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Abstract

Analysis Of Double Ring

Resonators Using Method of

Equating Fields

Shahana Althaf

Optical ring resonators have the potential to be integral parts of large scale

photonic circuits. My thesis theoretically analyzes parallel coupled double

ring resonators (DRRs) in detail. The analysis is performed using the method

of equating fields (MEF) which provides an in depth understanding about

the transmitted and reflected light paths in the structure. Equations for the

transmitted and reflected fields are derived; these equations allow for unequal

ring lengths and coupling coefficients. Sanity checks including comparison

with previously studied structures are performed in the final chapter in order

to prove the correctness of the obtained results.



Acknowlegements

Let me begin by thanking almighty Allah for giving me the opportunity

to return to college and continue my education after being a mother.

I would like to dedicate my sincere gratitude to my thesis advisor Prof.

Drew Maywar for his continuous support and guidance throughout my grad-

uate study at RIT. I will always be grateful to him for helping me identify

my research interests and inspiring me to take up the challenge of doing a

thesis. His dedication and sincerity has always been an inspiration to me. I

consider my research experience with him as a valuable asset as I embark on

my doctoral studies in the next academic year.

Special thanks to Prof. Indelicato and Prof. Carlos Diaz Acosta for taking

time from their busy schedule to be on my thesis committee. Thanks again

to Prof. Indelicato for giving me the opportunity to work as his teaching

assistant.

Next I would like to thank my husband without whose support none of

this would have been possible. Thanks to him for believing in me. Thanks

to my son for letting me be with my books even when he needed me.

Thanks to my family, especially my father who brought up his daughters

with their education as the top priority. Thanks to my mother, for her

prayers.

Finally a special thanks to my sis and bro-in law and to my little niece who

brings a smile to my face even when I am stressed out with my work.

1



Dedication

To my ikka.. thank you.. for all that you are and for all that you do

To my Rehaan, you complete me

2



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Ring Resonator, Single Bus Waveguide 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Single Ring Resonator . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Output Electric Field . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Transmittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Transmittivity plot for single ring resonator as a func-

tion of wavelength . . . . . . . . . . . . . . . . . . . . 16

1.6 Phase Transfer Function . . . . . . . . . . . . . . . . . . . . . 19

1.6.1 Phase Transfer Function plot for single ring resonator

as a function of wavelength . . . . . . . . . . . . . . . 22

2 Uncoupled Double Ring Resonator,Single Bus Waveguide 26

2.1 Output Electric Field . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Bus Wave guide transmission Coefficient . . . . . . . . 28

3



2.1.2 Ring Resonator transmission Coefficient . . . . . . . . 29

2.1.3 Total transmission Coefficient . . . . . . . . . . . . . . 30

2.2 Transmittivity . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Transmittivity plot for uncoupled double ring resonator

as a function of wavelength . . . . . . . . . . . . . . . 31

3 Serially Coupled Double Ring Resonator, Single Bus Waveg-

uide 35

3.1 Output Electric Field . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Transmittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Transmittivity plot for single ring resonator as a func-

tion of wavelength . . . . . . . . . . . . . . . . . . . . 45

4 Double Ring Resonator-Transmitted field 49

4.1 Output Electric Field . . . . . . . . . . . . . . . . . . . . . . . 51
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Chapter 1

Ring Resonator, Single Bus

Waveguide

1.1 Introduction

The study and characterization of optical ring resonators have developed as a

major area of research due to their potential to become integral components

of large scale photonic circuits. Ring resonator devices are comprised of bus

waveguides and rings made out of bent optical waveguides. The path where

the bus and the ring come close to one another can be regarded as a coupler,

where the interaction path (coupler length) of the optical field in the ring

and bus waveguide can be short. The principle of operation of coupling can

be based on evanescent-field coupling, although multimode interference also

works.
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Different configurations of multiple ring resonators are found to exhibit

filtering characteristics which are desirable in WDM applications. They find

applications as wavelength selective filters such as add-drop filters or band

rejection filters in photonic circuits. The ease of fabrication into intergrated

circuits has been recognized as the major advantage of optical filters based

on ring resonators.

1.2 Background

A theoretical analysis of a basic ring resonator configuration consisting of one

waveguide and a single ring was presented by A.Yariv in 2000. The funda-

mental working equations describing the general behavior of a basic resonator

filter were derived and the applicability as filters were discussed. The analysis

was performed using matrix relations considering single polarization under

lossless conditions [1].

In 2004, a new type of reflector consisting of a circular array of micro

ring resonators coupled to a waveguide was proposed and analyzed [2]. The

transmittance and reflectance of the structure was computed using transfer

matrix analysis. It was proved that the structure acted as an all pass filter

for an even number of rings. Although different geometries of multiple ring

resonators have been studied in detail since then, almost all of these prior

works are based on matrix analysis.
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Double ring-resonators (DRRs) composed of just two micro-rings and

a straight waveguide which are coupled to each other was studied for the

first time in 2005 and was proved to be a good reflector [4]. Scattering

matrix formalism was used to prove that a range of reflectivity profiles can

be obtained by tuning the coupling coefficients. Another study of DRRs with

rings having slightly different radii was reported a year later [3] [5].

DRRs have many advantages over the previously reported structures. As

it consists of only two rings, which simplifies the fabrication process, this

resonator can replace distributed Bragg reflectors used in realizing tunable

laser diodes [9] [6] [7] [8]. In order to exploit all the functionalities of this

structure, a deep understanding of its characteristics is necessary.

The method of equating fields (MEF) provides a deeper understanding

of the light path and the propagation of the electric fields taking place in

the structure. The method yields several equations consisting of components

representing the path followed by light as it travels along the structure. The

results of the analysis includes equations for transmission and reflection coef-

ficients t̃, r̃. The circumference of the rings L1 is not assumed to be equal to

L2 and coupling coefficients ε1 is not equal to ε2 in the solution. An analysis

is performed on simpler structures in the early chapters in order to compare

with the final equations for the DRR as a sanity check in the final chapter.
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1.3 Single Ring Resonator

In the basic configuration, a ring resonator consists of a single bus waveguide

coupled to a single ring made of a bent waveguide as shown in Figure 1.1.

The arrow indicates the direction of propagation of light and the thin line

indicates the coupling region.

Figure 1.1: Ring resonator with single ring and single bus waveguide

When light through the bus waveguide enters the region where the ring is

close to the bus waveguide it is coupled to the ring resonator through evanes-

cent coupling. The light entering the ring travels along the circumference of

the ring and enters the coupling region again. Exchange of power takes place

at the coupling region due to the interaction between the optical field in the

ring and the bus waveguide. Here Ẽ1 is the input electric field to the coupler

and Ẽ4 is the input from the ring to the coupler. Ẽ3 is the output electric

field from the coupler along the ring and Ẽ2 is the output from the coupling

region along the bus waveguide.
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1.4 Output Electric Field

The output electric field Ẽ2 is given as

Ẽ2 = Ẽ1

√
1− ε+ Ẽ4 i

√
ε, (1.1)

Ẽ4 = Ẽ3 e
iβL, (1.2)

Ẽ3 = i
√
ε Ẽ1 +

√
1− ε Ẽ4, (1.3)

where L is the circumference of the entire ring.

Combining Equations (1.2) and (1.3) yields

Ẽ4 = i
√
ε eiβL Ẽ1 +

√
1− ε eiβL Ẽ4,

(1−
√

1− ε eiβL) Ẽ4 = i
√
ε eiβL Ẽ1,

Ẽ4 =
i
√
ε eiβL

(1−
√

1− ε eiβL)
Ẽ1. (1.4)
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The equation for Ẽ2 becomes

Ẽ2 = Ẽ1[
√

1− ε+
i
√
ε i
√
ε eiβL

1−
√

1− ε eiβL
],

Ẽ2 = Ẽ1[

√
1− ε− (1− ε) eiβL − ε eiβL

1−
√

1− ε eiβL
],

Ẽ2 = Ẽ1[

√
1− ε− eiβL + ε eiβL − ε eiβL

1−
√

1− ε eiβL
],

Ẽ2 = Ẽ1[

√
1− ε− eiβL

1−
√

1− ε eiβL
],

Ẽ2 = Ẽ1[

√
1− ε e−iβL − 1

1−
√

1− ε eiβL
] eiβL,

Ẽ2 = Ẽ1[
1−
√

1− ε e−iβL

1−
√

1− ε eiβL
] eiβL eiπ. (1.5)

We know

Ẽ2 = t̃ Ẽ1

14



Therefore the transmission coefficient t̃ is

t̃ = [
1−
√

1− ε e−iβL

1−
√

1− ε eiβL
] eiβL eiπ. (1.6)

1.5 Transmittivity

Transmittivity of a medium is defined as the ratio of transmitted power to

the incident power:

T = |Ẽ2

Ẽ1

|2 = |t̃|2. (1.7)

The above equation is rewritten as,

T =
(
√

1− ε− eiβL)(
√

1− ε− e−iβL)

(1−
√

1− ε eiβL)(1−
√

1− ε e−iβL)
,

T =
(1− ε) + (1−

√
1− ε eiβL)− (

√
1− ε e−iβL)

1 + (1− ε)− (
√

1− ε eiβL)− (
√

1− ε e−iβL)
,

T =
2− ε− 2

√
1− ε cos(βL)

2− ε− 2
√

1− ε cos(βL)
= 1. (1.8)

Here, transmittivity is equal to one which means that the total power

entering and leaving the ring resonator are equal. The unity value of trans-

mittivity shows that under loss-less conditions, there are no spectral features

or no resonances and all the light that enters the coupling region of the ring

15



resonator passes through it.

1.5.1 Transmittivity plot for single ring resonator as a

function of wavelength

A sanity check on the derived equations is performed by comparing the graphs

obtained by plotting transmittivity T based on both analytical and numerical

techniques.

Transmittivity plot based on analytic expression TA

TA =
(
√

1− ε− eiβL)(
√

1− ε− e−iβL)

(1−
√

1− ε eiβL)(1−
√

1− ε e−iβL)
.

The figure shows the transmittivity of a single ring resonator plotted as a

function of the normalised product βL where β is the wavenumber and L is

the circumference of the ring.

16



Figure 1.2: Transmittivity plot of a ring resonator as a function of wavenum-
ber under zero loss condition.

The equation derived for transmittivity is used for plotting the graph.

We can see that under lossless conditions, the transmittivity is equal to one

which indicates that the total power entering and leaving the coupling region

are equal.

17



Transmittivity plot based on numerical expression TN

We know transmittivity is the product of the transmission coefficient t̃ and

its conjugate t̃?.

TN = t̃ × t̃?.

where,

t̃ = [
1−
√

1− ε e−iβL

1−
√

1− ε eiβL
] eiβL eiπ.

The figure shows the response obtained when t̃ × t̃? is plotted against βL.

We can see that the plots from both the analytic and numerical expressions

are the same.
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Figure 1.3: Transmittivity plot of a ring resonator where tansmittivity is
calculated as t̃× t̃?

1.6 Phase Transfer Function

The phase transfer function of the ring resonator is composed of three parts:

φT = arg

(
Ẽ2

Ẽ1

)
,

φT = x+ βL+ π,

19



where x is the phase of the bracketed term B in equation (1.5), where

B =
1−
√

1− ε e−iβL

1−
√

1− ε eiβL
.

The phase x can be determined by multiplication of B and a unity ratio

whose denominator turns the resulting denominator into a real quantity.

B =
(1−

√
1− ε e−iβL)

(1−
√

1− ε eiβL)
∗ (1−

√
1− ε e−iβL)

(1−
√

1− ε e−iβL)

B =
(1−

√
1− ε e−iβL)2

(2− ε− 2
√

1− ε cos(βL))
,

B =
(1−

√
1− ε cos(βL) + i

√
1− ε sin(βL))2

D
,

where,

D = 2− ε− 2
√

1− ε cos(βL).

B can be written as (a+ i b)2, where

a =
1−
√

1− ε cos(βL)√
D

,

b =

√
1− ε sin(βL)√

D
.

20



We desire to know the phase x of B, where

B = (a+ ib)2,

but x is related to the phase of

√
B = a+ ib.

In general, the Cartesian and phasor representations of a complex quantity

are given as:

a+ ib = m eiθ,

(a+ ib)2 = (m eiθ)2 = m2 ei2θ = G eix,

where,

x = 2θ.

Thus, the square of a complex quantity is equivalent to a new complex quan-

tity whose phase x is twice that of the original quantity θ. The phase x of

21



B can be found as

tan(θ) =
b

a
=

√
1− ε sin(βL)

1−
√

1− ε cos(βL)
,

θ = tan−1(

√
1− ε sin(βL)

1−
√

1− ε cos(βL)
),

x = 2θ = 2 tan−1
( √

1− ε sin(βL)

1−
√

1− ε cos(βL)

)
. (1.9)

The phase transfer function is

φT = x+ π + βL.

Substituting x from equation (1.8), yields

φT = 2 tan−1
( √

1− ε sin(βL)

1−
√

1− ε cos(βL)

)
+ π + βL. (1.10)

1.6.1 Phase Transfer Function plot for single ring res-

onator as a function of wavelength

A sanity check on the derived equation is performed by comparing the graphs

obtained by plotting phase transfer function φT based on both analytic ex-

pression φTA and numerical expression φTN against wavenumber.
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Phase plot based on analytic expression φTA

Figure 1.4: Phase plot of a single ring resonator as a function of wavenum-
berunder zero loss condition

The figure shows the phase transfer function of a single ring resonator

based on the analytic expression (1.9), plotted as a function of the normalised

product βL where β is the wavenumber and L is the circumference of the

ring. We can see that the phase increases in a staircase-type fashion.

23



Phase Transfer function based on numerical expression φTN

We know,

φTN = angle(t̃)

where,

t̃ = [
1−
√

1− ε e−iβL

1−
√

1− ε eiβL
] eiβL eiπ.

Figure 1.5: Phase plot of a single ring resonator where phase is calculated as
angle(t̃)
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The figure shows the response obtained when angle(t̃) is plotted against

βL. We can see that the plots obtained using both analytic and numerical

expressions are same.
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Chapter 2

Uncoupled Double Ring

Resonator,Single Bus

Waveguide

Double Ring Resonators are coupled ring resonator devices consisting of two

ring waveguides coupled to one or more bus waveguides. The Double Ring

Resonator shown in Figure 2.1 is comprised of two ring waveguides of cir-

cumference L1 and L2 coupled to a same single bus waveguide. The rings are

spaced apart and are not coupled to each other. The space where the rings

are close to the bus waveguide creates two coupling regions separated by a

distance Ls along the bus waveguide.
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Figure 2.1: Uncoupled Double Ring Resonator with single bus waveguide

Light entering the bus waveguide is coupled to the first ring through

evanescent coupling and travels along the circumference L1 of the ring before

entering the same coupling region again. Transfer of power takes place at

the coupling region. The light leaving the region travels a distance of Ls

along the bus waveguide to enter the region where the second ring is coupled

to the bus waveguide. Through evanescent coupling light enters the second

ring, travels along its circumference L2 and re enters the coupling region.

Here Ẽ1 is the input electric field to the coupler and Ẽ4 is the input from the

first ring to the coupler. Ẽ3 is the output electric field from the coupler along

the first ring and Ẽ2 is the output from the first coupling region along the

bus waveguide. Ẽ ′1 is the input electric field to the second coupling region

and Ẽ ′4 is the input from the second ring to the coupler. Ẽ ′3 is the output

electric field from the coupler along the second ring and Ẽ ′2 is the output

from the second coupling region along the bus waveguide.
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2.1 Output Electric Field

The electric fields Ẽ ′1 ,Ẽ2 and Ẽ ′2 are given as,

Ẽ2 = t̃L1 Ẽ1

Ẽ ′1 = t̃Ls Ẽ2

Ẽ ′2 = t̃L2 Ẽ
′
1

where t̃L1 , t̃Ls and t̃L2 are transmission coefficients of the first coupling region,

the space between the two coupling regions and the second coupling region

respectively. Therefore, Ẽ ′2 is

Ẽ ′2 = t Ẽ1. (2.1)

where

t̃ = t̃L1 . t̃Ls . t̃L2 . (2.2)

2.1.1 Bus Wave guide transmission Coefficient

The equation for electric field Ẽ ′1 is

Ẽ ′1 = Ẽ2 e
iβLs .
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Therefore

t̃Ls = eiβLs . (2.3)

2.1.2 Ring Resonator transmission Coefficient

We have

Ẽ2 = Ẽ1

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

)
eiβL1 eiπ.

Therefore

t̃L1 =

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

)
eiβL1 eiπ. (2.4)

Likewise,

Ẽ ′2 = Ẽ ′1

(
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
eiβL2 eiπ. (2.5)

Therefore

t̃L2 =

(
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
eiβL2 eiπ. (2.6)
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2.1.3 Total transmission Coefficient

t̃ = t̃L1 . t̃Ls . t̃L2 .

Substituting the values of t̃L1 ,t̃Ls and t̃L2 in the above equation yields

t̃ =

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

)
eiβL1 eiπ eiβLs

(
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
eiβL2 eiπ,

t̃ =

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

)
eiβ(L1+Ls+L2) ei2π

(
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
,

t̃ =

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

)
eiβ(L1+Ls+L2)

(
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
.

(2.7)

2.2 Transmittivity

Transmittivity is the ratio of transmitted power to incident power:

T = |Ẽ
′
2

Ẽ1

|2. (2.8)
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The total transmittivity is related to the constituent transmittivities as fol-

lows

T = T2.Ts.T1 (2.9)

where

T1 =
(
√

1− ε1 − eiβL1) (
√

1− ε1 − e−iβL1)

(1−
√

1− ε1 eiβL1) (1−
√

1− ε1 eiβL1)
= 1,

T2 =
(
√

1− ε2 − eiβL2) (
√

1− ε2 − e−iβL2)

(1−
√

1− ε2 eiβL2) (1−
√

1− ε2 eiβL2)
= 1,

Ts = (eiβLs) (e−iβLs) = 1.

Therefore the total transmittivity is equal to one under loss less conditions.

2.2.1 Transmittivity plot for uncoupled double ring

resonator as a function of wavelength

A sanity check on the derived equations is performed by comparing the graphs

obtained by plotting transmittivity T based on both analytical and numerical

expressions.

31



Transmittivity plot based on analytic expression TA

T = TA2 .TAs .TA1 (2.10)

where

TA1 =
(
√

1− ε1 − eiβL1) (
√

1− ε1 − e−iβL1)

(1−
√

1− ε1 eiβL1) (1−
√

1− ε1 eiβL1)
,

TA2 =
(
√

1− ε2 − eiβL2) (
√

1− ε2 − e−iβL2)

(1−
√

1− ε2 eiβL2) (1−
√

1− ε2 eiβL2)
,

TAs = (eiβLs) (e−iβLs).

The figure shows the transmittivity plot of an uncoupled double ring

resonator plotted as a function of the normalised product βL where β is the

wavenumber and L is the circumference of the ring.

32



Figure 2.2: Transmittivity plot of an uncoupled double ring resonator based
on analytic expression

Transmittivity plot based on numerical expression TN

We know transmittivity is the product of the transmission coefficient t̃ and

its conjugate t̃?.

TN = t̃ × t̃?.
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where,

t̃ =

(
1−

√
(1− ε1) e−iβL1

1−
√

(1− ε1) eiβL1

) (
1−

√
(1− ε2) e−iβL2

1−
√

(1− ε2) eiβL2

)
eiβ(L1+Ls+L2).

Figure 2.3: Transmittivity plot of an uncoupled double ring resonator where
transmittivity is calculated as t̃× t̃?

The figure shows the response obtained when t̃ × t̃? is plotted against βL.

We can see that the plots from both the analytic and numerical expressions

are same.
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Chapter 3

Serially Coupled Double Ring

Resonator, Single Bus

Waveguide

The structure consists of two ring optical waveguides coupled serially to a

single bus waveguide. The first ring of circumference L1is directly coupled

to the waveguide while the second ring of circumference L2 is coupled to

the first ring through evanascent coupling. This creates two coupling regions

-one between the first ring and the bus waveguide and one between the two

rings. Light entering the waveguide is coupled to the first ring at the region

where the ring is close to the waveguide. Light coupled to the ring through

evanascence, travels along its circumference and enters the second coupling

region where the second ring is in close contact with the first ring. Through
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Figure 3.1: Double Ring Resonator coupled serially to a single bus waveguide

evanascent coupling light enters the second ring, travels along its circumfer-

ence L2 and re-enters the second coupling region to be coupled back to the

first ring.It travels along the circumference L1 of the first ring and re enters

the first coupling region and exits along the bus waveguide.

Here Ẽ1 is the input electric field to the coupler and Ẽ4 is the input from

the first ring to the coupler. Ẽ3 is the output electric field from the coupler

along the first ring and Ẽ2 is the output from the first coupling region along

the bus waveguide. Ẽ ′3 is the input electric field to the second coupling region

from the first ring and Ẽ ′2 is the input from the second ring to the second

coupling region. Ẽ ′1 is the output electric field from the second coupler along

the second ring and Ẽ ′2 is the output from the second coupling region along

the first ring.
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3.1 Output Electric Field

The equations for electric fields at the two coupling regions are given as

Ẽ3 = i
√
ε1 Ẽ1 +

√
1− ε1 Ẽ4, (3.1)

Ẽ2 = Ẽ1

√
1− ε1 + Ẽ4 i

√
ε1, (3.2)

Ẽ1
′
=
√

1− ε2 Ẽ2
′
+ i
√
ε2 Ẽ3

′
, (3.3)

Ẽ2
′
= Ẽ1

′
eiβL2 , (3.4)

Ẽ4
′
= i
√
ε2 Ẽ2

′
+
√

1− ε2 Ẽ3
′
. (3.5)

Ẽ3
′
= Ẽ3 e

iβL1/2. (3.6)

Ẽ4 = Ẽ4
′
eiβL1/2. (3.7)
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Combining Equations (3.5) and (3.7) yields

Ẽ4 = (i
√
ε2 Ẽ2

′
+
√

1− ε2 Ẽ3
′
) eiβL1/2. (3.8)

Combining Equations (3.6) and (3.8) yields

Ẽ4 = i
√
ε2 Ẽ2

′
eiβL1/2 +

√
1− ε2 Ẽ3 e

iβL1 . (3.9)

Replacing Ẽ3 in the above equation with Equation (3.1) gives

Ẽ4 = i
√
ε2 Ẽ2

′
eiβL1/2 + i

√
ε1
√

1− ε2Ẽ1 e
iβL1

+
√

1− ε1
√

1− ε2 Ẽ4 e
iβL1 ,

Ẽ4(1−
√

(1− ε1) (1− ε2) eiβL1) = i
√
ε2 Ẽ2

′
eiβL1/2 + i

√
ε1
√

1− ε2 Ẽ1 e
iβL1 .

(3.10)
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Combining Equations (3.3) and (3.4) yields

Ẽ2
′
= (
√

1− ε2 Ẽ2
′
+ i
√
ε2 Ẽ3

′
eiβL2 ,

Ẽ2
′
=

i
√
ε2 Ẽ3

′
eiβL2

1−
√

1− ε2 eiβL2
.

Replacing Ẽ3
′

in the above equation with Equation (3.6) yields

Ẽ2
′
=
i
√
ε2 Ẽ3 e

iβL1/2eiβL2

1−
√

1− ε2 eiβL2
. (3.11)

Combining Equations (3.1) and (3.11) yields

Ẽ2
′
=
−√ε2 ε1 eiβL1/2 eiβL2 Ẽ1 + 1

√
ε2(1− ε1) eiβL1/2 eiβL2 Ẽ4

1−
√

1− ε2 eiβL2
. (3.12)

39



Combining Equations (3.12) and (3.10) yields

Ẽ4 (1−
√

(1− ε1) (1− ε2) eiβL1) = i
√
ε1 (1− ε2) Ẽ1 e

iβL1+

i
√
ε2 e

iβL1/2

(
i
√
ε2(1− ε1) eiβL2 eiβL1/2 Ẽ4 −

√
ε1 ε2 e

iβL2 e1βL1/2 Ẽ1

1−
√

1− ε2 eiβL2

)
,

Ẽ4 =

i
√

(1− ε2)ε1 eiβL1 Ẽ1(1−
√

1− ε2eiβL2)

− ε2
√

1− ε1 eiβL1 eiβL2 Ẽ4 − i
√
ε1 ε2 e

iβL1 eiβL2 Ẽ1

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1)
,

Ẽ4

(
1 +

ε2
√

1− ε1 eiβL1 eiβL2

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1)

)
=

Ẽ1

(
i
√
ε1(1− ε2) eiβL1 − i(1− ε2)

√
ε1 e

iβL1 eiβL2 − i√ε1 ε2 eiβL1 eiβL2

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1)

)
,

Ẽ4

(
(1−

√
1− ε2 eiβL2) (1−

√
(1− ε1)(1− ε2) eiβL1) + ε2

√
1− ε1 eiβL1 eiβL2

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1)

)
=

Ẽ1

(
i
√
ε1(1− ε2) eiβL1 − i(1− ε2)

√
ε1 e

iβL1 eiβL2 − i√ε1 ε2 eiβL1 eiβL2

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1)

)
,

Ẽ4 = Ẽ1

(
i
√
ε1(1− ε2) eiβL1 − i(1− ε2)

√
ε1 e

iβL1 eiβL2 − i√ε1 ε2 eiβL1 eiβL2

(1−
√

1− ε2 eiβL2) (1−
√

(1− ε1)(1− ε2) eiβL1) + ε2
√

1− ε1 eiβL1 eiβL2

)
,
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Ẽ4 = Ẽ1

(
i
√
ε1(1− ε2) eiβL1 − i√ε1 eiβL1 eiβL2

1−
√

(1− ε1) (1− ε2) eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
.

(3.13)

We know

Ẽ2 = Ẽ1

√
1− ε1 + Ẽ4 i

√
ε1. (3.14)

Combining Equations (3.13) with the Equation for Ẽ2 yields

Ẽ2 = i
√
ε1 Ẽ1

(
i
√
ε1(1− ε2) eiβL1 − i√ε1 eiβL1 eiβL2

1−
√

(1− ε1) (1− ε2) eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
+

Ẽ1

√
1− ε1,

Ẽ2 = Ẽ1



√
1− ε1

(
1−

√
(1− ε1) (1− ε2) eiβL1 −

√
1− ε2 eiβL2 +

√
1− ε1 eiβL1 eiβL2

)
+

i
√
ε
(
i
√
ε1(1− ε2) eiβL1 − i√ε1 eiβL1 eiβL2

)
1−

√
(1− ε1) (1− ε2) eiβL1 −

√
1− ε2 eiβL2 +

√
1− ε1 eiβL2 eiβL1


,

Ẽ2 = Ẽ1

( √
1− ε1 −

√
1− ε2 eiβL1 −

√
(1− ε1) (1− ε2) eiβL2 + eiβL2 eiβL1

1−
√

(1− ε1) (1− ε2) eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
,
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Ẽ2 = Ẽ1

(√
1− ε1 e−iβL2 e−iβL1 −

√
1− ε2 e−iβL2 −

√
(1− ε1) (1− ε2) e−iβL1 + 1

1−
√

(1− ε1) (1− ε2) eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
eiβ(L1+L2),

Ẽ2 = Ẽ1

(√
1− ε2 e−iβL2 −

√
1− ε1 e−iβL2e−iβL1 +

√
(1− ε1)(1− ε2)e−iβL1 − 1

1−
√

(1− ε1)(1− ε2)eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
eiβ(L1+L2) eiπ.

(3.15)

We know

Ẽ2 = t̃ Ẽ1

Therefore the transmission coefficient t̃ is

t̃ =

(√
1− ε2 e−iβL2 −

√
1− ε1 e−iβL2e−iβL1 +

√
(1− ε1)(1− ε2)e−iβL1 − 1

1−
√

(1− ε1)(1− ε2)eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
eiβ(L1+L2) eiπ.

(3.16)

When ε2 = 0, the output electric field becomes,

Ẽ2 = Ẽ1

( √
1− ε1 − eiβL1 −

√
1− ε1 eiβL2 + eiβ(L1+L2)

1−
√

1− ε1 eiβL1 − eiβL2 +
√

1− ε1 eiβ(L1+L2)

)
,

Ẽ2 = Ẽ1

( √
1− ε1(1− eiβL2)− eiβL1(1− eiβL2)

(1− eiβL2)−
√

1− ε1 eiβL1(1− eibetaL2)

)
,

Ẽ2 = Ẽ1

(
1−
√

1− ε1 e−iβL1

1−
√

1− ε1 eiβL1

)
eiβL1 eiπ.
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which is same as Equation(1.5) which gives the output electric field of a single

ring resonator coupled to a single bus waveguide.

When ε1 = 0, the output electric field becomes,

Ẽ2 = Ẽ1

(
1−
√

1− ε2 eiβL1 −
√

1− ε2 eiβL2 + eiβ(L1+L2)

1−
√

1− ε1 eiβL1 −
√

1− ε2 eiβL2 + eiβ(L1+L2)

)

That is,

Ẽ2 = Ẽ1.

3.2 Transmittivity

Transmittivity is the ratio of transmitted power to the incident power:

T = |Ẽ2

Ẽ1

|2. (3.17)
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The above equation is rewritten as,

T =

(√
1− ε2 e−iβL2 −

√
1− ε1 e−iβ(L1+L2) +

√
(1− ε1)(1− ε2)e−iβL1 − 1

1−
√

(1− ε1)(1− ε2)eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβ(L1+L2)

)
×

( √
1− ε2 eiβL2 −

√
1− ε1 eiβ(L1+L2) +

√
(1− ε1)(1− ε2)eiβL1 − 1

1−
√

(1− ε1)(1− ε2)e−iβL1 −
√

1− ε2 e−iβL2 +
√

1− ε1 e−iβ(L1+L2)

)
,

T =

(1− ε2)−
√

(1− ε1) (1− ε2)(eiβL1 + e−iβL1) + (1− ε2)
√

1− ε1(eiβ(L1−L2) + e−iβ(L1−L2)

−
√

1− ε2(eiβL2 + e−iβL2) + (1− ε1)
−(1− ε1)

√
1− ε2(eiβL2 + e−iβL2) + (1− ε1)(1− ε2)

+
√

1− ε1(eiβ(L1+L2) + e−iβ(L1+L2)

−
√

(1− ε1)(1− ε2)(eiβL1 + e−iβL1) + 1

1−
√

(1− ε1) (1− ε2)(eiβL1 + e−iβL1)−
√

1− ε2(eiβL2 + e−iβL2)

+
√

(1− ε1)(eiβ(L1+L2) + e−iβ(L1+L2))− (1− ε1)
√

1− ε2(eiβL2 + e−iβL2)

+(1− ε1)(1− ε2) + (
√

1− ε1)(1− ε2)(eiβ(L1−L2) + e−iβ(L1−L2)

+(1− ε2) +
√

(1− ε1)(1− ε2)(eiβL1 + e−iβL1)
+ (1− ε1)

,

T =

3− ε1 − ε2 + (1− ε1)(1− ε2) + (1− ε2)
√

1− ε1 cos(β(L1 − L2))−
√

1− ε2 cos(βL2)
− (1− ε1)

√
1− ε2 cos(βL2) +

√
1− ε1 cos(β(L1 + L2))

3− ε1 − ε2 + (1− ε1)(1− ε2) + (1− ε2)
√

1− ε1 cos(β(L1 − L2))−
√

1− ε2 cos(βL2)
− (1− ε1)

√
1− ε2 cos(βL2) +

√
1− ε1 cos(β(L1 + L2))

= 1.

which shows that under loss less conditions, total power entering the coupling

region is equal to the total power leaving the region.
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3.2.1 Transmittivity plot for single ring resonator as a

function of wavelength

A sanity check on the derived equations is performed by comparing the graphs

obtained by plotting transmittivity T based on both analytical and numerical

techniques.

Transmittivity plot based on analytic expression TA

T =

(√
1− ε2 e−iβL2 −

√
1− ε1 e−iβ(L1+L2) +

√
(1− ε1)(1− ε2)e−iβL1 − 1

1−
√

(1− ε1)(1− ε2)eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβ(L1+L2)

)
×

( √
1− ε2 eiβL2 −

√
1− ε1 eiβ(L1+L2) +

√
(1− ε1)(1− ε2)eiβL1 − 1

1−
√

(1− ε1)(1− ε2)e−iβL1 −
√

1− ε2 e−iβL2 +
√

1− ε1 e−iβ(L1+L2)

)
.

The figure shows the transmittivity of a single ring resonator plotted as

a function of the normalised product βL where β is the wavenumber and L

is the circumference of the ring.
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Figure 3.2: Transmittivity plot of a serially coupled DRR under zero loss
condition.

The equation derived for transmittivity is used for plotting the graph.

We can see that under lossless conditions, the transmittivity is equal to one

which indicates that the total power entering and leaving the coupling region

are equal.
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Transmittivity plot based on numerical expression TN

We know transmittivity is the product of the transmission coefficient t̃ and

its conjugate t̃?.

TN = t̃ × t̃?.

where,

t̃ =

( √
1− ε1 −

√
1− ε2 eiβL1 −

√
(1− ε1) (1− ε2) eiβL2 + eiβL2 eiβL1

1−
√

(1− ε1) (1− ε2) eiβL1 −
√

1− ε2 eiβL2 +
√

1− ε1 eiβL2 eiβL1

)
.

The figure shows the response obtained when t̃ × t̃? is plotted against βL.

We can see that the plots from both the analytic and numerical expressions

are the same.
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Figure 3.3: Transmittivity plot of a ring resonator where tansmittivity is
calculated as t̃× t̃?
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Chapter 4

Double Ring

Resonator-Transmitted field

The double ring resonator (DRR) consists of two mutually coupled rings

coupled to a single bus waveguide. There are three coupling regions in the

DRR, one between the rings and the other two between each ring and the

bus waveguide. L1 and L2 are the circumference of the rings and Ls is the

space between the coupling regions ε1 and ε2.

Light propagates in both forward and backward direction as the rings are

mutually coupled to each other. There are a total of 24 field points at both

ends of the three coupling regions including the input field Ẽ1 , as shown in

Figure (1.1) and (1.2). Ẽ represents an electric field in the counter clockwise

direction and F̃ represents an electric field in the clockwise direction. F̃2
′′

= 0

because there is no light entering from the right hand side. The remaining 22
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electric fields are represented as linear equations, of which 10 are propagation

equations and 12 are coupling equations.

Figure 4.1: Schematic of the DRR, showing electric fields in the counter
clockwise direction

Figure 4.2: Schematic of the DRR, showing electric fields in the clockwise
direction
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4.1 Output Electric Field

The equations for electric fields are grouped into three :
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4.1.1 Only Ẽ fields

Ẽ3 = i
√
ε1 Ẽ1 +

√
1− ε1 Ẽ4, (4.1)

Ẽ2 = Ẽ1

√
1− ε1 + Ẽ4 i

√
ε1, (4.2)

Ẽ1
′
= Ẽ3

′′
eiβ 3L2/4, (4.3)

Ẽ3
′
= Ẽ3 e

iβL1/4, (4.4)

Ẽ4 = Ẽ4
′
eiβ 3L1/4, (4.5)

Ẽ3
′′

= Ẽ1
′′
i
√
ε2 +
√

1− ε2 Ẽ4
′′
, (4.6)

Ẽ4
′′

= eiβL2/4 Ẽ2
′
, (4.7)

Ẽ1
′′

= Ẽ2 e
iβLs , (4.8)

Ẽ2
′′

= Ẽ1
′′ √

1− ε2 + i
√
ε2 Ẽ4

′′
. (4.9)
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4.1.2 Only F̃ fields

F̃2
′
= F̃4

′′
eiβL2/4, (4.10)

F̃3
′′

= F̃1
′
eiβ3L2/4, (4.11)

F̃1
′′

= i
√
ε2 F̃3

′′
, (4.12)

F̃4
′′

=
√

1− ε2 F̃3
′′
, (4.13)

F̃4 = i
√
ε1 F̃2 +

√
1− ε1 F̃3, (4.14)

F̃4
′
= eiβ3L1/4 F̃4, (4.15)

F̃3 = eiβL1/4 F̃3
′
, (4.16)

F̃1 = F̃3 i
√
ε1 +
√

1− ε1 F̃2, (4.17)

F̃2 = eiβLs F̃1
′′
. (4.18)
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4.1.3 Mixed Ẽ and F̃ fields

Ẽ2
′
= Ẽ1

′ √
1− ε3 + F̃4

′
i
√
ε3, (4.19)

Ẽ4
′
=
√

1− ε3 Ẽ3
′
+ F̃2

′
i
√
ε3, (4.20)

F̃1
′
= F̃2

′ √
1− ε3 + Ẽ3

′
i
√
ε3, (4.21)

F̃3
′
= F̃4

′ √
1− ε3 + Ẽ1

′
i
√
ε3, (4.22)

4.2 Equation for Ẽ2
′′

based on Ẽ1 only

The goal of this chapter is to derive an equation for the output electric field

Ẽ2
′′

based on the input electric field Ẽ1 only. The 22 linear equations are

solved using the ’Method of Equating Fields’ in order to come up with the

final equation for Ẽ2
′′
. The derivation is carried out in several steps yielding

equations representing the path followed by the light as it travels along the

structure.

From Equation (4.9) we know,

Ẽ2
′′

= Ẽ1
′′ √

1− ε2 + i
√
ε2 Ẽ4

′′
.
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Combining Equation(4.8) and Equation (4.9), we get

Ẽ2
′′

= Ẽ2 e
iβLs
√

1− ε2 + i
√
ε2 Ẽ4

′′
.

Combining the above Equation with Equation (4.2) for Ẽ2 and then equation

(4.5) for Ẽ4 , we get

Ẽ2
′′

= eiβLs
√

1− ε2 (Ẽ1

√
1− ε1 + Ẽ4 i

√
ε1) + i

√
ε2 Ẽ4

′′
,

Ẽ2
′′

= eiβLs
√

(1− ε2) (1− ε1) Ẽ1 + eiβLs
√

1− ε2 i
√
ε1 Ẽ4

′
eiβ3L1/4 + i

√
ε2 Ẽ4

′′
.

(4.23)

And, we know from equation (4.7) that Ẽ4
′′

can be written in terms of Ẽ2
′
,

resulting in

Ẽ2
′′

= eiβLs
√

(1− ε2) (1− ε1) Ẽ1 + eiβLs
√

1− ε2 i
√
ε1 Ẽ4

′
eiβ3L1/4 + i

√
ε2 e

iβL2/4 Ẽ2
′
.

(4.24)

This particular equation is very important in the analysis of the DRR. The

three components of the equation for Ẽ2
′′

represents the three different paths

through which light propagates and exits through the DRR in the forward

direction.

The first component of the equation, eiβLs
√

(1− ε2) (1− ε1) Ẽ1 repre-

sents path 1 where the input light entering the structure travels along the bus
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waveguide after crossing the two coupling regions ε1 and ε2 and exits through

the waveguide. This component represents the simplest light path in a DRR

structure. Figure 4.3 below shows light path 1 in the forward direction.

Figure 4.3: Schematic of DRR showing light path 1 in the forward direction

The second component of the equation, eiβLs
√

1− ε2 i
√
ε1 e

iβ3L1/4 Ẽ4
′

represents the light leaving the coupling region ε3 between the two rings. The

light travels along 3
4

of the circumference L1 of the first ring and then enters

the two coupling regions ε1 and ε2, between the rings and the waveguide

before exiting through the waveguide. Figure 4.5 below shows the light path

2.
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Figure 4.4: Schematic of DRR showing light path 2 in the forward direction

The third component of the equation represents the light leaving the

coupling region ε3 between the rings and travels along 1
4

of the circumference

L2 of the second ring before entering the coupling region ε2 between the

second ring and the waveguide and exits through the waveguide. Figure 4.4

below shows the light path 3.

Figure 4.5: DRR, figure showing light path3 in the forward direction

The next step is to solve for Ẽ4
′

and Ẽ2
′

in terms of Ẽ1. Doing so will

yield an equation for Ẽ2
′′

solely in terms of Ẽ1, the input field. The three

light paths considered above are the only paths that need to be taken into
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account. All other possible paths (such as light leaving Ẽ4
′

and circulating

around ring 1 ) are accounted for by these three paths.

4.3 Equation for Ẽ4
′

based on Ẽ1 only (path

2)

From equation (4.20) we know,

Ẽ4
′
=
√

1− ε3 Ẽ3
′
+ F̃2

′
i
√
ε3.

Combining the above equation with Equation (4.4), we get

Ẽ4
′
=
√

1− ε3 Ẽ3 e
iβL1/4 + F̃2

′
i
√
ε3. (4.25)

Here the second ring acts like a ring resonator attached to the first ring. All

of its light (in the clockwise orientation) comes from the first ring.

4.3.1 Solving for F̃2
′
(the ring)

Now we need F̃2
′

based on Ẽ3. We know from equation (4.10),

F̃2
′
= F̃4

′′
eiβL2/4.
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Combining the above equation with Equations (4.13) and (4.11) yields

F̃2
′
=
√

1− ε2 F̃3
′′
eiβL2/4,

F̃2
′
=
√

1− ε2 eiβL2/4 F̃1
′
eiβ3L2/4,

F̃2
′
=
√

1− ε2 eiβL2 F̃1
′
. (4.26)

Combining Equations (4.26) and (4.21), yields

F̃2
′
=
√

1− ε2 eiβL2 (F̃2
′ √

1− ε3 + Ẽ3
′
i
√
ε3),

=
√

(1− ε2) (1− ε3) eiβL2 F̃2
′

+
√

1− ε2 eiβL2 Ẽ3
′
i
√
ε3,

F̃2
′
(1−

√
(1− ε2) (1− ε3) eiβL2) =

√
1− ε2 eiβL2 Ẽ3

′
i
√
ε3,

F̃2
′
=

[ √
1− ε2 eiβL2 i

√
ε3

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3
′
.

(4.27)
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Combining Equations (4.27) and (4.4) yields,

F̃2
′
=

[ √
1− ε2 eiβL2 i

√
ε3

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3 e

iβL1/4. (4.28)

Now combining equations (4.28) and (4.24) , we get

Ẽ4
′
=
√

1− ε3 Ẽ3 e
iβL1/4 + i

√
ε3

[ √
1− ε2 eiβL2 i

√
ε3

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3 e

iβL1/4.

=

√
1− ε3 eiβL1/4(1−

√
(1− ε2) (1− ε3) eiβL2) Ẽ3 − (ε3

√
1− ε2 eiβL2 eiβL1/4) Ẽ3

1−
√

(1− ε2) (1− ε3) eiβL2

,

=

[√
1− ε3 eiβL1/4 − eiβ(L2+L1/4)

√
1− ε2

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3,

Ẽ4
′
=

[ √
1− ε3 − eiβL2

√
1− ε2

1−
√

(1− ε2) (1− ε3) eiβL2

]
eiβL1/4 Ẽ3.
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The denominator term
√

(1− ε2) (1− ε3) eiβL2 is simply the transmission

coefficient t2 after traversing the second ring once. Therefore,

Ẽ4
′
=

[√
1− ε3 − eiβL2

√
1− ε2

1− t2

]
eiβL1/4 Ẽ3. (4.29)

Now we need Ẽ3 in terms of Ẽ1.

4.3.2 Solving for Ẽ3

From equation (4.1), we have

Ẽ3 = i
√
ε1 Ẽ1 +

√
1− ε1 Ẽ4.

Combining equations (4.1) and (4.5), yields

Ẽ3 = i
√
ε1 Ẽ1 +

√
1− ε1 Ẽ4

′
eiβ 3L1/4. (4.30)

From equation (4.29) we have,

Ẽ4
′
=

[ √
1− ε3 − eiβL2

√
1− ε2

1−
√

(1− ε2) (1− ε3) eiβL2

]
eiβL1/4 Ẽ3.

Combining equations (4.29) and (4.30) yields,

Ẽ3 = i
√
ε1 Ẽ1+

√
1− ε1 eiβ 3L1/4

[√
1− ε3 eiβL1/4 − eiβ(L2+L1/4)

√
1− ε2

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3,
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= i
√
ε1 Ẽ1 +

[√
(1− ε1) (1− ε3) eiβL1 −

√
(1− ε1) (1− ε2) eiβ(L1+L2)

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3,

Ẽ3

(
1−

[√
(1− ε1) (1− ε3) eiβL1 −

√
(1− ε1) (1− ε2) eiβ(L1+L2)

1−
√

(1− ε2) (1− ε3) eiβL2

])
= i
√
ε1 Ẽ1,

Ẽ3

(
1−

√
(1− ε2) (1− ε3) eiβL2 −

√
(1− ε1) (1− ε3) eiβL1 +

√
(1− ε1) (1− ε2) eiβ(L1+L2)

1−
√

(1− ε2) (1− ε3) eiβL2

)

= i
√
ε1 Ẽ1,

Ẽ3 =

(
i
√
ε1(1−

√
(1− ε2) (1− ε3) eiβL2)

1−
√

(1− ε2) (1− ε3)eiβL2 −
√

(1− ε1) (1− ε3) eiβL1 +
√

(1− ε1)(1− ε2)eiβ(L1+L2)

)
Ẽ1.

(4.31)

Combining equations (4.29) and (4.31), yields

Ẽ4
′
=

[
i
√
ε1(
√

1− ε3 eiβL1/4 − eiβ(L2+L1/4)
√

1− ε2)
1−

√
(1− ε2) (1− ε3)eiβL2 −

√
(1− ε1) (1− ε3) eiβL1 +

√
(1− ε1)(1− ε2)eiβ(L1+L2)

]
Ẽ1.

The denominator term
√

(1− ε1) (1− ε3) eiβL1 represents the transmission

coefficient t1 after the light traverses the first ring once. The denominator

term
√

(1− ε1)(1− ε2) eiβ(L1+L2) represents the transmission coefficient tX

after light traverses a fictitious ring-like structure of length L1 +L2 and hav-
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ing coupling points ε1 and ε2.

Ẽ4
′
=

[
i
√
ε1(
√

1− ε3 eiβL1/4 − eiβ(L2+L1/4)
√

1− ε2)
1− t2 − t1 + tX

]
Ẽ1. (4.32)

Thus we have Ẽ4
′

based on Ẽ1 only .

Next step is to come up with an equation for Ẽ2
′

based on Ẽ1 only.

4.4 Equation for Ẽ2
′

based on Ẽ1 only (path

3)

From equation (4.19),we know

Ẽ2
′
= Ẽ1

′ √
1− ε3 + F̃4

′
i
√
ε3.

Combining Equations (4.19) and (4.3) yields

Ẽ2
′
= Ẽ3

′′
eiβ 3L2/4

√
1− ε3 + F̃4

′
i
√
ε3. (4.33)
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4.4.1 Solving for F̃4
′
in terms of Ẽ3

′′
andF̃2

From Equation(4.15),we know

F̃4
′
= eiβ3L1/4 F̃4.

Combining the above Equation with Equation (4.14) yields

F̃4
′
= eiβ 3L1/4 i

√
ε1 F̃2 + eiβ 3L1/4

√
1− ε1 F̃3. (4.34)

Combining Equations (4.34) and (4.16) yields

F̃4
′
= eiβ 3L1/4 i

√
ε1 F̃2 + eiβ 3L1/4

√
1− ε1 eiβL1/4 F̃3

′
. (4.35)

Combining Equations (4.35) and (4.22) yields

F̃4
′
= eiβ 3L1/4 i

√
ε1 F̃2 + eiβL1

√
1− ε1 (F̃4

′ √
1− ε3 + Ẽ1

′
i
√
ε3),

F̃4
′
(1− eiβL1

√
(1− ε1)(1− ε3)) = eiβ 3L1/4 i

√
ε1 F̃2 + eiβL1

√
1− ε1 i

√
ε3 Ẽ1

′
.

(4.36)

From Equation (4.3) we know,

Ẽ1
′
= Ẽ3

′′
eiβ 3L2/4.
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Thus ,

F̃4
′
=

(
eiβ 3L1/4 i

√
ε1

(1− eiβL1

√
(1− ε1)(1− ε3))

)
F̃2+

(
eiβL1 eiβ 3L2/4

√
1− ε1 i

√
ε3

(1− eiβL1

√
(1− ε1)(1− ε3))

)
Ẽ3
′′
,

=

(
eiβ 3L1/4 i

√
ε1

t1

)
F̃2 +

(
eiβL1 eiβ 3L2/4

√
1− ε1 i

√
ε3

t1

)
Ẽ3
′′
. (4.37)

4.4.2 Solving for F̃2 in terms of Ẽ1

Now we need F̃2 in terms of Ẽ1 . From Equation (4.18), we know

F̃2 = eiβLs F̃1
′′
,

= eiβLs i
√
ε2 F̃3

′′
,

= eiβLs i
√
ε2 F̃1

′
eiβ3L2/4,

= eiβLs i
√
ε2 e

iβ3L2/4 (F̃2
′ √

1− ε3 + Ẽ3
′
i
√
ε3),

= eiβLs i
√
ε2 e

iβ3L2/4 F̃2
′ √

1− ε3 + Ẽ3
′
i
√
ε3e

iβLs i
√
ε2 e

iβ3L2/4,

= i
√
ε2
√

1− ε3 eiβLs eiβ3L2/4 F̃2
′ −
√
ε2 ε3 e

iβLs eiβ3L2/4Ẽ3
′
. (4.38)
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From Equation (4.27) we have,

F̃2
′
=

[ √
1− ε2 eiβL2 i

√
ε3

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3
′
.

Combining the above Equation with Equation (4.38), we get

F̃2 = eiβLs i
√
ε2 e

iβ3L2/4
√

1− ε3

[ √
1− ε2 eiβL2 i

√
ε3

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3
′−Ẽ3

′ √
ε2ε3e

iβLs eiβ3L2/4,

=

[
−
√
ε2 ε3(1− ε2)(1− ε3)eiβ(Ls+7L2/4)

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3
′ − Ẽ3

′ √
ε2ε3e

iβLs eiβ3L2/4,

=

(
(−
√
ε2ε3(1− ε2)(1− ε3)eiβ(Ls+7L2/4))−√ε2 ε3 eiβLseiβ3L2/4(1−

√
(1− ε2) (1− ε3)eiβL2)

1−
√

(1− ε2)(1− ε3) eiβL2

)
Ẽ3
′
,

=

[
−√ε2 ε3 eiβ(Ls+3L2/4)

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3
′
.

Combining above Equation with Equation (4.4) we get,

F̃2 =

[
−√ε2 ε3 eiβ(Ls+3L2/4+L1/4)

1−
√

(1− ε2) (1− ε3) eiβL2

]
Ẽ3. (4.39)
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From Equation (4.31) we have,

Ẽ3 =

(
i
√
ε1(1−

√
(1− ε2) (1− ε3) eiβL2)

1−
√

(1− ε2) (1− ε3)eiβL2 −
√

(1− ε1) (1− ε3) eiβL1 +
√

(1− ε1)(1− ε2)eiβ(L1+L2)

)
Ẽ1.

Combining Equations (4.38) and (4.30), we get

F̃2 =

(
−√ε2 ε3 eiβ(Ls+3L2/4+L1/4)

1−
√

(1− ε2) (1− ε3) eiβL2

)

×

(
i
√
ε1(1−

√
(1− ε2) (1− ε3)eiβL2)

1−
√

(1− ε2) (1− ε3)eiβL2 −
√

(1− ε1) (1− ε3) eiβL1 +
√

(1− ε1)(1− ε2)eiβ(L1+L2)

)
Ẽ1,

=

(
−i√ε1 ε2 ε3eiβ(Ls+3L2/4+L1/4)

1−
√

(1− ε2) (1− ε3)eiβL2 −
√

(1− ε1) (1− ε3) eiβL1 +
√

(1− ε1)(1− ε2)eiβ(L1+L2)

)
Ẽ1,

F̃2 =

(
−i√ε1ε2 ε3 eiβ(Ls+3L2/4+L1/4)

1− t1 − t2 + tX

)
Ẽ1. (4.40)

Thus we have F̃2 based on Ẽ1 only.
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4.4.3 Solving for F̃4
′
in terms of Ẽ1 and Ẽ3

′′

Combining Equations (4.40) and (4.37) yields,

F̃4
′
=

(
eiβ 3L1/4 i

√
ε1

1− t1

)(
−i√ε1ε2ε3 eiβ(Ls+3L2/4+L1/4)

1− t1 − t2 + tX

)
Ẽ1+

(
eiβL1 eiβ 3L2/4

√
1− ε1 i

√
ε3

1− t1

)
Ẽ3
′′
.

=

(
ε1
√
ε2 ε3e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)

)
Ẽ1+

(
eiβL1 eiβ 3L2/4

√
1− ε1 i

√
ε3

1− t1

)
Ẽ3
′′
.

(4.41)

Now we have F̃4
′

based on Ẽ1 and Ẽ3
′′
.

Combining this equation with the equation for Ẽ2
′
will yield Ẽ2

′
based on Ẽ1

and Ẽ3
′′
.

4.4.4 Solving for Ẽ2
′
in terms of Ẽ1 and Ẽ3

′′

From quation (4.33) , we have

Ẽ2
′
= Ẽ3

′′
eiβ 3L2/4

√
1− ε3 + F̃4

′
i
√
ε3.
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Combining Equations (4.33) and (4.41) yields,

Ẽ2
′
= Ẽ3

′′
eiβ 3L2/4

√
1− ε3+

(
iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)

)
Ẽ1−

(
eiβ(L1+3L2/4)ε3

√
1− ε1

1− t1

)
Ẽ3
′′
,

=

(
iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)

)
Ẽ1+

(
eiβ 3L2/4

√
1− ε3(a)− eiβ(L1+3L2/4)ε3

√
1− ε1

1− t1

)
Ẽ3
′′
.

Note:
√

1− ε3 (1−eiβL1
√

(1− ε1) (1− ε3))eiβ3L2/4− ε3
√

1− ε1 eiβ(L1+3L2/4)

= −(1−ε3)
√

1− ε1 eiβL1 eiβ3L2/4−ε3
√

1− ε1 eiβL1 eiβ3L2/4+
√

1− ε3 eiβ3L2/4,

=
√

1− ε3 eiβ3L2/4 −
√

1− ε1 eiβL1 eiβ3L2/4.

Thus

Ẽ2
′
=

(
iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)

)
Ẽ1+

(√
1− ε3 eiβ3L2/4 −

√
1− ε1 eiβ(L1+3L2/4)

1− t1

)
Ẽ3
′′
.

(4.42)

Now we need Ẽ3
′′

in terms of Ẽ1 to get the final equation for Ẽ2
′
.

4.4.5 Solving for Ẽ3
′′

in terms of Ẽ2 and Ẽ2
′

From Equation (4.6) , we know

Ẽ3
′′

= Ẽ1
′′
i
√
ε2 +
√

1− ε2 Ẽ4
′′
.
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Combining the above equation and Equation (1.8) and (1.7), we get

Ẽ3
′′

= eiβLs i
√
ε2 Ẽ2 +

√
1− ε2 eiβL2/4 Ẽ2

′
. (4.43)

4.4.6 Solving for Ẽ2 in terms of Ẽ1

From equation (4.2) we know,

Ẽ2 = Ẽ1

√
1− ε1 + Ẽ4 i

√
ε1.

Combining above equation with Equation (4.5), we get

Ẽ2 = Ẽ1

√
1− ε1 + Ẽ4

′
eiβ3L1/4 i

√
ε1. (4.44)

From Equation (4.31) we know,

Ẽ4
′
=

[
i
√
ε1(
√

1− ε3 eiβL1/4 − eiβ(L2+L1/4)
√

1− ε2)
1−

√
(1− ε2) (1− ε3)eiβL2 −

√
(1− ε1) (1− ε3) eiβL1 +

√
(1− ε1)(1− ε2)eiβ(L1+L2)

]
Ẽ1,

=

[
i
√
ε1
√

1− ε3 − eiβL2 i
√
ε1
√

1− ε2
1− t1 − t2 + tX

]
eiβL1/4 Ẽ1.
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Combining above equation with Equation (4.44), we get

Ẽ2 = Ẽ1

√
1− ε1 +

[
i
√
ε1
√

1− ε3 − eiβL2 i
√
ε1
√

1− ε2
1− t1 − t2 + tX

]
Ẽ1 e

iβL1 i
√
ε1,

=

(√
1− ε1 − ε1

[√
1− ε3 − eiβL2

√
1− ε2

1− t1 − t2 + tX

]
eiβL1

)
Ẽ1. (4.45)

Now combining equations (4.43) and (4.45) , we get

Ẽ3
′′

=

(√
1− ε1 − ε1

[√
1− ε3 − eiβL2

√
1− ε2

1− t1 − t2 + tX

]
eiβL1

)
eiβLs i

√
ε2 Ẽ1

+
√

1− ε2 eiβL2/4 Ẽ2
′
,

Ẽ3
′′

= i
√
ε2
√

1− ε1 eiβLs Ẽ1−ε1
√
ε2

[√
1− ε3 − eiβL2

√
1− ε2

1− t1 − t2 + tX

]
i eiβL1 eiβLs Ẽ1

+
√

1− ε2 eiβL2/4 Ẽ2
′
. (4.46)

71



4.4.7 Solving for Ẽ2
′
in terms of Ẽ1

The combination of equations (4.42) and (4.46) allows us to solve for Ẽ2
′

solely in terms of Ẽ1. Therefore Equation (4.46) can also be written as,

Ẽ3
′′

=


√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3)
+ eiβ(L1+L2)

√
1− ε2)

1−
√

(1− ε2) (1− ε3)eiβL2 −
√

(1− ε1) (1− ε3) eiβL1

+
√

(1− ε1)(1− ε2)eiβ(L1+L2)

 Ẽ1 e
iβLs i

√
ε2

+
√

1− ε2 eiβL2/4 Ẽ2
′
,

=


√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3)
+ eiβ(L1+L2)

√
1− ε2)

1− t1 − t2 + tX

 Ẽ1 e
iβLs i

√
ε2

+
√

1− ε2 eiβL2/4 Ẽ2
′
.
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Combining Equation (4.46) with the above equation yields,

Ẽ2
′
=

(
iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)

)
Ẽ1

+


√

1− ε3 eiβ3L2/4

−
√

1− ε1 eiβ(L1+3L2/4)

1− t1

×




√
1− ε1 − eiβL2

√
(1− ε1)(1− ε2) (1− ε3)
−eiβL1

√
1− ε3

+ eiβ(L2+L1)
√

1− ε2
1− t1 − t2 + tX

 Ẽ1 e
iβLs i

√
ε2 +
√

1− ε2 eiβL2/4 Ẽ2
′

 ,

Ẽ2
′
(

1−

(√
(1− ε2) (1− ε3) eiβL2 −

√
(1− ε1)(1− ε2)eiβ(L1+L2)

1− t1

))

=



(
√

1− ε3 eiβ3L2/4 −
√

1− ε1 eiβ(L1+3L2/4))(eiβLs i
√
ε2)×

(
√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3 + eiβ(L2+L1)
√

1− ε2)
+ iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)


Ẽ1.
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Ẽ2
′
(

1− t1 − t2 + tX
1− t1

)

=



(
√

1− ε3eiβ3L2/4 −
√

1− ε1eiβ(L1+3L2/4))(eiβLsi
√
ε2)×

(
√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3 + eiβ(L2+L1)
√

1− ε2)
+ iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1) (1− t1 − t2 + tX)


Ẽ1.

Therefore

Ẽ2
′
=



(i
√
ε2(1− ε3) eiβ(Ls+3L2/4) − i

√
ε2(1− ε1) eiβ(L1+3L2/4+Ls))×

(
√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3 + eiβ(L2+L1)
√

1− ε2)
+ iε1 ε3

√
ε2e

iβ(Ls+3L2/4+L1)

(1− t1 − t2 + tX)2


Ẽ1.

(4.47)
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4.5 Combining equations for Ẽ4
′

and Ẽ2
′

to

obtain output electric field Ẽ2
′′

in terms

of Ẽ1 only

From Equation (4.24) we have,

Ẽ2
′′

= eiβLs
√

(1− ε2) (1− ε1) Ẽ1+e
iβLs
√

1− ε2 i
√
ε1 Ẽ4

′
eiβ3L1/4+i

√
ε2 e

iβL2/4 Ẽ2
′
.

Now combine Equations (4.24) , (4.32) and (4.47) as the final step to get Ẽ2
′′

in terms of Ẽ1. This yields,

Ẽ2
′′

= i
√
ε2



(i
√
ε2(1− ε3) eiβ(Ls+L2) − i

√
ε2(1− ε1) eiβ(L1+L2+Ls))×

(
√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3
+ eiβ(L2+L1)

√
1− ε2)

+ iε1 ε3
√
ε2e

iβ(Ls+L2+L1)

(1− t1 − t2 + tX)2


Ẽ1

+i
√
ε1(1− ε2) eiβ(L1+Ls)

[
i
√
ε1(
√

1− ε3 − eiβL2
√

1− ε2)
1− t1 − t2 + tX

]
Ẽ1+e

iβLs
√

(1− ε2) (1− ε1) Ẽ1.
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Thus

Ẽ2
′′

=


(ε2
√

(1− ε1)eiβ(Ls+L1+L2) − ε2
√

(1− ε3)eiβ(Ls+L2)) ×
(
√

1− ε1 − eiβL2
√

(1− ε1)(1− ε2)(1− ε3)− eiβL1
√

1− ε3 + eiβ(L2+L1)
√

1− ε2
(1− t1 − t2 + tX)2

 Ẽ1

−ε1 ε3 ε2 e
iβ(Ls+L2+L1)

(1− t1 − t2 + tX)2
Ẽ1+

(
ε1(1− ε2)eiβ(L1+L2+Ls) − ε1

√
(1− ε2)(1− ε3)eiβ(L1+Ls)

1− t1 − t2 + tX

)
Ẽ1

+ eiβLs
√

(1− ε2) (1− ε1) Ẽ1.

which can also be written as

Ẽ2
′′

=

(
N

(1− t1 − t2 + tX)2

)
Ẽ1. (4.48)

where

N = (ε2
√

(1− ε1)eiβ(Ls+L1+L2) − ε2
√

(1− ε3)eiβ(Ls+L2))×

(
√

1− ε1−eiβL2
√

(1− ε1)(1− ε2)(1− ε3)−eiβL1
√

1− ε3 +eiβ(L2+L1)
√

1− ε2)

− ε1 ε3 ε2 eiβ(Ls+L2+L1)

+ (ε1(1− ε2)eiβ(L1+L2+Ls) − ε1
√

(1− ε2)(1− ε3)eiβ(L1+Ls)) (1− t1 − t2 + tX)

+ eiβLs
√

(1− ε2) (1− ε1) (1− t1 − t2 + tX)2.
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We know

Ẽ2
′′

= t̃ Ẽ1

Therefore the transmission coefficient t̃ is

t̃ =
N

(1− t1 − t2 + tX)2
. (4.49)

4.6 Transmittivity plot based on numerical

expression

We know transmittivity is the product of the transmission coefficient t̃ and

its conjugate t̃?.

T = |Ẽ2
′′

Ẽ1

|2 = |t̃|2 = t̃ × t̃?. (4.50)

Figure 4.6 below shows the response obtained when t̃ × t̃? is plotted against

βL/π with ε1 = ε2 = 0.1 and ε3 = 0.016.
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Figure 4.6: Transmittivity plot of a DRR where transmittivity is calculated
as t̃× t̃?
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Chapter 5

Double Ring

Resonator-Reflected Field

The goal of this chapter is to derive an equation for the reflected field F̃1

based on Ẽ1 only.

5.1 F̃1 based on F̃3
′
and F̃1

′

From Equation (4.17) we know

F̃1 = F̃3 i
√
ε1 +
√

1− ε1 F̃2.
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Combining above equation with Equation (4.16) , yields

F̃1 = F̃3
′
eiβL1/4 i

√
ε1 +
√

1− ε1 F̃2. (5.1)

From equation (4.18),

F̃2 = eiβLs F̃1
′′
,

Combining above equation with Equation (4.12), yields

F̃2 = eiβLs i
√
ε2 F̃3

′′
,

Combining above equation with equation (4.11), yields

F̃2 = eiβLs i
√
ε2 e

iβ3L2/4 F̃1
′
. (5.2)

Combining Equations (5.1) and (5.2), yields

F̃1 = eiβL1/4 i
√
ε1 F̃3

′
+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4 F̃1
′
. (5.3)

The right hand side of the above equation constitutes two paths over

which light can reach F̃1. Figure 5.1 shows light path 1 and 2 in the backward

direction.

In the following pages, F̃3
′

and F̃1
′

are derived solely in terms of Ẽ1.
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Figure 5.1: Schematic of DRR showing light path 1 and 2 in the backward
direction

5.1.1 Equation for F̃3
′
based on F̃1

′
, Ẽ1 and Ẽ4

Equation (4.22) states

F̃3
′
= F̃4

′ √
1− ε3 + Ẽ1

′
i
√
ε3,

From Equation (4.3), we know

Ẽ1
′
= Ẽ3

′′
eiβ 3L2/4,

Combining the above equation with Equation (4.6) yields

Ẽ1
′
= (Ẽ1

′′
i
√
ε2 +
√

1− ε2 Ẽ4
′′
) eiβ 3L2/4,

Ẽ1
′
= i
√
ε2 eiβ 3L2/4 Ẽ1

′′
+
√

1− ε2 eiβ 3L2/4 Ẽ4
′′
,
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Combining the above equation with Equations (4.8) and (4.7) yields

Ẽ1
′
= eiβLs i

√
ε2 eiβ 3L2/4 Ẽ2 + eiβL2

√
1− ε2 Ẽ2

′
,

Combining the above equation with Equations (4.2) and (4.19) yields

Ẽ1
′
= (Ẽ1

√
1− ε1+Ẽ4 i

√
ε1) e

iβLs i
√
ε2 e

iβ 3L2/4+eiβL2 (Ẽ1
′ √

1− ε3+F̃4
′
i
√
ε3)
√

1− ε2,

= Ẽ1

√
1− ε1 eiβLs i

√
ε2 e

iβ 3L2/4−Ẽ4

√
ε1ε2 e

iβLs eiβ 3L2/4+Ẽ1
′ √

1− ε3
√

1− ε2 eiβL2

+ F̃4
′
i
√
ε3
√

1− ε2 eiβL2 ,

Ẽ1
′
(1−
√

1− ε3
√

1− ε2 eiβL2) = Ẽ1

√
1− ε1 eiβLs i

√
ε2 e

iβ 3L2/4−Ẽ4

√
ε1ε2 e

iβLs eiβ 3L2/4

+ F̃4
′
i
√
ε3
√

1− ε2 eiβL2 ,

Ẽ1
′
= Ẽ1

(√
1− ε1 eiβLs i

√
ε2 e

iβ 3L2/4

1−
√

1− ε3
√

1− ε2 eiβL2

)
−Ẽ4

( √
ε1ε2 e

iβLs eiβ 3L2/4

1−
√

1− ε3
√

1− ε2 eiβL2

)

+ F̃4
′
(

i
√
ε3
√

1− ε2 eiβL2

1−
√

1− ε3
√

1− ε2 eiβL2

)
.
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Note that, as introduced earlier this chapter, the transmission coefficient for

ring 2 is t2 = eiβL2
√

1− ε3
√

1− ε2. Using t2, Ẽ1
′

can also be written as

Ẽ1
′
= Ẽ1

(√
1− ε1 eiβLs i

√
ε2 e

iβ 3L2/4

1− t2

)
− Ẽ4

(√
ε1ε2 e

iβLs eiβ 3L2/4

1− t2

)

+ F̃4
′
(
i
√
ε3
√

1− ε2 eiβL2

1− t2

)
. (5.4)

Combining Equations (5.4) and (4.22) yields

F̃3
′
= F̃4

′ √
1− ε3−Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)
−Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)

− F̃4
′
(
ε3
√

1− ε2 eiβL2

1− t2

)
,

F̃3
′
= F̃4

′
(√

1− ε3 −
(
ε3
√

1− ε2 eiβL2

1− t2

))
−Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)

− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
,
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= F̃4
′
(√

1− ε3(1− t2)− ε3
√

1− ε2 eiβL2

1− t2

)
−Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)

− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
,

As stated above t2 = eiβL2
√

1− ε3
√

1− ε2 . Therefore the equation becomes

F̃3
′
= F̃4

′
(√

1− ε3 −
√

1− ε2 eiβL2

1− t2

)
−Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)

− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
. (5.5)

From Equation (4.15)we know,

F̃4
′
= eiβ3L1/4 F̃4.

Combining above equation with Equation (4.14) yields

F̃4
′
= eiβ3L1/4 (i

√
ε1 F̃2 +

√
1− ε1 F̃3),

= eiβ3L1/4 i
√
ε1 F̃2 + eiβ3L1/4

√
1− ε1 F̃3.

Combining above equation with Equation (4.16) yields

F̃4
′
= eiβ3L1/4 i

√
ε1 F̃2 + eiβ3L1/4

√
1− ε1 eiβL1/4 F̃3

′
. (5.6)
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Combining Equations (5.5) and (5.6) yields,

F̃3
′
= (eiβ3L1/4 i

√
ε1 F̃2+e

iβ3L1/4
√

1− ε1 eiβL1/4 F̃3
′
)

(√
1− ε3 −

√
1− ε2 eiβL2

1− t2

)

− Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)

− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
,

F̃3
′
= F̃2

(
i
√
ε1
√

1− ε3 eiβ3L1/4 − i√ε1
√

1− ε2 eiβL2 eiβ3L1/4

1− t2

)

+ F̃3
′
(
t1 − tX
1− t2

)
−Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)
−Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
,

85



F̃3
′
(

1−
(
t1 − tX
1− t2

))
= F̃2

(
i
√
ε1
√

1− ε3 eiβ3L1/4 − i√ε1
√

1− ε2 eiβL2 eiβ3L1/4

1− t2

)

− Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)
− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
,

F̃3
′
(

1− t2 − t1 − tX
1− t2

)
= F̃2

(
i
√
ε1
√

1− ε3 eiβ3L1/4 − i√ε1
√

1− ε2 eiβL2 eiβ3L1/4

1− t2

)

− Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t2

)
− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t2

)
.

Therefore,

F̃3
′
= F̃2

(
i
√
ε1
√

1− ε3 eiβ3L1/4 − i√ε1
√

1− ε2 eiβL2 eiβ3L1/4

1− t1 − t2 + tX

)

− Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t1 − t2 + tX

)
− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t1 − t2 + tX

)
.

(5.7)
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As seen above, F2 = i
√
ε2 e

iβLs eiβ3L2/4. Therefore the equation becomes

F̃3
′
= F ′1

(
−√ε1 ε2

√
1− ε3 eiβLs eiβ3L2/4 eiβ3L1/4 +

√
ε1ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβ3L1/4

1− t1 − t2 + tX

)

− Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t1 − t2 + tX

)
− Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t1 − t2 + tX

)
.

(5.8)

Combining the above equation with the equation for F̃1 yields F̃1 in terms of

F ′1, Ẽ1 and Ẽ4.

5.2 Solving for F̃1 in terms of F ′1, Ẽ1 and Ẽ4

From Equation (5.3), we know

F̃1 = eiβL1/4 i
√
ε1 F̃3

′
+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4 F̃1
′
.
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Combining above equation with Equation (5.8) yields,

F̃1 = eiβL1/4 i
√
ε1

F ′1

−√ε1 ε2

√
1− ε3 eiβLs eiβ3L2/4 eiβ3L1/4

+
√
ε1ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβ3L1/4

1− t1 − t2 + tX




−eiβL1/4 i
√
ε1

(
Ẽ1

(√
ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4

1− t1 − t2 + tX

)
+ Ẽ4

(
i
√
ε1ε2ε3 e

iβLs eiβ 3L2/4

1− t1 − t2 + tX

))

+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4 F̃1
′
,

F̃1 = F ′1


−i ε1

√
ε2
√

1− ε3 eiβLs eiβ3L2/4 eiβL1

+ i ε1
√
ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβL1

1− t1 − t2 + tX



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)

+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4 F̃1
′
,
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F̃1 = F ′1


−i ε1

√
ε2
√

1− ε3 eiβLs eiβ3L2/4 eiβL1

+ i ε1
√
ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβL1

1− t1 − t2 + tX
+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
.

= F ′1



−i ε1
√
ε2
√

1− ε3 eiβLs eiβ3L2/4 eiβL1

+i ε1
√
ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβL1

+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4(1− t1 − t2 + tX)

1− t1 − t2 + tX



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
.

(5.9)

5.3 Solving for F ′1 in terms of Ẽ1 and Ẽ4

From Equation (4.21) we know,

F ′1 = F̃2
′ √

1− ε3 + Ẽ3
′
i
√
ε3.
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Combining the above equation with Equations (4.10) and (4.4) yields

F ′1 = F̃4
′′
eiβL2/4

√
1− ε3 + Ẽ3 e

iβL1/4 i
√
ε3

Combining the above equation with Equations (4.13) and (4.1) yields

F ′1 =
√

1− ε2 F̃3
′′
eiβL2/4

√
1− ε3 + (i

√
ε1 Ẽ1 +

√
1− ε1 Ẽ4) e

iβL1/4 i
√
ε3,

F ′1 =
√

(1− ε2)(1− ε3) F̃3
′′
eiβL2/4−

√
ε1 ε3 Ẽ1 e

iβL1/4+ i
√
ε3
√

1− ε1 Ẽ4 e
iβL1/4.

Combining the above equation with Equation (4.11) yields

F ′1 =
√

(1− ε2)(1− ε3) eiβL2 F̃1
′−
√
ε1 ε3 Ẽ1 e

iβL1/4+ i
√
ε3
√

1− ε1 Ẽ4 e
iβL1/4,

F ′1

(
1−

√
(1− ε2)(1− ε3) eiβL2

)
= −
√
ε1 ε3 Ẽ1 e

iβL1/4+ i
√
ε3
√

1− ε1 Ẽ4 e
iβL1/4,

F ′1 =

(
−√ε1 ε3 eiβL1/4

1−
√

(1− ε2)(1− ε3) eiβL2

)
Ẽ1+

(
i
√
ε3
√

1− ε1 eiβL1/4

1−
√

(1− ε2)(1− ε3) eiβL2

)
Ẽ4,

=

(
−√ε1 ε3 eiβL1/4

1− t2

)
Ẽ1 +

(
i
√
ε3
√

1− ε1 eiβL1/4

1− t2

)
Ẽ4. (5.10)
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5.4 F̃1 in terms of Ẽ1 and Ẽ4

Combining equations for F̃1 and F ′1 yields F̃1 in terms of Ẽ1 and Ẽ4. From

Equation (5.9) , we know

F̃1 = F ′1



−i ε1
√
ε2
√

1− ε3 eiβLs eiβ3L2/4 eiβL1

+i ε1
√
ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβL1

+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4(1− t1 − t2 + tX)

1− t1 − t2 + tX



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
.
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Combining the above equation and Equation (5.10) yields

F̃1 =

((
−√ε1 ε3 eiβL1/4

1− t2

)
Ẽ1 +

(
i
√
ε3
√

1− ε1 eiβL1/4

1− t2

)
Ẽ4

)
×



−i ε1
√
ε2
√

1− ε3 eiβLs eiβ3L2/4 eiβL1

+i ε1
√
ε2
√

1− ε2 eiβL2 eiβLs eiβ3L2/4 eiβL1

+ i
√
ε2
√

1− ε1 eiβLs eiβ3L2/4(1− t1 − t2 + tX)

1− t1 − t2 + tX



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
,

=

((
−√ε1 ε3 eiβL1/4

1− t2

)
Ẽ1 +

(
i
√
ε3
√

1− ε1 eiβL1/4

1− t2

)
Ẽ4

)
×


i
√
ε2
√

1− ε1eiβLseiβL2/4 − i√ε2
√

(1− ε1)(1− ε2)(1− ε3)eiβL2eiβ3L2/4eiβLs

− i√ε2
√

1− ε3eiβL1eiβLseiβ3L2/4 + i
√
ε2
√

1− ε2eiβL1eiβL2eiβ3L2/4eiβLs

1− t1 − t2 + tX



+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
.
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Therefore

F̃1 =


(i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4) ×
(−
√

1− ε1 +
√

(1− ε1)(1− ε2)(1− ε3)eiβL2 +
√

1− ε3eiβL1 −
√

1− ε2eiβL1eiβL2)

(1− t2)(1− t1 − t2 + tX)

 Ẽ1

+



(
√
ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4) ×
(−1 + ε1 +

√
(1− ε2)(1− ε3)eiβL2 − ε1

√
(1− ε2)(1− ε3) eiβL2

+
√

(1− ε1)(1− ε3)eiβL1 −
√

(1− ε1)(1− ε2)eiβL1eiβL2)

(1− t2)(1− t1 − t2 + tX)


Ẽ4

+Ẽ1

(
−i√ε1ε2ε3

√
1− ε1 eiβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
+Ẽ4

(
ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4

1− t1 − t2 + tX

)
,

=



(i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4)×
(−
√

1− ε1 +
√

(1− ε1)(1− ε2)(1− ε3)eiβL2 +
√

1− ε3eiβL1 −
√

1− ε2eiβL1eiβL2)

− i√ε1ε2ε3
√

1− ε1 eiβLs eiβ 3L2/4 eiβL1/4(1−
√

(1− ε3)(1− ε2)eiβL2)

(1− t2)(1− t1 − t2 + tX)


Ẽ1

+


(
√
ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4) × (−1 + ε1 + t2 − ε1 t2 + t1 − tX)

+ ε1
√
ε2ε3 e

iβLs eiβ 3L2/4 eiβL1/4(1−
√

(1− ε3)(1− ε2)eiβL2)

(1− t2)(1− t1 − t2 + tX)

 Ẽ4.
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Therefore ,

F̃1 =

(
i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4(−2
√

1− ε1(1− t2) + eiβL1(
√

1− ε3 −
√

1− ε2eiβL2))

(1− t2)(1− t1 − t2 + tX)

)
Ẽ1

+

(√
ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4(2ε1 − 2t2 ε1 − 1 + t2 + t1 − tX)

(1− t2)(1− t1 − t2 + tX)

)
Ẽ4.

(5.11)

5.4.1 Solving for F̃1 in terms of Ẽ1 only

From Equation (4.32) we have Ẽ4 based on Ẽ1.

Ẽ4 = Ẽ1

(
eiβL1 i

√
ε1(1− ε3)− eiβ(L1+L2) i

√
ε1(1− ε2)

1− t1 − t2 + tX

)
.
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Combining the above equation with Equation (5.11) yields,

F̃1 =

(
i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4(−2
√

1− ε1(1− t2) + eiβL1(
√

1− ε3 −
√

1− ε2eiβL2))

(1− t2)(1− t1 − t2 + tX)

)
Ẽ1

+

(√
ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4(2ε1 − 2t2 ε1 − 1 + t2 + t1 − tX)

(1− t2)(1− t1 − t2 + tX)

)
×

(
eiβL1 i

√
ε1(1− ε3)− eiβ(L1+L2) i

√
ε1(1− ε2)

1− t1 − t2 + tX

)
Ẽ1,

=

(
i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4(−2
√

1− ε1(1− t2) + eiβL1(
√

1− ε3 −
√

1− ε2eiβL2))

(1− t2)(1− t1 − t2 + tX)

)
Ẽ1

+


√
ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4(2ε1 − 2 t2 ε1 − 1 + t2 + t1 − tX)×
(eiβL1 i

√
ε1(1− ε3)− eiβ(L1+L2) i

√
ε1(1− ε2))

(1− t2)(1− t1 − t2 + tX)2

 Ẽ1.

=

(
i
√
ε1ε2ε3 e

iβLs eiβL1/4 eiβ3L2/4(−2
√

1− ε1(1− t2) + eiβL1(
√

1− ε3 −
√

1− ε2eiβL2))

(1− t2)(1− t1 − t2 + tX)

)
Ẽ1

+


i
√
ε1ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4(2ε1 − 2t2 ε1 − (1− t1 − t2 + tX))×
eiβL1(

√
(1− ε3)− eiβL2

√
(1− ε2))

(1− t2)(1− t1 − t2 + tX)2

 Ẽ1.
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= i
√
ε1ε2ε3 e

iβL1/4 eiβLs eiβ3L2/4×


(1− t1 − t2 + tX)(−2

√
1− ε1(1− t2) + eiβL1(

√
1− ε3 −

√
1− ε2eiβL2)

+ eiβL1(
√

(1− ε3)− eiβL2
√

(1− ε2)(2ε1 − 2t2 ε1 − (1− t1 − t2 + tX))

(1− t2)(1− t1 − t2 + tX)2

 Ẽ1,

= i
√
ε1ε2ε3e

iβL1/4eiβLseiβ3L2/4


−2
√

1− ε1(1− t2)(1− t1 − t2 + tX)

+ eiβL1(
√

(1− ε3)− eiβL2
√

(1− ε2)(2ε1 − 2 t2ε1)

(1− t2)(1− t1 − t2 + tX)2

 Ẽ1.

Thus the final equation for F̃1 becomes,

F̃1 = i
√
ε1ε2ε3 e

iβL1/4eiβLseiβ3L2/4


−2
√

1− ε1(1− t1 − t2 + tX)

+ 2ε1 e
iβL1(

√
(1− ε3)− eiβL2

√
(1− ε2)

(1− t1 − t2 + tX)2

 Ẽ1.

(5.12)

We know

F̃1 = r̃ Ẽ1
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Therefore the reflection coefficient r̃ is

r̃ = i
√
ε1ε2ε3 e

iβL1/4eiβLseiβ3L2/4


−2
√

1− ε1(1− t1 − t2 + tX)

+ 2ε1 e
iβL1(

√
(1− ε3)− eiβL2

√
(1− ε2)

(1− t1 − t2 + tX)2

 .

(5.13)

5.5 Reflectivity plot based on numerical ex-

pression

We know reflectivity R is the product of the reflection coefficient r̃ and its

conjugate r̃?.

R = | F̃1

Ẽ1

|2 = |r̃|2 = r̃ × r̃?. (5.14)

Figure 5.2 shows the response obtained when r̃ × r̃? is plotted against βL/π

with ε1 = ε2 = 0.1 and ε3 = 0.016.
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Figure 5.2: Reflectivity plot of a DRR where reflectivity R is calculated as
r̃ × r̃?
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Chapter 6

Sanity Checks

The goal of this chapter is to establish the correctness of the derived equations

for the transmitted and reflected electric field of the DRR . This can be done

by several methods. One method is by substituting ε1, ε2 or ε3 = 0 in the

equations and checking if the results match the corresponding equations for

simpler structures. Another method is by checking if the plots of the obtained

results match known results in journal papers. Th final sanity check would

be checking if power is conserved by adding T and R. The different sanity

checks are performed on both transmission and reflection in the following

sections.
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6.1 Sanity check for transmission equation

This section performs the sanity check on the transmitted field equation

(4.48). The correctness of the derived equation for the transmitted electric

field of the DRR can be checked by substituting ε1 and ε3 = 0 orε2 and ε3 = 0

in the equation (4.48) and then comparing the resulting equation with the

equation for the output electric field of a single ring resonator.

6.1.1 ε2 = ε3 = 0

When ε2 = ε3 = 0 , Equation (4.48) becomes,

Ẽ2
′′

=


(ε1e

iβ(L1+L2+Ls) − ε1eiβ(L1+Ls))(1− t1 − t2 + tX)

+ (eiβLs
√

(1− ε1)(1− t1 − t2 + tX)2

(1− t1 − t2 + tX)2

 Ẽ1,

=

(
−ε1 eiβ(L1+Ls)(1− eiβL2) + (eiβLs

√
1− ε1)(1− t1 − t2 + tX)

1− t1 − t2 + tX

)
Ẽ1.

When ε2 = ε3 = 0,

1− t1 − t2 + tX = 1− eiβL2 −
√

1− ε1 eiβL1 +
√

1− ε1 eiβ(L1+L2),

= (1− eiβL2)(1−
√

1− ε1 eiβL1).
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Therefore,

Ẽ2
′′

=

[
−ε1 eiβ(L1+Ls)(1− eiβL2) + eiβLs

√
1− ε1 (1− eiβL2)(1−

√
1− ε1 eiβL1)

(1− eiβL2)(1−
√

1− ε1 eiβL1)

]
Ẽ1.

Note that all L2 terms drop out, as makes physical sense:

Ẽ2
′′

=

[
−ε1 eiβ(L1+Ls) + eiβLs

√
1− ε1 (1−

√
1− ε1 eiβL1)

(1−
√

1− ε1 eiβL1)

]
Ẽ1,

=

[
−ε1 eiβ(L1+Ls) + eiβLs

√
1− ε1 − eiβLs (1− ε1) eiβL1)

(1−
√

1− ε1 eiβL1)

]
Ẽ1,

=

[
eiβLs (

√
1− ε1 − eiβL1)

(1−
√

1− ε1 eiβL1)

]
Ẽ1,

=

[
1−
√

1− ε1 e−iβL1

1−
√

1− ε1 eiβL1

]
eiπ eiβL1 eiβLs .

which is equal to the output electric field of a single ring resonator multiplied

by a factor eiβLs [10]. This is the expected result.
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6.1.2 ε1 = ε3 = 0

When ε2 = ε3 = 0 ,

1− t1 − t2 + tX = (1−
√

(1− ε2)eiβL2 +
√

(1− ε2) eiβ(L1+L2),

= (1− eiβL1) (1−
√

1− ε2 eiβL2).

Therefore Equation (4.48) becomes,

Ẽ2
′′

=


(ε2e

iβ(L1+L2+Ls) − ε2eiβ(L1+Ls))(1− eiβL2
√

1− ε2 − eiβL1 + eiβ(L1+L2)
√

1− ε2
+ (eiβLs

√
(1− ε2)((1− eiβL1) (1−

√
1− ε2 eiβL2))2

((1− eiβL1) (1−
√

1− ε2 eiβL2))2

 Ẽ1,

=


−ε2 eiβ(L2+Ls)(1− eiβL1)(1− eiβL1) (1−

√
1− ε2 eiβL2)

+ (eiβLs
√

(1− ε2)((1− eiβL1) (1−
√

1− ε2 eiβL2))2

((1− eiβL1) (1−
√

1− ε2 eiβL2))2

 Ẽ1,

=

(
−ε2 eiβ(L2+Ls) + eiβLs

√
(1− ε2 (1−

√
1− ε2 eiβL2)

1−
√

1− ε2 eiβL2

)
Ẽ1,

=

(
−ε2 eiβ(L2+Ls) + eiβLs

√
(1− ε2 − eiβ(Ls+L2) + ε2 e

iβ(Ls+L2)

1−
√

1− ε2 eiβL2

)
Ẽ1,
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=

(
eiβLs (

√
(1− ε2 − eiβL2)

1−
√

1− ε2 eiβL2

)
Ẽ1,

=

[
1−
√

1− ε2 e−iβL2

1−
√

1− ε2 eiβL2

]
eiπ eiβL2 eiβLs .

which is equal to the output electric field of a single ring resonator multiplied

by a factor eiβLs [10]. This is the expected result.

6.2 Sanity check for reflection equation

This section performs the sanity check on the reflected field equation (5.34).

The correctness of the derived equation for the reflected electric field of the

DRR can be checked by substituting ε1, ε2 or ε3 = 0 in the equation (5.34).

The reflected electric field should be equal to zero when either one of these

values is zero .

Another way to establish the correctness of the equation is by matching with

known results from previous work in journal papers.
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6.2.1 ε1, ε2 or ε3 = 0

From Equation (5.12), we know

F̃1 = i
√
ε1ε2ε3 e

iβL1/4eiβLseiβ3L2/4


−2
√

1− ε1(1− t1 − t2 + tX)

+ 2ε1 e
iβL1(

√
(1− ε3)− eiβL2

√
(1− ε2)

(1− t1 − t2 + tX)2

 Ẽ1.

As the derived equation for the reflected electric field F̃1 contains a mul-

tiplicative factor i
√
ε1ε2ε3e

iβL1/4eiβLseiβ3L2/4 , when either ε1, ε2 or ε3 = 0,

the equation becomes zero which is the expected result as there will be no

reflected electric field when there is no coupling between the rings.

6.2.2 Matching known results

Several parameters were set to match the reflectivity response in a previously

published work on DRR [4] and a comparison is performed. The coupling

coefficients ε1 and ε2 were set at 0.1 .The coupling between the rings ε3 was

set at different values of 0.05, 0.016 and 0.0028. The reflection response thus

obtained is given in Figure 6.1.

The reflection profiles obtained at the different values of ε3 were found

to match perfectly with the reflectivity graph given in (fig.3) in a previously

reported study[4]. The highest value of coupling (ε3 = 0.05) generates a four

peak reflection profile while the lowest value (ε3 = 0.0028) generates a two

peak profile. The number of zeros in the reflection profiles of each coupling
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value also matches with the corresponding values in (fig.3). We can also see

that the FSR corresponds to 2π in both cases.

Figure 6.1: fig 3 , Chremmos and Uzunoglu (2005).
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Figure 6.2: Reflectivity plot at ε1 = ε2 = 0.1 and ε3 = 0.05, 0.016, 0.0028.

6.3 Conservation of power |r̃|2 + |t̃|2 = 1

The conservation of power is checked by adding the equations for reflectivity

|r̃|2 and transmittivity |t̃|2 in Matlab. Figure 6.3 shows that the result is one

which proves that power is conserved.
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Figure 6.3: Conservation of power plot of DRR based on (t̃× t̃?) + (r̃ × r̃?).
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Chapter 7

Conclusion

This thesis performed a detailed analysis of a parallel coupled double ring

resonator (DRR) using the method of equating fields (MEF). An analysis was

first performed on simpler structures like a single ring resonator and uncou-

pled double ring resonator in the early chapters in order to develop several

important limiting cases for comparison. In the later chapters, derivations

for the transmitted field and reflected field of the DRR were carried out using

MEF by solving a linear system of 22 equations describing the field points.

We obtained generalized transmission and reflection coefficients of the DRR.

The results obtained may be very useful in DRR design as the circumference

of the rings as well as the coupling coefficients can be varied.
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