to a value close to the receding contact angle is required for the contact angle to recede 

suggesting that the contact angle of the droplet must be reduced to some value close to the 

receding contact angle for the resultant spot to be smaller than the original diameter. 

         

 

Figure 5.10: Backlit images of side view interface profiles of evaporating colloidal droplet at normalized time 

(a) 𝜏 = 0.0, (b) 𝜏 = 0.1, (c) 𝜏 = 0.2, (d) 𝜏 = 0.3, (e) 𝜏 = 0.5, (f) 𝜏 = 0.7, and (g) 𝜏 = 0.9 on Glass, 

Kapton HN, SU-8 3005, and Teflon AF. Red dashed lines indicate initial contact diameter of the droplet. 
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Quantitative analysis of the transient contact angle and normalized contact diameter of the 

droplets desiccated on Kapton HN with corresponding regimes is presented in Figure 5.11 b,f.  

For the droplets desiccated on Kapton HN, the desiccation process can be segmented into two 

observable regimes as predicted. These regimes are representative of the: (i) CCR and (ii) mixed 

mode regimes observed in [26,48]. From 𝜏 = 0.0 − 0.5 the TCL is pinned during the CCR 

regime (Fig. 5.9-II a-e). As a result the contact angle decreases from 𝜃0 ≈ 86° to 𝜃 ≈ 53° while 

the contact diameter remains fairly constant at a 𝐷 ≈ 1.65 𝑚𝑚 (Fig. 5.11 b,f). This CCR regime 

we observe occurs when the contact line is pinned. Reductions on the droplet volume are due to 

evaporative flux at the TCL resulting in a decreased contact angle over time. As the contact angle 

decreases more, the evaporative flux increases bringing more solute to the pinned TCL. At around 

 

Figure 5.11: (a) Contact Angle (θ) and (b) normalized diameter (𝐷/𝐷0) of evaporating colloidal droplet on Glass, 

Kapton HN, SU-8 3005, and Teflon AF as a function of normalized time (τ). 
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𝜏 = 0.5 the contact angle and contact diameter both decrease with time (Fig. 5.11b,f) until the 

droplet is so small that the software cannot observe the droplet (Fig. 5.11-IIf,g). While the Ramé-

Hart DROPImage Advanced software is unable to measure contact angles below approximately 

20° reliably [74], transient side view images in Figure 5.11-II a-e seems to be consistent with the 

CCR regime and Figure 5.11-IIf,g  seems to be consistent with the mixed phase described in 

[26,48] where the contact angle and diameter both reduce over time. The deposition profiles 

presented repeatedly gave coffee-stain patterns which indicate a pinned contact line for the 

majority of the desiccation.  

Kapton HN and Glass both transition from the CCR regime into the mixed regime, however 

Kapton HN takes longer to transition suggesting that the receding contact angle on Kapton HN 

may be less than on Glass. However, both surfaces result in similar a coffee-stain deposition 

pattern. 

Quantitative analysis of the transient contact angle and normalized contact diameter of the 

droplets desiccated on Teflon AF with corresponding regimes is presented in Figure 5.11 d,h.  

Interestingly, for the droplets desiccated on Teflon AF, the desiccation process can be segmented 

into only two observable regimes similar to Glass and Kapton HN. These regimes are 

representative of the: (i) CCR and (ii) mixed mode regimes observed in [26,48]. From 𝜏 = 0.0 −

0.2 the TCL is pinned (Fig. 5.9-IVa-c). As a result the contact angle decreases from 𝜃0 ≈ 120° to 

𝜃 ≈ 111° while the contact diameter remains at a constant 𝐷 ≈ 1.54 (Fig. 5.11c,g). This CCR 

regime we observe occurs when the contact line is pinned and reductions on the droplet volume 

are due to evaporative flux at the three phase contact line resulting in a decreased contact angle. 

As the contact angle decreases, the force pulling in the contact line increases and eventually 

overcomes the surface and slips free. Teflon AF never enters a CCA regime and instead goes into 

the mixed regime at around 𝜏 = 0.2 where both the contact angle and contact diameter decrease 

with time (Fig. 5.9-IVd-g). The mixed regime we observe occurs due to either the combination of 

the contact line slipping and the contact angle decreasing or intermittent changes between both 

the CCA and CCR regime (Fig. 5.11d,h). The mixed regime we observe can be split up into two 

different segments. From 𝜏 = 0.2 − 0.75 the decrease in contact angle is approximately linear 

with a small slope. At 𝜏 > 0.75, the slope begins to increase with time causing a more rapid 

decrease in contact angle. The first segment of the mixed regime may act similar to the CCA 

regime on SU-8 3005. During this first segment, the solute that may have deposited during the 

CCR regime is resuspended and swept inwards as the contact line recedes. At 𝜏 ≈ 0.75 the 
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diameter of the droplet reduces to ≈ 52.2 % of the initial diameter. The second segment of this 

regime looks similar to the mixed regime on SU-8 3005 and is theorized to be the section where 

most of the deposition occurs. The final deposition has a diameter that is ≈ 47.4 % of the initial 

contact diameter. This diameter reduction is observed at 𝜏 ≈ 0.79 and may be when the particles 

start to deposit. However, the deposition on Teflon AF produces a more uniform spot than SU-8 

3005. This may be attributed to the regimes described above. Teflon AF reaches the receding 

contact angle in the CCR regime, while SU-8 3005 does not reach the receding contact angle until 

it is in the CCA regime. As a result there is a different evaporative regime that leads to a 

potentially different deposition pattern that should be studied further. as previously mentioned, 

future experiments can be improved with the incorporation of optically observing and tracking 

individual particles moving to the TCL by the use of Particle Image Velocimetry (PIV). 

Incorporation of PIV may better lead to understanding of the packing order at the TCL, and 

motion of the streamlines in the colloidal suspension during evaporation. 

Teflon AF has some advantages over SU-8 3005. The evaporated colloidal droplets produce 

smaller, more intense, and more uniform deposition patterns. Unfortunately, in approximately 

30% of the cases performed on Teflon AF, crescent shaped depositions were observed on the 

substrate (Fig. 5.12). This formation appears to be due to asymmetric contact line pinning. This 

shape could not be observed in a 2-D plane. The facility should be augmented to include 

overhead imaging to better describe this phenomenon.  

 

 

Figure 5.12: Crescent shaped deposition observed in approximately 30% of the cases performed on Teflon AF 

surfaces appearing to be due to asymmetric contact line pinning. 
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5.2 Effect of Electrode Geometry and Voltage on AC Electroweetting 

Assisted Colloidal Droplet Desiccation 

Electrowetting on dielectric (EWOD) devices are microfluidic devices that manipulate fluid 

interfaces by applying electric fields  [43–45,50–52,54,57–66]. General EWOD devices consist of 

a flat conductive electrode. The electrode is covered with electrically insulating dielectric and 

hydrophobic layers. The droplet placed on the EWOD device beads up on the hydrophobic 

surface. When a voltage is applied, the electrowetting effect will cause the droplet to spread.  As 

long as the droplet is grounded, the application of an electric field results in an EW force on the 

interface that will decrease the apparent contact angle.  

The insertion of a ground wire into the top of the droplet is typically used (Fig. 5.13a); however 

some applications make use of coplanar electrodes that do not pierce the droplet surface due to 

various applications (Fig. 5.13b,c). The Young-Lippmann equation is valid for the basic EWOD 

application where a ground wire is placed into the droplet. The capacitance per unit area is very 

simple for this model, however when using coplanar electrodes this value changes and the 

Young-Lippmann equation needs to be modified to account for this change in geometry [64–66]. 

Inserted ground, and a co-planar ground wire configurations were used in [43,44], but 

differentiation between the two cases was not presented. It seems implied that the applied voltage 

was the same in both cases, however the electrowetting behavior of the droplet is predicted to be 

dependent on electrode geometry [64–66]. The (i) orientation of the electrodes and (ii) geometry 

of the electrodes play an important role in how AC EW occurs and must be considered. These 

parameters will affect (i) the applied voltage needed for saturation to occur, (ii) the strength of the 

EW field, and (iii) the direction of the EW field. 

Three different electrode geometries: (a) inserted ground wire, (b) simple coplanar electrode, and 

(c) coplanar InterDigitated Electrode (IDE) were compared for a system with a 1 𝜇𝐿 droplet of DI 

water on 3.6 𝜇𝑚 of SU-8 3005 (Fig. 5.13).  
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The Young-Lippmann equation remains the same in configuration (a) (Eq. 5.1): 

𝑐𝑜𝑠𝜃𝑈 = 𝑐𝑜𝑠𝜃0 + 𝜂 , (5.1) 

where 𝜃𝑈 represents the voltage-dependent apparent contact angle in the system, θ0 = 88.68° 

represents the apparent contact angle of the system at zero voltage, and η is the dimensionless 

electrowetting number. The elctrowetting number is a ratio of electrical energy at the solid-liquid 

interface to the interfacial energy at the liquid-medium interface (Eq. 5.2): 

𝜂 =
𝑐𝑈2

2𝛾𝐿𝑉
 , (5.2) 

where 𝛾𝐿𝑉 = 0.072 𝑁/𝑚 represents the surface tension of water at 25 °𝐶, U represents the 

voltage, and c is the capacitance per unit area between the fluid droplet and the electrode for a 

typical inserted ground wire setup given by (Eq. 5.3): 

𝑐 =
𝜀𝑟𝜀0

𝑑
 , (5.3) 

 

Figure 5.13: Sketch of typical electrowetting on dielectric (EWOD) setup with an (a) inserted ground wire, (b) a 

simple co-planar ground wire, and (c) a co-planar interdigitated electrode configuration. As a voltage is applied 

through the droplet the apparent contact angle changes from 𝜃0 to 𝜃𝑈. 
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where 𝜀𝑟 = 3.28 is the dielectric constant of the insulator (SU-8 3005), 𝜀0 = 8.854 𝑥 10−12 𝐹/𝑚 

represents vacuum permittivity, and 𝑑 = 3.6 𝜇𝑚 is the thickness of the insulating layer.  

The Young-Lippmann equation was modified to incorporate the change in capacitance per unit 

area of the simple coplanar electrode (Eq. 5.4): 

𝑐𝑜𝑠𝜃𝑈 =
𝐶1𝑈2

2𝛾𝐿𝑉
+ 𝑐𝑜𝑠𝜃0 , (5.4) 

where 𝐶1 is the capacitance per unit area of the simple coplanar electrode (Eq. 5.5): 

𝐶1 =
𝜀𝑟𝜀0𝐴𝑒1𝐴𝑔1

𝑑(𝐴𝑒1𝐴𝑔1)𝐴𝐷
 , (5.5) 

where 𝐴𝑒1 , 𝐴𝑔1 , and 𝐴𝐷 are the electrode area, ground wire area, and total droplet area for the 

simple coplanar electrode configuration, respectively. The droplet was assumed to be centered 

perfectly on the electrode. 

The Young-Lippmann equation was again modified to incorporate the change in capacitance per 

unit area of the coplanar IDE (Eq. 5.6): 

𝑐𝑜𝑠𝜃𝑈 =
𝐶2𝑈2

2𝛾𝐿𝑉
+ 𝑐𝑜𝑠𝜃0 , (5.6) 

where 𝐶2 is the capacitance per unit area of the coplanar IDE (Eq. 5.7): 

𝐶2 =
𝐶2++𝐶2−

2
 , (5.7) 

where 𝐶2+ and 𝐶2− are the capacitance per unit area of the system when the droplet is centered 

between two electrodes (+) and when the droplet is centered on an electrode (-), respectively for a 

coplanar IDE configuration. Any variation between these two scenarios will change the 

capacitance per unit area that is used in the EW equation. For a rough estimate, the average 

between these two extremes was used. Equation 5.7 expands to Equation 5.8: 
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𝐶2 =
(

𝜀𝑟𝜀0𝐴𝑒2+𝐴𝑔2+

𝑑(𝐴𝑒2+𝐴𝑔2+)𝐴𝐷
+

𝜀𝑟𝜀0𝐴𝑒2−𝐴𝑔2−

𝑑(𝐴𝑒2−𝐴𝑔2−)𝐴𝐷
)

2
 , 

(5.7) 

where 𝐴𝑒2+ , 𝐴𝑔2+ , 𝐴𝑒2− , and  𝐴𝑔2− are the electrode area and ground wire area, when the 

droplet is centered between two electrodes (+) and when the droplet is centered on an      

electrode (-), respectively for a coplanar IDE configuration.  

The theoretical models of both coplanar electrode configurations were compared to the inserted 

ground wire configuration and the experimental data was plotted on top of these curves using 

MATLAB (Fig. 5.14).  

 

 

Figure 5.14: Theoretical curves (solid lines) and experimental data (points) for three EWOD configurations: (a) 

inserted ground wire, (b) a simple co-planar ground wire, and (c) a co-planar interdigitated electrode configuration. 

As a voltage is applied through the droplet the apparent contact angle changes, and eventually the droplet hits a 

saturation voltage where the EW force cannot change the contact angle any more. 
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The electrode width and spacing were kept constant at 80 𝜇𝑚 and 40 𝜇𝑚, respectively. The 

experimental data followed the theoretical trends. Increasing the capacitance per unit area 

increased the actuation voltage required to achieve a particular reduction in the apparent contact 

angle. However improvements on the model can be made to better represent the location of the 

droplet, and the orientation of the electrode. For the coplanar electrodes, the voltage needs to pass 

through the dielectric layer twice which results in the swept out theoretical curve indicating a 

need for a higher voltage to reach saturation (i.e. when the data does not follow the Y-L 

equation).The inserted ground wire configuration appears to saturate at ~80 𝑉 reaching a 

𝜃𝑈 ≈ 76.2°. The coplanar IDE configuration appears to initially saturate at ~120 𝑉 reaching a 

𝜃𝑈 ≈ 81.8°. However, the contact angle drops again at ~180 𝑉 reaching a 𝜃𝑈 ≈ 76.7° which is 

more reasonable for a saturation contact angle and saturation voltage. The droplet seemed to stick 

at one electrode and then slip free allowing the droplet to fully saturate. The simple coplanar 

electrode configuration appears to saturate at ~280 𝑉 reaching a 𝜃𝑈 ≈ 76.5°. The orientation and 

geometry of the electrodes play an important role in how AC EW occurs and must be considered. 

Modifying these parameters changes how the Young-Lippmann equation should be derived and 

how EW occurs.  

In an attempt to replicate the work completed in [43,44], a 𝑉𝑟𝑚𝑠 = 160 𝑉 sine wave at 1 𝑘𝐻𝑧 was 

applied to a 1 𝜇𝐿 colloidal droplet containing 1.1 𝜇𝑚 diameter fluorescent carboxylate-modified 

polystyrene microspheres in an inserted ground wire EWOD configuration. The voltage applied 

was well above the saturation voltage for this configuration, and according to [43,44] a smaller 

more uniform deposition should have resulted due to (i) prevention of pinning at the TCL and (ii) 

internal flow fields produced by the AC that counteracted the evaporative flux [44]. However, in 

these preliminary results, this smaller uniform deposition did not occur (Fig. 5.15). In fact, a 

much larger deposition occurred with a resultant diameter of ~1.77 𝑚𝑚. This droplet appeared to 

potentially have a net electrophoretic force pull the particles down to the surface resulting in a 

more uniform spread out deposition as observed in Figure 5.15.  
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Here, the deposition has a fairly large diameter with a small overall average intensity ( 𝐼 ̅ =

10.27 [𝑏𝑖𝑡] ) and more evenly distributed particles (Fig. 5.16) when compared to the unactuated 

case on SU-8 3005. The intensity appears to peak at ~20 % of the radial position which can be 

visually seen by the brighter intensity observed toward the center of the droplet in Figure 5.15. 

The remainder of the deposition profile appears to be more uniform with a decrease in the 

intensity from 90 to 100 % of the radial position. This is attributed to the lack or particles on the 

right side of the deposition that may have occurred when the contact line slipped inward. While 

further study is required to understand this effect, the final distribution pattern is similar to that 

seen in the DC actuation case where electrophoretic effects dominate [45]. In order to understand 

this phenomenon more, the interplay between the advective and electrophoretic forces need to be 

observed and quantified. This preliminary work warrants further investigation into this 

phenomenon. 

 

Figure 5.15: Top down view of deposition profile left during colloidal droplet desiccation on SU-8 3005 under the 

influence of an AC EW force with an applied voltage of 𝑉𝑟𝑚𝑠 = 160 𝑉 at 1 𝑘𝐻𝑧 frequency. 
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Figure 5.16: Normalized intensity 𝐼/𝐼 ̅versus radial position of a deposition profile left during colloidal droplet 

desiccation on SU-8 3005 under the influence of an AC EW force with an applied voltage of 𝑉𝑟𝑚𝑠 = 160 𝑉 at 

1 𝑘𝐻𝑧 frequency. 
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6.0 CONCLUSIONS 

In the cases observed (Glass, Kapton HN, SU-8 3005, and Teflon AF), the resultant deposition 

pattern appears to be a function of: (i) the equilibrium contact angle and (ii) receding contact 

angle. The equilibrium contact angle determines the initial contact diameter of the aqueous 

colloidal suspension. A decrease in the contact angle must occur for the contact line to move. 

However, the contact angle of the droplet must be reduced to some value close to the receding 

contact angle for the contact line to move (i.e. unpin). If the receding contact angle is very large 

(i.e. small hysteresis) the contact line has more of an ability to move. Therefore, the resultant spot 

after total evaporation is observed to be smaller than the original diameter when depositing a fluid 

on a substrate with a large receding contact angle.  

For all cases observed, the sessile droplet started in the CCR region. In the CCR region, the CR 

stays the same while the CA decreases. For Glass and Kapton HN, the receding contact angle was 

too low to even be measured accurately (i.e.  < 20°). The low receding contact angle (i.e. large 

hysteresis) resulted in the contact line remaining pinned for the majority of the process. 

Therefore, most of the solute is deposited at the periphery. Deposition of the solute at the 

periphery decreases the mobility of the contact line more by acting like a wedge. Since the 

contact angle continues to decrease, the height at the edge of the droplet is further reduced. This 

increases the evaporative flux at the contact line, which brings more solute to the edge of the 

droplet. However, Kapton HN has an equilibrium contact angle that is much larger than that of 

Glass resulting in a smaller deposition profile with a more intense thick coffee stain pattern. 

When picking a substrate where a coffee stain deposition is preferred, the size of the deposition 

needed for the particular application can be predetermined based on the initial contact angle, and 

volume of the droplet. 

Since SU-8 3005 and Teflon AF had larger receding CAs (i.e. smaller hysteresis) it makes them 

more likely to have a moving contact line. When the contact line recedes early in the process, 

suppression of the coffee stain is more likely. An at this point a large amount of the solute from 

the dispersed phase is not built up at the TCL. The moving contact line resuspends the solute and 

most of the deposition is observed at the end of the process after the contact line has receded to 

the final deposition diameter.  Therefore, when depositing a fluid on a substrate with a large 
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receding contact angle and a small hysteresis the resultant spot after total evaporation is observed 

to be smaller than the original diameter given by the equilibrium contact angle.  

However, SU-8 3005 and Teflon AF move into different regimes throughout the evaporation 

process. SU-8 3005 moves from the CCR regime to the CCA regime when the CA reaches 

approximately 72° at 𝜏 = 0.2. This contact angle is approximately 6° larger than the receding CA. 

The CL slips and recedes inward from 𝜏 = 0.2 − 0.6 until SU-8 3005 hits the mixed regime 

where the CA and CL both decrease. This three region transition creates a fairly uniform spot 

with a larger intensity at the center and a slight decrease in intensity towards the edge of the 

droplet where the intensity drops off. It was theorized that the particles deposit onto the substrate 

at some point during the mixed regime. Once the droplet reaches the final deposition diameter, 

solute starts to deposit. However, the contact angle and contact diameter continue to decrease. As 

the diameter reduces, more particles continue to deposit onto the surface while the contact line 

recedes inwards. The result is a greater amount of solute built up at the center than the edge of the 

resultant deposition. A larger overall intensity at the center of the deposition is observed. The 

larger deposition at the center may be attributed to more time to deposit in the center of the 

droplet or the Marangoni flow resuspending particles and bringing them to the center of the 

droplet to pack there. There are many forces at play when this contact line is pulling inwards and 

the small volume of fluid makes it difficult to observe what occurs during this regime. To 

understand how these particles deposit at this regime, a different method of transient observations 

that can individually resolve each particle is necessary for future experiments. 

Teflon AF moves directly from the CCR regime to the mixed regime similar to Glass and Kapton 

HN. This two regime transition creates a more uniform deposition that is more evenly distributed 

throughout the surface of the spot than the spot created on SU-8 3005. The intensity of this spot 

also drops off towards the periphery similar to SU-8 3005. However, Teflon AF moves into the 

mixed regime when the CA reaches approximately 111° at 𝜏 = 0.2 which is approximately 1° 

smaller than the receding CA. The mixed regime we observe can be split up into two different 

segments. From 𝜏 = 0.2 − 0.75 the decrease in contact angle is approximately linear with a small 

slope. At 𝜏 > 0.75, the slope begins to increase with time causing a more rapid decrease in 

contact angle. The first segment of the mixed regime may act similar to the CCA regime on SU-8 

3005. During this first segment, the solute that may have deposited during the CCR regime is 

resuspended and swept inwards as the contact line recedes. The second segment of this regime 

looks similar to the mixed regime on SU-8 3005.  It was theorized that the second segment was 
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where most of the deposition occurs because the final deposition diameter occurs during this 

segment. However, the deposition on Teflon AF produces a more uniform spot than SU-8 3005 

and may be attributed to the regimes described in the results section. Teflon AF reaches the 

receding contact angle in the CCR regime, while SU-8 3005 does not reach the receding contact 

angle until it is in the CCA regime. There is a different evaporative regime that leads to a 

potentially different deposition pattern that should be studied further through the incorporation of 

PIV.  

Teflon AF has some advantages over SU-8 3005. The evaporated colloidal droplets produce 

smaller, more intense, and more uniform deposition patterns. Unfortunately, crescent shaped 

depositions were observed on the substrate for approximately 30 % of the cases performed on 

Teflon AF. This formation appears to be due to asymmetric contact line pinning. This shape 

could not be observed in a 2-D plane. The facility should be augmented to include overhead 

imaging to better describe this phenomenon in future work. 

In the case of Glass, Kapton HN, SU-8 3005, and Teflon AF, the resultant deposition pattern 

appears to be a function of: (i) the equilibrium contact angle and (ii) receding contact angle. The 

equilibrium contact angle determines the initial diameter of the droplet. A decrease in the contact 

angle must occur for the contact line to move. However, the contact angle of the droplet must be 

reduced to some value close to the receding contact angle for the contact line to move. If the 

receding contact angle is very large (i.e. small hysteresis) the contact line has more of an ability 

to move. Therefore, the resultant spot after total evaporation is observed to be smaller than the 

original diameter when depositing a fluid on a substrate with a large receding contact angle and a 

small hysteresis.  

The comparison of desiccation of colloidal suspensions on Glass, Kapton HN, SU-8 3005, Teflon 

AF proved that,  

1. Initial contact diameter can be determined from the droplet equilibrium CA; 

2. Reduction in contact diameter can be predicted from the receding CA; 

3. Smaller depositions have a higher intensity; and 

4. Droplets with mobile contact lines are expected to produce more uniform 

depositions. 
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Transition into a regime where the contact angle has been decreased to a value close to the 

receding contact angle (e.g. the CCA region) is beneficial for applications seeking to suppress the 

appearance of the coffee ring formation. This transition is easier for solid-liquid systems that have 

a smaller hysteresis and larger receding contact angle. Conversely, applications who seek to 

enhance the coffee stain pattern would benefit for the selection of a material that has a very large 

hysteresis and small receding contact angle resulting in a pinned TCL. These surfaces may move 

directly from the CCR region to the mixed region. Different surfaces may be more appropriate for 

different applications. Therefore, predicting regime transitions based off of (i) the equilibrium 

contact angle and (ii) receding contact angle, is an appropriate and necessary methodology for 

selecting surfaces for specific applications. These predictions may be reaffirmed with transient 

observations of the interface during deposition in order to fully understand how the final 

deposition pattern is formed. 

Preliminary investigation into the effect of (i) electrode geometry, (ii) electrode orientation, and 

(iii) the effect of AC EWOD was presented. EWOD devices are microfluidic devices that 

manipulate fluid interfaces by applying electric field and require different surfaces for various 

applications. In the preliminary work presented SU-8 3005 is used as both a dielectric and 

hydrophobic layer. The application of the EW field results in an EW force on the interface that 

will decrease the apparent contact angle.  

The Young-Lippmann equation is valid for the basic EWOD application where a ground wire is 

placed into the droplet. The capacitance per unit area is very simple for this model, however when 

using coplanar electrodes this value changes and the Young-Lippmann equation needs to be 

modified to account for this change in geometry. However in some work that has been published, 

both an inserted ground, and a co-planar ground wire configuration were used, but differentiation 

between the two cases was not presented. It seemed implied that the applied voltage was the same 

in both cases, however using the same applied voltage would yield very different results. 

Three different electrode geometries: (a) inserted ground wire, (b) simple coplanar electrode, and 

(c) coplanar InterDigitated Electrode (IDE) were compared for a system with a 1 𝜇𝐿 droplet of DI 

water on 3.6 𝜇𝑚 of SU-8 3005 and modified Young-Lippmann equation was presented for both 

configuration (b) and (c).  The electrode width and spacing for the coplanar configurations were 

kept constant at 80 𝜇𝑚 and 40 𝜇𝑚, respectively. The experimental data followed the theoretical 

trends, however improvements on the model can made to better represent the location of the 
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droplet, and the orientation of the electrode. For the coplanar electrodes, the voltage needs to pass 

through the dielectric layer twice which resulted in the theoretical curve sweeping out indicating a 

need for a higher voltage to reach saturation (i.e. when the data does not follow the Y-L 

equation).  The orientation and geometry of the electrodes have been shown to play an important 

role in how AC EW occurs and must be considered. Modifying these parameters changes how the 

Young-Lippmann equation should be derived and how EW affects the apparent contact angle as a 

voltage is applied through the droplet. 

Preliminary investigation into the effect of AC EW was completed at a 𝑉𝑟𝑚𝑠 = 160 𝑉 sine wave 

at 1 𝑘𝐻𝑧 was applied to a 1 𝜇𝐿 colloidal droplet containing 1.1 𝜇𝑚 diameter fluorescent 

carboxylate-modified polystyrene microspheres in an inserted ground wire EWOD configuration. 

The applied voltage was well above saturation for this configuration, and according to [43,44] a 

smaller more uniform deposition should have resulted due to (i) prevention of pinning at the TCL 

and (ii) internal flow fields produced by the AC that counteracted the evaporative flux [44]. 

However, in these preliminary results, this smaller uniform deposition did not occur. A larger 

deposition occurred with a resultant diameter of ~1.77 𝑚𝑚. This droplet appeared to potentially 

have a net electrophoretic force pull the particles down to the surface resulting in a more uniform 

spread out deposition. In order to understand this phenomenon more, the interplay between the 

advective and electrophoretic forces need to be observed and quantified. This preliminary work 

warrants further investigation into this phenomenon and should be studied further. 
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- 2 - Title: "Electrowetting on Dielectric (EWOD) Assisted Droplet Desiccation" 

ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of 

Electronic and Photonic Microsystems & ASME 2015 13th International Conference on 

Nanochannels, Microchannels, and Minichannels (InterPACK2015&ICNMM2015) 
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Appendix B – Supplemental MATLAB Code 

- Rame - Hart Import/Export Data Script - 

%%  PETER DUNNING 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

         
clear all;  
close all;  
clc;  
format compact; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  1 - Creates Matrix to be filled in with data 
%%      1a - Finds directory specified 

  
myFolder = inputdlg( ...  
    'Specify directory with raw text files with no "s: ', ...  
    'DATA IMPORT', [1 50]); 
    %   Specify Folder Path, Use SHIFT + RIGHT-CLICK, Copy as Path,  
    %   CTRL+V into the input pop up dialog box 

     
myFolder = myFolder{1}; 
    %   Takes the Folder Path specified and makes it a String Variable 

     
if ~isdir(myFolder) 
  errorMessage = sprintf( ... 
      'Error: The following folder does not exist:\n%s', myFolder); 
  uiwait(warndlg(errorMessage)); 
  return; 
end 
    %   Error Handler that prints Error Message if the folder you 

specified 
    %   does not exist 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      1b - Finds all .txt files in specified directory 

  
filePattern         =   fullfile(myFolder, '*.txt'); 
    %   Specifies to find all *.txt files in your "myFolder"  
    %   (Specified in 1a) 
txtFiles            =   dir(filePattern); 
    %   Structure created that has all of the text file directories  
    %   that you can iterate through later on 
Length_txtFiles     =   length(txtFiles); 
    %   Takes the length/number of text files in the specified  

    %   directory 
clearvars filePattern 
    %   Clears the variable filePattern (unused after this section) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      1c - For Loop: Finds the max length associated with .txt files 
                %   Uses function "Matrix_Creation.m" to  do this 

  
Number_Lengthm      =       zeros( 1 , Length_txtFiles ); 
    %   Created a matrix of zeros that have as many columns as number  
    %   of files that we will look at 
    %   This will be filled in with the max length of all the files, so  
    %   we can use that length to create an overarching matrix full of  
    %   NaNs that are all equal to the max length (so matrix operations  
    %   are possible) 

  
for k = 1:Length_txtFiles 
    %   For Loop with a specified k length based on number of .txt 

    %   files 
  baseFileName      =       txtFiles(k).name;  
    %   The Txt File Name 
  fullFileName      =       fullfile(myFolder, baseFileName);  
    %   The Folder + Txt File Name 
  [ Number_length ] =       Matrix_Creation( fullFileName ); 
    %   Function "Matrix_Creation" will import the .txt files based on: 
    %   1) filename = fullFileName 
    %   2) startRow = 11 (Hardcoded into function) 
    %   3) endRow = inf (Hardcoded into function) 
    %   Function "Matrix_Creation" will export the Length of the  
    %   Matrices needed in order to create a matrix array to import the  

    %   data into 

     
   Number_Lengthm(k) = Number_length; 
    %   Fills in Matrix of lengths of data 

     
    clearvars Number_length ... 
        baseFileName fullFileName 
        %   Clears vars that will be updated each loop 
end 

  
Max_length      =       max(Number_Lengthm); 
    %   Max length needed to create Matrix Array of NaN values 
    %   Every other variable will be based off of this  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      1d - Creates max length NaN matrix for all variables 
                    %   This is neccessary for matrix operations; all  
                    %   of the matrices must be the same size in order  
                    %   to complete operations;  

  
V01_Number_m         =       NaN( Max_length , Length_txtFiles ); 
V02_Time_m           =       NaN( Max_length , Length_txtFiles ); 
V03_ThetaL_m         =       NaN( Max_length , Length_txtFiles ); 
V04_ThetaR_m         =       NaN( Max_length , Length_txtFiles ); 
V05_ThetaMean_m      =       NaN( Max_length , Length_txtFiles ); 
V06_ThetaDev_m       =       NaN( Max_length , Length_txtFiles ); 
V07_Height_m         =       NaN( Max_length , Length_txtFiles ); 
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V08_Width_m          =       NaN( Max_length , Length_txtFiles ); 
V09_Area_m           =       NaN( Max_length , Length_txtFiles ); 
V10_Volume_m         =       NaN( Max_length , Length_txtFiles ); 
    %   Creates a NaN Matrix for all of the Variables 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2 - Imports all the data from the raw .txt files         
%%      2a - For Loop: Drops data into preallocated matrices 
                    %   Uses function "importfile.m" to  do this  

                     
for k = 1:Length_txtFiles 
    %   For Loop with a specified k length based on number of .txt  

    %   files 
  baseFileName = txtFiles(k).name;  
    %   The Base File Name 
  fullFileName = fullfile(myFolder, baseFileName);  
    %   The Folder + Base File Name 
  fprintf(1, 'Now reading %s\n', fullFileName); % Pause 
    %   Prints what file it is reading & Pauses if you want 
  [Number,Time,ThetaL,ThetaR,ThetaMean, ... 
      ThetaDev,Height,Width,Area,Volume] = importfile(fullFileName); 
    %   Function "importfile" will import the .txt files based on: 
    %   1) filename = fullFileName 
    %   2) startRow = 11 (Hardcoded into function) 
    %   3) endRow = inf (Hardcoded into function) 
    %   Function "importfile" will export the left hand variables 

     
    %%% DATA COMPRESSION INTO PREALLOCATED CELLS %%% 
    %   Will fill in matrix based on: 
    %   Row - 1:# - This number is the length of the txt file (based  
    %   off k) Column - k - Based off of iteration (aka File #) 
    V01_Number_m(     1:Number_Lengthm(1,k), k )   =         Number; 
    V02_Time_m(       1:Number_Lengthm(1,k), k )   =         Time; 
    V03_ThetaL_m(     1:Number_Lengthm(1,k), k )   =         ThetaL; 
    V04_ThetaR_m(     1:Number_Lengthm(1,k), k )   =         ThetaR; 
    V05_ThetaMean_m(  1:Number_Lengthm(1,k), k )   =         ThetaMean; 
    V06_ThetaDev_m(   1:Number_Lengthm(1,k), k )   =         ThetaDev; 
    V07_Height_m(     1:Number_Lengthm(1,k), k )   =         Height; 
    V08_Width_m(      1:Number_Lengthm(1,k), k )   =         Width; 
    V09_Area_m(       1:Number_Lengthm(1,k), k )   =         Area; 
    V10_Volume_m(     1:Number_Lengthm(1,k), k )   =         Volume; 

     
    clearvars Number Time ThetaL ThetaR ThetaMean ... 
        ThetaDev Height Width Area Volume ... 
        baseFileName fullFileName 
        %   Clears vars that will be updated each loop    
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  3 - Data Calculation/Compression 
%%      3a - Finds average of all data sets (excluding NaNs) 

  
V01_Number_m_mean       =       nanmean(    V01_Number_m,       2    ); 
V02_Time_m_mean         =       nanmean(    V02_Time_m,         2    ); 
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V03_ThetaL_m_mean       =       nanmean(    V03_ThetaL_m,       2    ); 
V04_ThetaR_m_mean       =       nanmean(    V04_ThetaR_m,       2    ); 
V05_ThetaMean_m_mean    =       nanmean(    V05_ThetaMean_m,    2    ); 
V06_ThetaDev_m_mean     =       nanmean(    V06_ThetaDev_m,     2    ); 
V07_Height_m_mean       =       nanmean(    V07_Height_m,       2    ); 
V08_Width_m_mean        =       nanmean(    V08_Width_m,        2    ); 
V09_Area_m_mean         =       nanmean(    V09_Area_m,         2    ); 
V10_Volume_m_mean       =       nanmean(    V10_Volume_m,       2    ); 
    %   Creates a mean of all of the data sets; the "2" means that it  
    %   is averaged across the rows as oppossed to down the columns, so  
    %   this averages each time step; so the time steps have to be the      

    %   same 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%      3b - Finds std dev of all data sets (excluding NaNs) 

  
V01_Number_m_std     =       nanstd(    V01_Number_m,        0, 2    ); 
V02_Time_m_std       =       nanstd(    V02_Time_m,          0, 2    ); 
V03_ThetaL_m_std     =       nanstd(    V03_ThetaL_m,        0, 2    ); 
V04_ThetaR_m_std     =       nanstd(    V04_ThetaR_m,        0, 2    ); 
V05_ThetaMean_m_std  =       nanstd(    V05_ThetaMean_m,     0, 2    ); 
V06_ThetaDev_m_std   =       nanstd(    V06_ThetaDev_m,      0, 2    ); 
V07_Height_m_std     =       nanstd(    V07_Height_m,        0, 2    ); 
V08_Width_m_std      =       nanstd(    V08_Width_m,         0, 2    ); 
V09_Area_m_std       =       nanstd(    V09_Area_m,          0, 2    ); 
V10_Volume_m_std     =       nanstd(    V10_Volume_m,        0, 2    ); 
    %   Creates a std dev of all of the data sets; the "2" means that  
    %   it is completed across the rows as oppossed to down the 

    %   columns, so this takes sd @ each time step; so the time steps  
    %   have to be the same 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  4 - Data Export 
%%      4a - Specify directory you want to save txt files in 

  
DIR = inputdlg( ...  
    'Specify directory you want to save txt files in with no "s: ',... 
    'TXT DATA EXPORT', [1 50]); 
    %   Specify Folder Path, Use SHIFT + RIGHT-CLICK, Copy as Path,  
    %   CTRL+V into the input pop up dialog box 
DIR = DIR{1}; 
    %   Takes the Folder Path specified and makes it a String Variable 
if ~isdir(DIR) 
  errorMessage = sprintf( ...  
      'Error: The following folder does not exist:\n%s', DIR); 
  uiwait(warndlg(errorMessage)); 
  return; 
end 
    %   Error Handler that prints Error Message if the folder you  
    %   specified does not exist    

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%      4b - Saves the Matrix files of all the variables 
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V01 = 'V01_Number_m.txt'; 
V02 = 'V02_Time_m.txt'; 
V03 = 'V03_ThetaL_m.txt'; 
V04 = 'V04_ThetaR_m.txt'; 
V05 = 'V05_ThetaMean_m.txt'; 
V06 = 'V06_ThetaDev_m.txt'; 
V07 = 'V07_Height_m.txt'; 
V08 = 'V08_Width_m.txt'; 
V09 = 'V09_Area_m.txt'; 
V10 = 'V10_Volume_m.txt'; 
    %   Variables as string names for saving the directory path + file 

name 

  
dlmwrite(fullfile(DIR,V01),  V01_Number_m,     'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V02),  V02_Time_m,       'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V03),  V03_ThetaL_m,     'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V04),  V04_ThetaR_m,     'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V05),  V05_ThetaMean_m,  'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V06),  V06_ThetaDev_m,   'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V07),  V07_Height_m,     'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V08),  V08_Width_m,      'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V09),  V09_Area_m,       'delimiter',      '\t'); 
dlmwrite(fullfile(DIR,V10),  V10_Volume_m,     'delimiter',      '\t'); 
    %   Writes all the VariableMatrix txt Files to the full file path  
    %   where fullefile = directory + file name 
    %   There are tab '\t' delimited 

  
clearvars V01 V02 V03 V04 V05 V06 V07 V08 V09 V10; 
    %   Clears the variables used as names to save 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%%      4c - Saves the Matrix files of all the mean variables 

  
V01 = 'V01_Number_m_mean.txt'; 
V02 = 'V02_Time_m_mean.txt'; 
V03 = 'V03_ThetaL_m_mean.txt'; 
V04 = 'V04_ThetaR_m_mean.txt'; 
V05 = 'V05_ThetaMean_m_mean.txt'; 
V06 = 'V06_ThetaDev_m_mean.txt'; 
V07 = 'V07_Height_m_mean.txt'; 
V08 = 'V08_Width_m_mean.txt'; 
V09 = 'V09_Area_m_mean.txt'; 
V10 = 'V10_Volume_m_mean.txt'; 
    %   Variables as string names for saving the directory path + file  

    %   name 

  
dlmwrite(fullfile(DIR,V01),   V01_Number_m_mean,   'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V02),   V02_Time_m_mean,     'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V03),   V03_ThetaL_m_mean,   'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V04),   V04_ThetaR_m_mean,   'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V05),   V05_ThetaMean_m_mean,'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V06),   V06_ThetaDev_m_mean, 'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V07),   V07_Height_m_mean,   'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V08),   V08_Width_m_mean,    'delimiter', '\t'); 
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dlmwrite(fullfile(DIR,V09),   V09_Area_m_mean,     'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V10),   V10_Volume_m_mean,   'delimiter', '\t'); 
    %   Writes the MeanMatrix txt files to the full file path where 
    %   fullefile = directory + file name 
    %   There are tab '\t' delimited 

  
clearvars V01 V02 V03 V04 V05 V06 V07 V08 V09 V10;     
    %   Clears the variables used as names to save 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      4d - Saves the Matrix files of all the std dev variables 

  
V01 = 'V01_Number_m_std.txt'; 
V02 = 'V02_Time_m_std.txt'; 
V03 = 'V03_ThetaL_m_std.txt'; 
V04 = 'V04_ThetaR_m_std.txt'; 
V05 = 'V05_ThetaMean_m_std.txt'; 
V06 = 'V06_ThetaDev_m_std.txt'; 
V07 = 'V07_Height_m_std.txt'; 
V08 = 'V08_Width_m_std.txt'; 
V09 = 'V09_Area_m_std.txt'; 
V10 = 'V10_Volume_m_std.txt'; 
    %   Variables as string names for saving the directory path + file  

    %   name 

  
dlmwrite(fullfile(DIR,V01),   V01_Number_m_std,    'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V02),   V02_Time_m_std,      'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V03),   V03_ThetaL_m_std,    'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V04),   V04_ThetaR_m_std,    'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V05),   V05_ThetaMean_m_std, 'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V06),   V06_ThetaDev_m_std,  'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V07),   V07_Height_m_std,    'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V08),   V08_Width_m_std,     'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V09),   V09_Area_m_std,      'delimiter', '\t'); 
dlmwrite(fullfile(DIR,V10),   V10_Volume_m_std,    'delimiter', '\t'); 
    %   Writes the StdDevMatrix txt files to the full file path where 
    %   fullefile = directory + file name 
    %   There are tab '\t' delimited 

  
clearvars V01 V02 V03 V04 V05 V06 V07 V08 V09 V10; 
clearvars DIR; 
    %   Clears the variables used as names to save and the directory 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  5 - Plot Generation 
%%      5a - Specify directory you want to save fig/jpg files in 

  
DIR = inputdlg( ...  
    'Specify directory you want to save fig/jpg files in with no "s: ', 

    'FIG/JPG DATA EXPORT', [1 50]); 
    %   Specify Folder Path, Use SHIFT + RIGHT-CLICK, Copy as Path,  
    %   CTRL+V into the input pop up dialog box 
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DIR = DIR{1}; 
    %   Takes the Folder Path specified and makes it a String Variable 

  
if ~isdir(DIR) 
  errorMessage = sprintf( ...  
      'Error: The following folder does not exist:\n%s', DIR); 
  uiwait(warndlg(errorMessage)); 
  return; 
end 
    %   Error Handler that prints Error Message if the folder you  
    %   specified does not exist 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5b - 4 x 1 Subplot of ThetaL, ThetaR, ThetaMean, ThetaDev 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V03_ThetaL_m_mean; 
YMatrix1(:,2) = V03_ThetaL_m_mean + 3*(V03_ThetaL_m_std); 
YMatrix1(:,3) = V03_ThetaL_m_mean - 3*(V03_ThetaL_m_std); 
YMatrix2(:,1) = V04_ThetaR_m_mean; 
YMatrix2(:,2) = V04_ThetaR_m_mean + 3*(V04_ThetaR_m_std); 
YMatrix2(:,3) = V04_ThetaR_m_mean - 3*(V04_ThetaR_m_std); 
YMatrix3(:,1) = V05_ThetaMean_m_mean; 
YMatrix3(:,2) = V05_ThetaMean_m_mean + 3*(V05_ThetaMean_m_std); 
YMatrix3(:,3) = V05_ThetaMean_m_mean - 3*(V05_ThetaMean_m_std); 
YMatrix4(:,1) = V06_ThetaDev_m_mean; 
YMatrix4(:,2) = V06_ThetaDev_m_mean + 3*(V06_ThetaDev_m_std); 
YMatrix4(:,3) = V06_ThetaDev_m_mean - 3*(V06_ThetaDev_m_std); 

  
PlotFunction1_Subplot1_CA(X1, YMatrix1, YMatrix2, ...  
    YMatrix3, YMatrix4, DIR); 

  
clearvars X1 YMatrix1 YMatrix2 YMatrix3 YMatrix4 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5c - 4 x 1 Subplot of Height, Width, Area, Volume 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V07_Height_m_mean; 
YMatrix1(:,2) = V07_Height_m_mean + 3*(V07_Height_m_std); 
YMatrix1(:,3) = V07_Height_m_mean - 3*(V07_Height_m_std); 
YMatrix2(:,1) = V08_Width_m_mean; 
YMatrix2(:,2) = V08_Width_m_mean + 3*(V08_Width_m_std); 
YMatrix2(:,3) = V08_Width_m_mean - 3*(V08_Width_m_std); 
YMatrix3(:,1) = V09_Area_m_mean; 
YMatrix3(:,2) = V09_Area_m_mean + 3*(V09_Area_m_std); 
YMatrix3(:,3) = V09_Area_m_mean - 3*(V09_Area_m_std); 
YMatrix4(:,1) = V10_Volume_m_mean; 
YMatrix4(:,2) = V10_Volume_m_mean + 3*(V10_Volume_m_std); 
YMatrix4(:,3) = V10_Volume_m_mean - 3*(V10_Volume_m_std); 

  
PlotFunction2_Subplot2_Dimensions(X1, YMatrix1, YMatrix2, ...  
    YMatrix3, YMatrix4, DIR); 
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clearvars X1 YMatrix1 YMatrix2 YMatrix3 YMatrix4 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%      5d - Plot of ThetaL 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V03_ThetaL_m_mean; 
YMatrix1(:,2) = V03_ThetaL_m_mean + 3*(V03_ThetaL_m_std); 
YMatrix1(:,3) = V03_ThetaL_m_mean - 3*(V03_ThetaL_m_std); 

  
PlotFunction3_CAL(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5e - Plot of ThetaR 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V04_ThetaR_m_mean; 
YMatrix1(:,2) = V04_ThetaR_m_mean + 3*(V04_ThetaR_m_std); 
YMatrix1(:,3) = V04_ThetaR_m_mean - 3*(V04_ThetaR_m_std); 

  
PlotFunction4_CAR(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5f - Plot of ThetaMean & ThetaMean Normalized 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V05_ThetaMean_m_mean; 
YMatrix1(:,2) = V05_ThetaMean_m_mean + 3*(V05_ThetaMean_m_std); 
YMatrix1(:,3) = V05_ThetaMean_m_mean - 3*(V05_ThetaMean_m_std); 

  
NameX1='01_X1_Theta.txt'; 
NameY1='01_YMatrix1_Theta.txt'; 

  
dlmwrite(fullfile(DIR,NameX1),   X1,      'delimiter',   '\t'); 
dlmwrite(fullfile(DIR,NameY1),   YMatrix1,  'delimiter',   '\t'); 

  
PlotFunction5_CAM(X1, YMatrix1, DIR); 

  
% Normalize Time 
X1_N = V02_Time_m_mean - min(V02_Time_m_mean(:)); 

  
NormalizedTime = 'Insert Time Here';  %Teflon 
NormalizedTime = 'Insert Time Here';   %SU-8 3005 
NormalizedTime = 'Insert Time Here';   %Kapton HN 
NormalizedTime = 'Insert Time Here';   %Glass 
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X1_N = X1_N ./ NormalizedTime; 

  
NameX1='02_X1_N_Theta.txt'; 
NameY1='02_YMatrix1_N_Theta.txt'; 

  
dlmwrite(fullfile(DIR,NameX1),   X1_N,      'delimiter',   '\t'); 
dlmwrite(fullfile(DIR,NameY1),   YMatrix1,  'delimiter',   '\t'); 

  
PlotFunction5_CAM_Normalized(X1_N, YMatrix1, DIR); 

  
clearvars X1 X1_N YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5g - Plot of ThetaDev 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V06_ThetaDev_m_mean; 
YMatrix1(:,2) = V06_ThetaDev_m_mean + 3*(V06_ThetaDev_m_std); 
YMatrix1(:,3) = V06_ThetaDev_m_mean - 3*(V06_ThetaDev_m_std); 

  
PlotFunction6_CASD(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5h - Plot of Height 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V07_Height_m_mean; 
YMatrix1(:,2) = V07_Height_m_mean + 3*(V07_Height_m_std); 
YMatrix1(:,3) = V07_Height_m_mean - 3*(V07_Height_m_std); 

  
PlotFunction7_H(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5i - Plot of Width 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V08_Width_m_mean; 
YMatrix1(:,2) = V08_Width_m_mean + 3*(V08_Width_m_std); 
YMatrix1(:,3) = V08_Width_m_mean - 3*(V08_Width_m_std); 

  
NameX1='03_X1_Diameter.txt'; 
NameY1='03_YMatrix1_Diameter.txt'; 

  
dlmwrite(fullfile(DIR,NameX1),   X1,      'delimiter',   '\t'); 
dlmwrite(fullfile(DIR,NameY1),   YMatrix1,  'delimiter',   '\t'); 



-102- 

 

  
PlotFunction8_D(X1, YMatrix1, DIR); 

  
% Normalize Time 
X1_N = V02_Time_m_mean - min(V02_Time_m_mean(:)); 

  
NormalizedTime = 'Insert Time Here';  %Teflon 
NormalizedTime = 'Insert Time Here';   %SU-8 3005 
NormalizedTime = 'Insert Time Here';   %Kapton HN 
NormalizedTime = 'Insert Time Here';   %Glass 

  
X1_N = X1_N ./ NormalizedTime; 

  
X = min(YMatrix1(:,1)); 

  
YMatrix1_N(:,1) = YMatrix1(:,1) - X; 

  
Z = max(YMatrix1_N(:,1)); 

  
YMatrix1_N(:,2) = YMatrix1(:,2) - (YMatrix1_N(:,1) + X); 
YMatrix1_N(:,2) = YMatrix1_N(:,2) ./ Z; 

  
YMatrix1_N(:,3) = YMatrix1_N(:,1) + X - YMatrix1(:,3); 
YMatrix1_N(:,3) = YMatrix1_N(:,3) ./ Z; 

  
YMatrix1_N(:,1) = YMatrix1_N(:,1) ./ Z; 
YMatrix1_N(:,2) = YMatrix1_N(:,1) + YMatrix1_N(:,2); 
YMatrix1_N(:,3) = YMatrix1_N(:,1) - YMatrix1_N(:,3); 

  
NameX1='04_X1_N_Diameter.txt'; 
NameY1='04_YMatrix1_N_Diameter.txt'; 

  
dlmwrite(fullfile(DIR,NameX1),   X1_N,          'delimiter',   '\t'); 
dlmwrite(fullfile(DIR,NameY1),   YMatrix1_N,    'delimiter',   '\t'); 

  
PlotFunction8_D_Normalized(X1_N, YMatrix1_N, DIR); 

  
clearvars X1 X1_N YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5j - Plot of Area 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V09_Area_m_mean; 
YMatrix1(:,2) = V09_Area_m_mean + 3*(V09_Area_m_std); 
YMatrix1(:,3) = V09_Area_m_mean - 3*(V09_Area_m_std); 

  
PlotFunction9_A(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%      5k - Plot of Volume 

  
X1 = V02_Time_m_mean; 
YMatrix1(:,1) = V10_Volume_m_mean; 
YMatrix1(:,2) = V10_Volume_m_mean + 3*(V10_Volume_m_std); 
YMatrix1(:,3) = V10_Volume_m_mean - 3*(V10_Volume_m_std); 

  
PlotFunction10_V(X1, YMatrix1, DIR); 

  
clearvars X1 YMatrix1 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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- Matrix Creation Function - 

function [ Number_length ] = Matrix_Creation( filename ) 

  
%% Initialize variables. 
delimiter = '\t'; 
if nargin<=2 
%     USE FOR OUR R-H SYSTEM 
    startRow = 9; 
% %     USE FOR OLD RH SYSTEM 
%     startRow = 11; 
    endRow = inf; 
end 

  
%% Read columns of data as strings: 
formatSpec = '%*s%f%f%f%f%f%f%f%f%f%f%*s%[^\n\r]'; 

  
%% Open the text file. 
fileID = fopen(filename,'r'); 

  
%% Read columns of data according to format string. 
textscan(fileID, '%[^\n\r]', startRow-1, 'ReturnOnError', false); 
dataArray = textscan(fileID, formatSpec, 'Delimiter', ...  
    delimiter, 'ReturnOnError', false); 

  
%% Close the text file. 
fclose(fileID); 

  
%% Allocate imported array to column variable names 
Number = cell2mat(dataArray(:, 1)); 

  
Number_size = size( Number );  
    %   Matrix of n x m Size of sub-array in cell array 
Number_length = Number_size(1 , 1); 
    %   Length of sub-array in cell array 
    %   Will be put in matrix & the max length will be found 

  
end 
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- Import File Function - 

function [Number,Time,ThetaL,ThetaR,ThetaMean, ...  
    ThetaDev,Height,Width,Area,Volume] = importfile(filename) 

  
%% Initialize variables. 
delimiter = '\t'; 
if nargin<=2 
%     USE FOR OUR R-H SYSTEM 
    startRow = 9; 
% %     USE FOR OLD R-H SYSTEM 
%     startRow = 11; 
    endRow = inf; 
end 

  
%% Read columns of data as strings: 
formatSpec = '%*s%f%f%f%f%f%f%f%f%f%f%*s%[^\n\r]';  
%% Open the text file. 
fileID = fopen(filename,'r');  
%% Read columns of data according to format string. 
textscan(fileID, '%[^\n\r]', startRow-1, 'ReturnOnError', false); 
dataArray = textscan(fileID, formatSpec, 'Delimiter', ...  
    delimiter, 'ReturnOnError', false);  
%% Close the text file. 
fclose(fileID); 

  
%% Allocate imported array to column variable names 
% %   USE FOR OLD RH SYSTEM 
% Number = dataArray{:, 1}; 
% Time = dataArray{:, 2}; 
% ThetaL = dataArray{:, 4}; 
% ThetaR = dataArray{:, 5}; 
% ThetaMean = dataArray{:, 6}; 
% ThetaDev = dataArray{:, 7}; 
% Height = dataArray{:, 8}; 
% Width = dataArray{:, 9}; 
% Area = dataArray{:, 10}; 
% Volume = dataArray{:, 11}; 

  
%   USE FOR OUR RH SYSTEM 
Number = dataArray{:, 1}; 
Time = dataArray{:, 2}; 
ThetaL = dataArray{:, 3}; 
ThetaR = dataArray{:, 4}; 
ThetaMean = dataArray{:, 5}; 
ThetaDev = dataArray{:, 6}; 
Height = dataArray{:, 7}; 
Width = dataArray{:, 8}; 
Area = dataArray{:, 9}; 
Volume = dataArray{:, 10}; 

  
%% Clear temporary variables 
clearvars filename delimiter startRow formatSpec fileID dataArray ans; 
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- Fluorescence Image Analysis Script - 

%%  PETER DUNNING 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
%   Image analysis script for fluorescent images 

  
clear all;  
close all;  
clc;  
format compact; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  1   - CONSTANTS 
thetadiv=100; % number of angular divisions 
raddiv=100; % number of radial divisions 
gainratio=1/1; % ratio of gains between images for plot comparison 

  
%   FOLDER WHERE SUPERSATURATED DATA IS LOCATED 
myFolder = 'DIRECTORY 1'; % EDIT THIS LINE 
filePattern=fullfile(myFolder, '*.jpg'); 
jpgFiles=dir(filePattern); 

  
%   FOLDER WHERE INTENSITY DATA IS LOCATED 
myFolder1 = 'DIRECTORY 2'; % EDIT THIS LINE 
filePattern1=fullfile(myFolder1, '*.jpg'); 
jpgFiles1=dir(filePattern1); 

  
%   WHERE DO YOU WANT TO SAVE DATA 
myFolder2 = 'DIRECTORY 3'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2   - IMAGE ANALYSIS 
for P=1:length(jpgFiles) 
%%  2.1 - Image import / RGB - Grayscale - BW     
    baseFileName =jpgFiles(P).name; 
    fullFileName=fullfile(myFolder, baseFileName); 
    fprintf(1, 'Now reading %s\n', fullFileName); 
    RGB=imread(fullFileName); % SUPERSATURATED IMAGE FOR MASK 
    I=rgb2gray(RGB); % convert RGB to grayscale 

  
    baseFileName1 =jpgFiles1(P).name; 
    fullFileName1=fullfile(myFolder1, baseFileName1); 
    FileName1=baseFileName1(1:end-4); 
    fprintf(1, 'Now reading %s\n', fullFileName1); 
    % convert RGB to grayscale 
    RGBF=imread(fullFileName1); % IMAGE             
    IF=rgb2gray(RGBF); 
    BW=graythresh(IF); %Otsu greyscale threshold 

  
    BWI = im2bw(I,BW); %Creates BW Image from I using BW as graythresh 
    [B,L] = bwboundaries(BWI,'noholes'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.2 - 3D Plot of Intensity     
    figure (1) 
    [xxx,yyy]=size(IF); 
    XXX=1:xxx; 
    YYY=1:yyy; 
    [xx,yy]=meshgrid(YYY,XXX); 
    ii=im2double(IF); 
    figure (1); 
    mesh(xx,yy,ii); 
    colorbar 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_1.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_1.jpg']) ) 
    close (figure (1)) 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.3 - DEBUG 
    % FOR DEBUG Plots all Boundaries in BWI 
    %imshow(IF) 
    %hold on 
    %for k = 1:length(B) 
    %    boundary = B{k}; 
    %    %plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2) 
    %end 

  
    % %Finds the Boundary with the largest span in 'x' 
    % S_max = 0; 
    % for k = 1:length(B) 
    %      boundary = B{k}; 
    %      diff = max(boundary) - min(boundary); 
    %      S = diff(1); 
    %      if S(1) > S_max 
    %          S_max=S(1); 
    %          S_bound='null'; 
    %          S_bound=boundary; 
    %          S_i=k; % index reflects which boundary is the largest 
    %      end 
    % end 

  
    % If the largest span is the border of the image, 
    % set the largest vector to null and run again. 
    % B{S_i}='null'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.4 - Boundary & Center Point  
    S_max = 0; 
    S = 'null'; 
    for k = 1:length(B) 
        boundary = B{k}; 
        diff = max(boundary) - min(boundary); 
        S = diff(1); 
        if S(1) > S_max 
            S_max=S(1); 
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            S_bound='null'; 
            S_bound=boundary; 
            S_Diam = diff; 
            Cent = (max(boundary)+min(boundary))/2; 
            S_i=k; % index reflects which boundary is the largest 
        end 
    end 

  
    %Plots GS image and selected boundary 
    figure (2) 
    imshow(IF) 
    hold on; 
    plot(S_bound(:,2), S_bound(:,1), 'r', 'LineWidth', 2) 
    hold on; 
    plot(Cent(2),Cent(1),'o') 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_2.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_2.jpg']) ) 
    close (figure (2)) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.5 - Mask & Stats    
    % Creating a polygon of the selected boundary to create a mask 
    yv = S_bound(:,1); 
    xv = S_bound(:,2); 
    I_S = size(I); 
    Y = I_S(2); 
    X = I_S(1); 
    mask=poly2mask(xv,yv,X,Y); % creates mask from the polygon. 

  
    % Find Stats within the Region of Interest 
    STATS = regionprops(mask, IF, 'Area','MeanIntensity','Perimeter'); 
    [AAA,BBB]=max(vertcat(STATS.Area)); 
    stats = [cat(1, STATS(BBB).Area) cat(1, STATS(BBB).MeanIntensity)]; 

  
    % Create a ROI that is some percentage of the radius. 
    r = mean(S_Diam)/2; 
    NUM=raddiv; % number of radial divisions 
    inc=1/NUM; 
    i_stats = zeros (NUM+1,2); 
    i_stats(1,:) = stats; % first row is area&intensity of full region 

  
    % Creates masks for all segments of interest 
    i_sum = zeros(X,Y); 
    for j=1:NUM 
        for i = 1:360 
            x(i) = Cent(2) + (NUM-j) * r / NUM * cos( i /180 * 3.1415); 
            y(i) = Cent(1) + (NUM-j) * r / NUM * sin( i /180 * 3.1415); 
        end 
        if j==1; 
            i_mask{j} = mask - poly2mask(x,y,X,Y); 
        elseif j < NUM 
            i_mask{j} = mask - poly2mask(x,y,X,Y) - i_sum; 
        else 
            i_mask{j} = mask - i_sum;         
        end 
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        i_mask{j}(i_mask{j}<0)=0; % sets negative values to zero 

  
        STATS = regionprops(i_mask{j}, IF,'Area','MeanIntensity'); 
        i_sum = i_sum + i_mask{j}; 
        i_stats(NUM+2-j,:) = [cat(1, STATS(1).Area) cat(1, ...    

        STATS(1).MeanIntensity)]; 
        y_plot(NUM+1-j,:) = i_stats(NUM+2-j,:); 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.6 - Annular Divisions / Angular Sectors / Annular Sectors       
    figure (3) % Concentric annuli masks 
    for i=1:raddiv 
        subplot(2,3,i); imshow(i_mask{i}) 
    end  
    saveas(gcf, fullfile(myFolder2,[FileName1 '_3.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_3.jpg']) ) 
    close (figure (3)) 

  
    % azimuthal breakdown 
    n=thetadiv; % number of increments 
    Theta=2*pi/n; % angular increment 
    Rho=1.1*max(S_Diam)/2; 

  
    % First calculate local average radii for each sector 
    figure (4) % Azimuthal masks 
    azi_radii=zeros(n,1); % initialize for sector radii 
    for i=1:n 
        rho2=linspace(0,Rho)'; 
        rho1=flipud(rho2); 
        rho3=ones(300,1)*Rho; 
        theta1=ones(length(rho1),1)*(i-1)*Theta; 
        theta2=ones(length(rho1),1)*i*Theta; 
        theta3=linspace((i-1)*Theta+2*pi,i*Theta,300)'; 
        rho=cat(1,rho1,rho2,rho3); 
        theta=cat(1,theta1,theta2,theta3); 
        xazi=rho.*cos(theta)+Cent(2); 
        yazi=-rho.*sin(theta)+Cent(1); 
        azi{i}=poly2mask(xazi,yazi,X,Y); % droplet area minus sectors 
        aziprime{i}=mask-azi{i}; % sectors only 
        aziprime{i}(aziprime{i}<0)=0; % sets negative values to zero 
        subplot(4,5,i); imshow(aziprime{i}) % show different sectors 
        azimuthal(i)=radtodeg(i*Theta-Theta/2); % center of each sector 
        STATS=regionprops(aziprime{i}, IF,'Area'); % area of sector 
        azi_radii(i)=cat(1, STATS(1).Area); 
        azi_radii(i)=sqrt(azi_radii(i)*2/Theta); % average radius 
    end  
    saveas(gcf, fullfile(myFolder2,[FileName1 '_4.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_4.jpg']) ) 
    close (figure (4)) 

     
    % Then calculate intensity in each annular sector 
    figure (5) % Annular sector masks 
    azirad_intens=ones(NUM,n)*NaN; % initialize for annular sector  
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    for i=1:n % angular position 
        rinc=azi_radii(i)/NUM; % radial segments of each annular sector 
        theta1=ones(50,1)*(i-1)*Theta; 
        theta2=linspace((i-1)*Theta,i*Theta,50)'; 
        theta3=ones(length(theta1),1)*i*Theta; 
        theta4=flipud(theta2); 
        theta=cat(1,theta1,theta2,theta3,theta4); 
        for j=1:NUM % radial position 
            rho1=linspace((j-1)*rinc,j*rinc,50)'; 
            rho2=ones(length(rho1),1)*rinc*j; 
            rho3=flipud(rho1); 
            rho4=ones(length(rho1),1)*rinc*(j-1); 
            rho=cat(1,rho1,rho2,rho3,rho4); 
            xazi=rho.*cos(theta)+Cent(2); 
            yazi=-rho.*sin(theta)+Cent(1); 
            azi2{1}=poly2mask(xazi,yazi,X,Y);  

            % droplet area minus sectors 
            subplot(NUM,n,j+n*(i-1)); imshow(azi2{1})  

            % show different annular sectors 

                      
            if max(azi2{1})==0 % skips error for empty annular sectors 
                azirad_intens(j,i)=NaN; 
            else 
                STATS=regionprops(azi2{1}, IF,'MeanIntensity');  

                % intensity of each annular sector 
                azirad_intens(j,i)=cat(1, STATS(1).MeanIntensity); 
            end 
        end 
    end  
    saveas(gcf, fullfile(myFolder2,[FileName1 '_5.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_5.jpg']) ) 
    close (figure (5)) 

     
    azirad_intens_stats=zeros(NUM,1); 
    for j=1:NUM 
        x_plot(j)=100*(j*inc-inc/2);  

        % midline radius percentage of each annulus 
        azirad_intens_stats(j,1)=nanmean(azirad_intens(j,:)); 
        azirad_intens_stats(j,2)=nanstd(azirad_intens(j,:)); 
    end 

  
    azi_intens=zeros(n,NUM);  

    % initialize for annular sector intensities 
    for j=1:NUM 
        for k=1:n 
            azirad{1}=i_mask{j}-azi{k}; 
            azirad{1}(azirad{1}<0)=0; % sets negative values to zero 
            if max(azirad{1})==0 % skips error for empty annular sector 
                azi_intens(k,j)=0; 
            else         
            STATS = regionprops(azirad{1}, IF,'MeanIntensity'); 
            azi_intens(k,j)=cat(1, STATS(1).MeanIntensity); 
            end 
        end 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.7 - Intensity Plots 
%   Plot radial position vs. intensity 
    FS = 20; MS = 12; 
    figure (6) % Intensity vs. radial position 
    axes('FontSize',FS-5); 
    hold on 
    plot(x_plot, y_plot(:,2),'ok','MarkerSize',MS); 
    plot([0 100], [i_stats(1,2) i_stats(1,2)],'-k'); % Mean intensity 
    xlabel('Radial Position (%)', 'FontSize',FS); 
    ylabel('Avg. Image Intensity (bit)', 'FontSize',FS); 
    grid on  
    saveas(gcf, fullfile(myFolder2,[FileName1 '_6.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_6.jpg']) ) 
    close (figure (6)) 

     
    figure (7) % Dimensionless intensity vs. radial position 
    axes('FontSize',FS-5); 
    hold on 
    plot(x_plot, 

y_plot(:,2)/i_stats(1,2)*gainratio,'ok','MarkerSize',MS); 
    xlabel('Radial Position (%)', 'FontSize',15); 
    ylabel('Dimensionless Image Intensity (-)', 'FontSize',FS); 
    grid on 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_7.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_7.jpg']) ) 
    close (figure (7)) 

  
    figure (8) % Intensity vs. radial position by azimuthal position 
    axes('FontSize',FS-5); 
    plot([0 100], [i_stats(1,2) i_stats(1,2)],'-k'); % Mean intensity 
    xlabel('Radial Position (%)', 'FontSize',FS); 
    ylabel('Avg. Image Intensity (bit)', 'FontSize',FS); 
    grid on 
    hold on 
    for i=1:n % Removes leading zeros due to empty annular sectors 
        azione=azi_intens(i,:); 
        ind1=find(azione,1); 
        ind2=length(azione);     
        plot(fliplr(x_plot(ind1:ind2)), 

azione(ind1:ind2),'MarkerSize',MS); 
    end 
    legend ('1','2','3','4','5','6','7','Location','NorthWest' 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_8.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_8.jpg']) ) 
    close (figure (8)) 

     
    figure (9) % Dimensionless intensity vs. radial position by azimuth 
    axes('FontSize',FS-5); 
    xlabel('Radial Position (%)', 'FontSize',FS); 
    ylabel('Avg. Image Intensity (bit)', 'FontSize',FS); 
    grid on 
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    hold on 
    for i=1:n % removes leading zeros due to empty annular sectors 
        azione=azi_intens(i,:); 
        ind1=find(azione,1); 
        ind2=length(azione);     
        plot(fliplr(x_plot(ind1:ind2)), ...  
            azione(ind1:ind2)/i_stats(1,2),'MarkerSize',MS); 
    end 
    legend ('1','2','3','4','5','6','7','Location','NorthWest') 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_9.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_9.jpg']) ) 
    close (figure (9)) 

     
    % Azimuthally averaged plots 
    azirad_intens_stats(:,3) = azirad_intens_stats(:,1) + ... 
        azirad_intens_stats(:,2)*3; % +3 std. dev. 
    azirad_intens_stats(:,4) = azirad_intens_stats(:,1) - ... 
        azirad_intens_stats(:,2)*3; % -3 std. dev. 
    azirad_intens_stats(:,5) = azirad_intens_stats(:,1) + ... 
        azirad_intens_stats(:,2)*2; % +2 std. dev. 
    azirad_intens_stats(:,6) = azirad_intens_stats(:,1) - ... 
        azirad_intens_stats(:,2)*2; % -2 std. dev. 
    azirad_intens_stats(:,7) = azirad_intens_stats(:,1) + ... 
        azirad_intens_stats(:,2)*1; % +1 std. dev. 
    azirad_intens_stats(:,8) = azirad_intens_stats(:,1) - ... 
        azirad_intens_stats(:,2)*1; % -1 std. dev. 

     
    figure (10) % Intensity vs. radial position 
    axes('FontSize',FS-5); 
    plot([0 100], [i_stats(1,2) i_stats(1,2)],'-k'); % Mean intensity 
    xlabel('Radial Position (%)', 'FontSize',FS); 
    ylabel('Avg. Image Intensity (bit)', 'FontSize',FS); 
    grid on 
    hold on 
    plot(x_plot,azirad_intens_stats(:,1),'k-','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,3),'r--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,4),'r--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,5),'b--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,6),'b--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,7),'g--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,8),'g--','MarkerSize',MS) 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_10.fig']) ); 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_10.jpg']) ) 
    close (figure (10)) 

  
    FS      =   24;     
    MS      =   30; 

  
    figure (11) % Dimensionless intensity vs. radial position 
    axes('FontSize',FS-5); 
    xlabel('Radial Position (%)', 'FontSize',FS); 
    ylabel('Avg. Dimensionless Image Intensity', 'FontSize',FS); 
    grid on 
    hold on 
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    plot(x_plot,azirad_intens_stats(:,1)/i_stats(1,2), ...  
        'k-','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,3)/i_stats(1,2), ... 
        'r--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,4)/i_stats(1,2), ... 
        'r--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,5)/i_stats(1,2), ... 
        'b--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,6)/i_stats(1,2), ... 
        'b--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,7)/i_stats(1,2), ... 
        'g--','MarkerSize',MS) 
    plot(x_plot,azirad_intens_stats(:,8)/i_stats(1,2), ... 
        'g--','MarkerSize',MS) 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_11.fig']) ) 
    set(gcf, 'Position', get(0,'Screensize')); 
    saveas(gcf, fullfile(myFolder2,[FileName1 '_11.jpg']) ) 
    close (figure (11)) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2.8 - Intensity Data 

  
%   RADIUS DATA 
    Area(:,P)=i_stats(1,1); 
        %   Area of mask 
    A_Rad(:,P)=sqrt(i_stats(1,1)/pi()); 
        %   Radius of mask based on area of mask 
        Mean_Rad=mean(A_Rad); %Mean of Radius 
        Std_Rad=std(A_Rad);   %Std Dev of Radius 
        Rad(:,P)=azi_radii;  
        %   Radius for each annular section for an Image 
        %   Iterated for each image 
        %   Plot each ith column (Average radius for one image for each  
        %   annular section) vs annular sections  

         
%   INTENSITY DATA     
    Int(:,P)=azirad_intens_stats(:,1); % plot vs. x_plot  
        %   Non-Normalized Intensity of Each Plot 
        %   Iterated for each image 
        %   Plot each ith column (Normalized intensity for one image)  
        %   vs x_plot (Radial Positions) 
    Avg_Int(:,P)=i_stats(1,2);    
        %   Average Intensity of each Image 
        %   Iterated for each image 
    Int_N(:,P)=azirad_intens_stats(:,1)/i_stats(1,2); % plot vs. x_plot 
        %   Normalized Intensity of Each Plot by Intensity of Image 
        %   Iterated for each image 
        %   Plot each ith column (Normalized intensity for one image)  
        %   vs x_plot (Radial Positions)         
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  3 - Data Export 
OUT1=Rad;              % RADIUS OF ANNULAR SECTION (VS RADIAL POSITION) 
OUT2=Int;              % INTENSITY (VS RADIAL POSITIONS) 
OUT3=Int_N;            % NORMALIZED INTENSITY (VS RADIAL POSITIONS) 
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OUT4=transpose(A_Rad);  % RADIUS OF MASK 
OUT5=transpose(Avg_Int);% AVERAGE INTENSITY 
OUT6=thetadiv;          % NUMBER OF ANGULAR DIVISIONS    
OUT7=raddiv;            % NUMBER OF RADIAL DIVISIONS 

     
dlmwrite(fullfile(myFolder2,'O1_RAD.txt'),          OUT1,      '\t'); 
dlmwrite(fullfile(myFolder2,'O2_INT.txt'),          OUT2,      '\t'); 
dlmwrite(fullfile(myFolder2,'O3_INT_N.txt'),        OUT3,      '\t'); 
dlmwrite(fullfile(myFolder2,'O4_A_RAD.txt'),        OUT4,      '\t'); 
dlmwrite(fullfile(myFolder2,'O5_A_INT.txt'),        OUT5,      '\t'); 
dlmwrite(fullfile(myFolder2,'O6_THETA_DIV.txt'),    OUT6,      '\t'); 
dlmwrite(fullfile(myFolder2,'O7_RAD_DIV.txt'),      OUT7,      '\t'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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- Modified Young - Lippmann  Equation for Coplanar Electrodes Script- 

clc; close all; 

  
% Read images 
Drop=imread('Matlab Capacitance - Droplet 80-40.bmp'); 
Drop2=imread('Matlab Capacitance - Droplet2 80-40.bmp'); 
Right=imread('Matlab Capacitance - Right 80-40.bmp'); 
Left=imread('Matlab Capacitance - Left 80-40.bmp'); 
Border=imread('Matlab Capacitance - Border 80-40.bmp'); 

  
% Delete extra row and column 
Drop(4021,:)=[]; Drop(:,4001)=[]; 
Drop2(4021,:)=[]; Drop2(:,4001)=[]; 
Right(4021,:)=[]; Right(:,4001)=[]; 
Left(4021,:)=[]; % Left(:,4001)=[]; 
Border(4021,:)=[]; Border(:,4001)=[]; 

  
% Calculate electrode overlap 
A=(Drop+Left-2*Border)-1; A(A<0)=0; areaA=sum(sum(A))*10^-12; % m^2 
B=(Drop+Left-2*Border)-1; B(B<0)=0; areaB=sum(sum(B))*10^-12; % m^2 
A2=(Drop2+Left-2*Border)-1; A2(A2<0)=0; areaA2=sum(sum(A2))*10^-12;  

% m^2 
B2=(Drop2+Left-2*Border)-1; B2(B2<0)=0; areaB2=sum(sum(B2))*10^-12;  

% m^2 

  
% Calculate interdigitated capacitance 
e0=8.854*10^-12; % F/m, fundamental constant 
ed=3.28; % dielectric constant of SU8 
d=3.6*10^-6; % m, thickness of SU8 
C=e0*ed*areaA*areaB/d/(areaA+areaB); % F 
C2=e0*ed*areaA2*areaB2/d/(areaA2+areaB2); % F 
D1=1.6*10^-3; % m, diameter of IDE droplet 
areaD=pi*D1^2/4; % m^2, contact area of droplet 
Cdigit=C/areaD; % F/m^2, droplet centered between electrodes 
Cdigit2=C2/areaD; % F/m^2, droplet centered on an electrode 
Cdigitavg=(Cdigit+Cdigit2)/2; % F/m^2, average of two IDE cases 
Csimple=e0*ed/d; % F/m^2, simple calculation initially used 

  
% Calculate "hamburger" capacitance 
w=80*10^-6; % m, width of electrode 
s=40*10^-6; % m, spacing between electrodes 
D2=1.6*10^-3; % m, diameter of hamburger droplet 
areaH=pi*D2^2/4; % m^2, contact area of droplet 
A3=pi*D2^2/4-D2*(w+2*s); % m^2, area of circular electrode 
A4=w*D2; % m^2, area of rectangular electrode 
% A3=pi*D2^2/4-.001146*(w+2*s)-w*s; % m^2, area of circular electrode 
% A4=w*.001146+.05*10^-3*w; % m^2, area of rectangular electrode 
Cburger=e0*ed*A3*A4/d/(A3+A4)/areaH; % F/m^2 

  
% Apply the BLY equation 
gammaLG=.072; % N/m, surface tension of water at 25C 
theta0=88.68; % resting CA for water on SU8 
Vrms=(0:1:500)'; % applied voltages up to 500 V 



-116- 

 

  
figure (1) % Theoretical 
grid on; hold on; 
set(gca,'FontSize',28) 
theta(:,2)=acosd(cosd(theta0)+Csimple*Vrms.^2/2/gammaLG); 
plot(Vrms,real(theta(:,2)),'k') % inserted ground wire 
theta(:,1)=acosd(cosd(theta0)+Cdigitavg*Vrms.^2/2/gammaLG); 
plot(Vrms,real(theta(:,1)),'r') % interdigitated electrodes 
theta(:,3)=acosd(cosd(theta0)+Cburger*Vrms.^2/2/gammaLG); 
plot(Vrms,real(theta(:,3)),'g') % hamburger electrodes 
legend ('Inserted Ground Wire','Coplanar IDE', ...  
    'Simple Coplanar Electrode','Location','SouthWest') 
set(findobj(gca,'type','line'),'LineWidth', 5); 
axis([0 500 20 100]) 

  
% After running, copy the Excel data into the test variable 
% and then copy from "then" until "end" into the command window 

  
% test=0; 
if test==1 
    then 

         
    % IDE 
    hold on 
    plot(test(:,8),test(:,7),'ro') 

  
    % Hamburger 
    hold on 
    plot(test(:,6),test(:,5),'go') 

  
    % Inserted Wire 
    hold on 
    plot(test1(:,4),test1(:,3),'bo') 
    %plot(test(:,2),test(:,1),'c>') 

     
end 
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