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Abstract

Understanding of quantum tunneling phenomenon in semiconductor systems is in-

creasingly important as CMOS replacement technologies are investigated. This dis-

sertation studies a variety of heterojunction materials and types to increase tunnel

currents to CMOS competitive levels and to understand how integration onto Si sub-

strates affects performance. Esaki tunnel diodes were grown by Molecular Beam

Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes

grown on lattice matched substrates for this work. Peak current density for each

diode is extracted and benchmarked to build an empirical data set for predicting

diode performance. Additionally, statistics are used as tool to show peak to valley

ratio for the III-V on Si sample and the control perform similarly below a threshold

area. This work has applications beyond logic, as multijunction solar cell, hetero-

junction bipolar transistor, and light emitting diode designs all benefit from better

tunnel contact design.
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Chapter 1

Introduction

Pressure to improve device performance is a constant companion to semiconductor

research. The path from Braun (development of metal-semiconductor contacts) to

Shockley, Bardeen, and Brattain’s transistor through the present state of the art has

been fraught with challenge’s, whether it was oxide interface or material, progress has

relied on aggressive engineering solutions [1–3]. One such drive has been towards the

replacement of Si as the channel material for complementary metal oxide semicon-

ductor (CMOS) technology. Thus, III-V materials such as In0.53Ga0.47As and InAs

are being studied in earnest as replacement materials and, as such, much needs to

be investigated with regard to dopants and defects. With the potential change in

channel also comes a fundamentally different device, tunneling field effect transistors

(TFETs) are being investigated as a device with superior power consumption capabil-

ities when compared to standard CMOS [4, 5]. Due to the tunneling nature of carrier

transport for TFETs, transconductance, or substhreshold slope (SS ), can be below

the thermal limit of ≈ 60 mV/dec. at 300◦ K which will allow for more aggresive

voltage scaling with the associated reduction in power requirements [6, 7]. This work

aims to answer some of the fundamental materials questions for how different designs

might affect the tunneling performance.

Most TFET designs involve a p-i-n diode structure consisting of a III-V [8, 9] or

group IV semiconductor. Current is modulated by applying a gate bias across an
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Chapter 1. Introduction

intrinsic region which causes an accumulation of carriers. The increase in carriers

causes an overlap of the conduction and valence bands, thereby enabling tunneling

across the band gap of the device. Most TFET research has involved building de-

vices based on model predictions [10]. However, there is very little empirical data

available for calibrating those models [11]. This work will focus on the material and

current transport properties of heterojunction Esaki diodes on lattice matched and Si

substrates so that the understanding for TFETs and III-V devices as a whole may be

improved.

Diode characteristics will be measured electrically to measure tunneling character-

istics and push towards a 10 MA/cm2 current density target. Raman, Hall, and SIMS

will be utilized to confirm dopant concentration within the samples. XRD, AFM, and

TEMs will be utilized to confirm crystal quality as well as hints to any changes in

crystal composition. Combining the aforementioned techniques will provide prime

empirical material for model calibration at high carrier concentrations across several

non-Silicon heterojunction systems. Proper execution of this project requires mul-

tiple epitaxial growths of which a significant number have been or will be obtained

through collaboration with Texas State University (TSU) and SEMATECH.

Much of the research of tunneling phenomenon in homo and heterojunction Esaki

diodes has involved low to moderately degenerately doped junctions. Investigators

have focused more on designing high electron mobility transistors (HEMTs) [12],

heterojunction bipolar transistors (HBTs)[13–15] , multijunction solar cells (MJSCs)

[16], superlattices (SLs) [17, 18], and short of a small number of researchers, very few

have investigated band to band tunneling phenomenon, and far fewer reports exist on

tunneling near the limits of dopant solubility. A renewed interest in tunneling phe-

nomenon has arisen with the placement of tunneling field effect transistors (TFETS)

[5, 8, 19], and many groups have tried to force CMOS techniques and models to fit

the TFET characteristic with varying levels of success [10, 20–25]. Few references
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Copyright c© 2013, IEEE

Figure 1.1: Comparing many potential low power logic technologies to each other was
done by Nikonov and Young [5] to show if any candidates could compete with advanced
CMOS.1

for devices characteristics exist that are appropriate for building adequate tunneling

models for TFET operation. This work attempts to alleviate this issue by exploring

the maximum current density that can be expected of homo and heterojunction tunnel

diodes which can, in turn, be applied to TFETs under the most ideal of conditions.

One notable barrier to past research was the limited volume of data on submicron

tunneling devices. As current density increases, the device area must be reduced

1Reprinted with permission from D. E. Nikonov and I. A. Young, “Overview of Beyond-CMOS
Devices and a Uniform Methodology for Their Benchmarking,” Proc. IEEE, vol. 101, no. 12, pp.
2498–2533, Copyright c© 2013, IEEE.
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or series resistance will skew the measured data due to a tunnel diode’s inherent

latching property [26]. Most studies only measured devices in the 100 µm × 100 µm

range, largely due to the ease in probing. Collectively the research group at RIT has

managed to implement contact techniques utilized in CMOS to test devices in the

sub 100 nm range [27–29].

Esaki diodes are the closest proxy for TFETs relative to how carriers tunnel

through the bandgap of two oppositely charged regions [25]. Prior to this work, the

record peak current density for any Esaki diode was 975 kA/cm2 for an In0.53Ga0.47As

Esaki diode [28]. This work will demonstrate 3.2 MA/cm2 for a heterojunction Esaki

diode at a lower total doping density. Fig. 1.2 displays the possibility of increased

current density for narrow bandgap and heterojunction Esaki diodes as it can be

inferred from Day et al. [30] that narrower barriers will exhibit higher JP . With

appropriate levels of dopant, it may be possible to reach 10 MA/cm2 or greater

current density with heterojunction tunnel diodes. However, large doping densities

in InAs and InSb homojunctions would likely not yield usable results because their

narrow bandgaps, 340 meV and 180 meV respectively [31], are easily overcome by

traps and thermal currents thereby creating very large excess currents that swamp

out the desired tunneling mechanisms [32]. The nature of broken and staggered gap

homojunctions is such that many of the problems of the narrow gap semiconductors

may be mitigated or circumvented to create useable devices.

Large differences between on and off current are also important for developing

better TFET devices. Presently, most groups have focused on pushing on current;

however, little will be gained if the devices built require nearly as much current when

in an off state [34]. Knoch and Appenzeller proposed the Al1−xGaxSb/InAs1−xSbx

system as a possibility due to the ability to engineer the band gap without significant

impact on lattice constant [35]. Achieving two to three orders of magnitude between

the on and off currents would be requisite for a replacement logic device for CMOS.
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Figure 1.2: Band gap line up for several binary and ternary semiconductors to be used
in this work. Ternary compound band gaps were calculated using Vegards rule, and are
approximate. A more accurate set of band alignments could be extracted from the band
information in Figs. A.1 and A.2 from Vurgaftman et al. [33]

Barriers to III-V device use include the cost and brittleness of the substrates.

Direct growth on lattice mismatched substrates offer a solution, but can lead to

undesirably large defect densities when done poorly [34]. Virtual substrates will aide

in the proliferation of III-V based devices, by decreasing cost and defect density.

Presently, a number of devices have been built on GaAs based virtual substrates

[36, 37], but fewer are grown on Si based virtual substrates due to defect propagation

[38–40]. Aspect Ratio Trapping may provide a convenient avenue for reducing the

complexity of III-V on Si growth while also reducing total defect density [41, 42].

Prior ART based devices have performed the same or better than devices grown on

native substrates [43–45], but higher mobility devices based on InAs or InP will need

to be proven to show the true utility of this epitaxy process.

Electron tunneling in the GaAs/InAs ternary system has been reasonably well

defined through the efforts of Kane [46] and confirmed by those of Pawlik et al. [28]
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and Romanczyk et al. [27]. However, the tunneling in those systems is solely based on

a homojunction model, and, as the InAs data shows, with narrower band gaps come

greater excess currents which are ignored by most simple models. Heterojunction

tunneling is not well modeled to date, owing to scarce data on staggered and bro-

ken (type II and type III) heterojunction data for Esaki type diodes. A fair amount

of knowledge is available on heterojunction bipolar transistors (HBTs), super lattice

(SL), and Resonant Tunneling Diodes (RTDs), but the characteristics of tunnel and

diffusion currents differ in those systems from a simple heterojunction. Techniques

such as Raman spectroscopy, X-ray Diffraction (XRD), and low temp (LT) measure-

ments will elucidate the differences between homo and heterojunction Esaki diodes,

but much of the data does not exist in the degenerately doped heterojunction space.

Improving current density for tunneling devices has generally been left to just

increasing the doping levels. Generally the limit for dopant solubility hovers in the

low 1020 cm−3 range for both n and p dopants across the range of semiconductors

covered by this proposal [44, 47]. Dopant activation is an issue near the highest

values, which may inhibit the ability of the devices to reach the 10 MA/cm2 JP

target. Fortunately, other avenues exist for either increasing the dopant density or

modifying the epi layers that may push the JP even further [48, 49]. Work by Collins

et al. [50] showed that changes in i -layer design and/or an additional tunnel barrier

can increase the throughput current by two to four times the amount exhibited by

an abrupt two region diode.

Prior to this dissertation much was unknown about the performance of highly

doped Esaki diodes in the heterojunction systems reported. Fig. 1.3 shows the state

of the art prior to this work. This figure of merit (FOM) plot will recur throughout

this dissertation to show the population of the JP vs. N∗ devices.
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Figure 1.3: The state of the art prior to the work in this dissertation did not include many
examples of broken or staggered gap tunnel diodes. Lack of electrical data compounds the
difficulties in developing potential TFET systems.
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Chapter 2

Esaki Diodes: Characteristics and Applications

2.1 Introduction

Diodes form the very basis of how modern electronics function. Without understand-

ing how the fields of differently charged regions within a material behave, none of

computers, phones, televisions, and other modern devices would be possible. This

dissertation focuses heavily on a very specific form of diode, the Esaki diode.

This section is intended to aid the reader in how to best interpret the electrical

results that are shown in following sections of this dissertation. Sections 2.2 and 2.3

discuss homo and heterojunction diodes as a basis for understanding the materials

that will comprise the diodes discussed throughout the dissertation. Section 2 dis-

cusses the key theories behind Esaki diode operation. This chapter concludes with

section 2.5 which gets to real applications for Esaki tunnel diodes.

2.2 Homojunction Diodes

Diode theory is well covered in a number of device physics text books [1, 3, 51, 52], but

a brief coverage the of the material is deserved to address the origins of the current

during electrical measurements made in this dissertation.

Homojunction diodes consist of p (positive) and n (negative) doped regions of the

8
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same host material, i.e. Si, Ge, GaAs, In0.53Ga0.47As, etc. For group IV elements,

group III and lower elements would dope p-type and group VI and higher would dope

n-type. Compound semiconductors are a bit more complicated due to the amphoteric

nature of group IV elements exhibiting both p and n-type characteristics, in addition

to group II and VI elements. Often, p-n diodes are shown as two distinct blocks of

material as per Fig. 2.1(a) with perfectly abrupt junctions. In reality, both dopants

diffuse during growth to create the broader junction regions shown in Fig. 2.1(b)

where profiles under 5 nm/dec. are considered fairly abrupt.

In0.53Ga0.47As: Si
(n-type)

In0.53Ga0.47As: Be
(p-type)

(a) Homojunction Diode representation

-50 -25 0 25 50
1016
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InP-TD1
Si-TD2

 

C
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ce
nt

ra
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(b) In0.53Ga0.47As Homojunction SIMS
on InP and on Si

Figure 2.1: (a) Schematic of a diode, generally it is assumed that the profiles are perfectly
abrupt. (b) SIMS from an actual ”abrupt” diode shows that diffusion of dopants will happen
regardless.

Generally, the diodes in this dissertation have abrupt profiles so assumptions for

depletion widths are assumed valid. Charge in one region seeks to balance out the

charge in the neighboring region causing a region that is depleted of carriers between

them. This depletion region, WD, overlaps both the p and n regions such that the

charges are balanced is shown in Eq. 2.1; where NA is the acceptor doping density,

ND is the donor acceptor density, φbi is the built in potential between n and p regions,

q is fundamental charge, and εS is semiconductor permittivity. For non-degenerate
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doped diodes these depletion widths can be near 1 µm, however the material covered

in this dissertation is below 10 nm.

WD =

√
2 · εS · ψbi

q
· NA +ND

NA ·ND

(2.1)

The diffusion current through the diode can be characterized as eq. 2.2. Where

JD is the output current density, JS is the reverse saturation current density, k is

Boltzman’s constant, T is temperature in ◦K, and Va is the applied voltage.

JD = JS · exp
(
q · Va
k · T

− 1
)

(2.2)

While the above equations work for homojunction diodes, the devices in this

dissertation consist of degenerately doped heterojunction diodes and the equations

above require adaption to apply in that space. Characteristics for the homojunction

diodes are largely static; EG changes with temperature [53] but exists as a barrier

to carrier transport. However, sandwiching different materials together can result in

changes to EG and affects many characteristics of diode function.

2.3 Heterojunction Types and Diodes

Much of this dissertation involves heterojunctions. Basic characteristics of hetero-

junctions are often described in device phyics texts, i.e. Neamen [1], Sze [3, 52], and

Streetman [51]. Specifically, a semiconductor heterojunction is the adjoinment of two

separate semiconductors such as Si and Ge. The same physical processes that apply

to homojunctions also apply in heterojunctions, but additional care is required in the

book keeping to calculate WD and JD.

First, the differences in EG, EC , and EV must be addressed. Heterojunctions

will have an offset between the valence and conduction bands of the constituent

10
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materials. There are three types of band offsets which are shown conceptually in

Fig. 2.2. Type I, or straddled, offsets occur when both the valence and conduction

bands for one material fall in between those of the neighboring material, e.g. the

Si/Ge and GaAs/InGaAs systems [52]. Type II, or staggered, offsets are aligned such

that there only one band from each material falls between the valence and conduction

bands of the other. A number of type II systems have been reported, combinations

of In0.53Ga0.47As/GaAs0.50Sb0.50 [54] and Al0.40Ga0.60Sb/InAs0.91Sb0.09 [55, 56] have

been reported. Whereas type III, or broken, offsets have no overlap of EG for either

material. The InAs/GaSb system is probably the most well documented type III

junction [57].

In0.53Ga0.47As: Si
(n-type)

In0.53Ga0.47As: Be
(p-type)

(a) Straddle/Type I

In0.53Ga0.47As: Si
(n-type)

GaAs0.50Sb0.50: Be
(p-type)

(b) Stagger/Type II

InAs: Si
(n-type)

GaSb: Be
(p-type)

(c) Broken Gap/Type III

Figure 2.2: Conceptual diagrams of heterojunction diodes without taking into account
junction effects are shown above. (a) In straddled/type I heterojunctions both the va-
lence and conduction bands of one adjoining material fall between those of the other ma-
terial, e.g. the Si-Ge heterojunction system. (b) In stagger gap/Type II heterojunctions
only one of the bands for the adjoining materials falls between those of the other, e.g.
In0.53Ga0.47As/GaAs0.50Sb0.50. (c) Broken gap/Type III heterojunctions have no overlap of
adjoining materials’ bands, e.g. InAs/GaSb.

The electron affinity rule is an acceptable approximation for conduction band

alignments utilizing the electron affinitiy, χ, of both materials. Assuming that the

11
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vacuum level for all electrons is the same across all semiconductors. In many cases the

electron affinity rule is invalid [58], but for the purposes of describing heterojunction

interactions it proves to be adequate.

Considering a type I heterojunction, Fig. 2.3 shows how to treat the changes in EG

due to the different materials. WD1 and WD2 consist of the depletion region on either

side of the junction and are represented by Eq.2.3 and Eq. 2.4 are modifications of

Eq. 2.1. In this case the subscripts 1 and 2 indicate which semiconductor parameter

to use.

WD1 =

√√√√ 2NA2εS1εS2(ψbi − Va)
qND1(εS1ND1 + εS2NA2)

(2.3)

WD2 =

√√√√ 2ND1εS1εS2(ψbi − Va)
qNA2(εS1ND1 + εS2NA2)

(2.4)

From Sze [3], this type I heterojunction JD can then be modeled similarly to

the homojunction diode by combining Jn and Jp, where Lx and Dx represent the

Debye length and carrier diffusion coefficients for their respective material as shown

in Eq. 2.5:

JD = Jn + Jp =

(
qDn2ni22

Ln2NA2

+
qDp1ni12

Lp1ND1

)(
exp

qVa
kT
− 1

)
(2.5)

Notably, ∆EC and ∆EV are not present in Eq. 2.5. Assumptions were made

with respect to junction abruptness to simplify the quantum well seen by holes as

mentioned in Sze [3]. For type II and type III heterojunctions a similar simplification

may not be necessary since the nature of band overlaps is such that it tends to

minimize barriers to conduction.

12
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From K. K. Ng and S. M. Sze, Physics of Semiconductor Devices (3rd Edition). Copyright c© 2006
by John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.

Figure 2.3: This figure, adopted from Sze [52], shows many of the aspects that must be
considered in a heterojunction.

13
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2.4 Esaki Diodes

When a diode is heavily doped such that both the n and p sides are degenerate, a

special case emerges where quantum mechanical tunneling can occur across the band

gap due to an overlap of the valence and conduction band Fermi positions. This case

is called the Esaki diode, named after Leo Esaki who first discovered them in 1958

[59]. Esaki tunnel diodes (ETDs) are known to have zero breakdown voltage as well

as a region of negative differential resistance (NDR) between the peak current, IP ,

and valley current, IV .

Much of the recent interest in Esaki diodes has focused on applications to tunneling

field effect transistors (TFETs) [6, 8, 9, 22, 28, 60–62]. However, Esaki diodes have a

number of applications in photovoltaics (PVs)[54, 63], light emitting devices (LEDs),

and in heterojunction bipolar transistors (BJTs)[64–67]. Esaki diodes were heavily

reasearched in the late 50’s and 60’s, but were built utilizing alloying techniques.

2.4.1 Theory

The degenerately doped junctions for Esaki diodes cause an overlap of EC and EV as

seen in the representations in Fig. 2.4 of each junction type. Because the potential

barrier has a width below 10 nm quantum mechanical tunneling can occur across

EG for holes and electrons. This tunnel current causes a rapid increase in I that

greatly exceeds the contribution from diffusion. This dissertation measures the tun-

neling characteristics of Esaki diodes consisting of each of the arrangements shown

in Fig. 2.4. Relative to a homojunction Esaki diode, Fig. 2.4(a), type II and type III

Esaki diodes, Figs. 2.4(c) and 2.4(d), are expected to have a higher JP for a given

N∗. Type I Esaki diodes can create large effective tunnel barriers which will lower

JP relative to a homojunction Esaki.

Fig 2.5 from Fig. 3 in Sze [52] depicts the various operation modes of an Esaki
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Figure 2.4: (a) Band bending for an In0.53Ga0.47As Esaki diode showing the overlap of
the valence and conduction bands.(b) Many heterojunctions fall into the straddled/type I
category. Esaki diodes made from this system can exhibit reduced JP due to an effective
widening of the tunnel barrier. (c) Staggered gap diodes would provide for a narrower
tunnel barrier, which should increase JP for a given N∗. (d) The broken gap should create
the thinnest barrier to tunneling and allow for very high JP .

diode. Similar to the representations in Fig. 2.5(a), at 0 V bias the diode is in thermal

equilibrium and the electrons and holes tunnel back an forth freely. However, once

a small bias has been applied electrons will tunnel into the valence band until a

peak is reached at the maximum overlap of the valence and conduction band Fermi
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levels as seen in Fig. 2.5(b). Beyond this peak, the overlap is further separated at

increasing bias until the tunnel current is quenched at the minimum called the valley

in Fig. 2.5(c). After the valley, thermal diffusion currents dominate and the I-V plot

follows more closely to an ideal diode in Fig. 2.5(d). Under the reverse bias scenario,

the bands are forced farther apart and Zener tunneling occurs in Fig. 2.5(e). The

Zener direction is the area of interest for TFET operation [8, 9, 61].

From K. K. Ng and S. M. Sze, Physics of Semiconductor Devices (3rd Edition). Copyright c© 2006
by John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.

Figure 2.5: Sze [52] described the operational modes of an Esaki diode at (a) zero bias,
(b) peak, (c) valley, (d) diffusion, and (e) reverse bias conditions.

Esaki diodes have a very distinct I-V characteristic curve. Current in these diodes

is actually a combination of several current sources as seen in Fig. 2.6(b). Tunnel

current/current density is due to tunneling of conduction band electrons into valence

band sites. The distinct peak in the I-V curve occurs when the greatest overlap

of the valence and conduction band occurs. As the diode is biased further the band

overlap lessens and the tunneling current begins to diminish. The confluence of excess
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current, IE, and tunneling current, IT , is called the valley current, IV , after this point

IE dominates the contribution to overall current. IE is the combination of all sources

of current which are not diffusion or tunnel current. There can be multiple sources

of IE, e.g. traps, crystalline defects [68], and surface effects. Without IE, the IV

would occur when diffusion current, ID, overtakes IT as the larger current source.

ID becomes the dominate current contributer once the turn on voltage for that diode

material is reached. Considering current over area, Eq. 2.6 describes the contributions

of the different current sources to the overall current density of the diode. JEsaki

represents the total current density, JT is the tunnel current contribution, JE is the

excess current contribution, and JD is the diffusion current density. JEsaki will be

discussed further in section 2.4.3. JE can often be broken down into smaller units

with low temperature I-V measurements as seen with the ”hump” currents discussed

by Chynoweth et al. [69] and Holonyak and Lesk [70].

JEsaki = JT + JE + JD (2.6)
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(a) (b)

From K. K. Ng and S. M. Sze, Physics of Semiconductor Devices (3rd Edition). Copyright c© 2006
by John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.

Figure 2.6: Sze [52] described (a) the two primary I-V characteristics of an Esaki diode, IV
and IP , and (b) the contribution of tunnel, excess, and diffusion current to the characteristic
curve of an Esaki diode.
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2.4.2 Data Extraction from Esaki Diodes

Esaki diodes have some very characteristic behavior. Fig. 2.7 illustrates several of the

key concepts to understand when measuring Esaki diodes. First there are typical I-V

curves, as seen in Fig. 2.7(a). On an I-V plot there are several regions to consider.

First, there is the Zener tunnel region in the reverse current direction. Zener tunneling

is utilized by TFETs and can be shown to have an emprical relationship to IP . In

the forward current direction, there are the peak and valley current and voltage (IP ,

IV , VP , VV ) shown in Fig. 2.7(a). The peak to valley ratio is taken from IP and IV as

seen in Eq. 2.7. For a given device, JP will be constant regardless of the RS between

the diode and the ground contact. VP will shift lower with reduced RS as seen in

Fig. 2.7(b); however, the locations of VP and VV will shift closer and higher with

increased RS. At high enough RS values a latching effect can be observed between VP

and VV as discussed by Hao and Seabaugh [6] and Sudirgo [26] for use in tunneling

SRAM devices.

PV CR =
IP
IV

=
JP
JV

(2.7)

This dissertation focuses on maximizing peak tunnel current density, JP , as it is

the single most important factor for a TFET to compete with low power CMOS[71].

Most studies have relied on the mask defined area to calculate JP , which is adequate

for devices over 400 µm2 due to the relatively small reduction in area during mesa

formation. However, for submicron devices a different scheme becomes necessary

as the ratio between metal and mesa can be nearly 9:1 as seen in Fig. 2.7(c). Such

differences between mask size and device area necessitate an area correction to provide

appropriate JP estimates. Several different methods have been utilized to increase

the precision of the area used for JP calculations, e.g. planar fit [28], mean area [72],

and adjusted mean [27]. Mean area requires the least amount of time but also has
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the greatest device variation, whereas the planar fit method requires significant time

investment whilst providing minimal device variation.

Figure 2.7: Utilizing sample SSG-TD1 an example, keys concepts for understanding Esaki
diodes are shown above. a. I-V characteristics for SSG-TD1 as devices are scaled down
with area, IP , IV , VP , and VV , are all every apparent for each discrete device. RS influence
is reduced with area, and eventually VP will reach a minimum value. JP is calculated from
the corrected device area and IP . PVCR is calculated from IP and IV

Also of importance for this work, is the knowing the doping density for a given

device. Drift in the growth pattern can affect device performance despite utilizing

the same growth parameters. A few such instances will be exhibited later in this

work. Therefore, to more accurately determine the performance of material system,

the total doping density must be measured. As seen in Fig 2.8, a technique known as

secondary ion mass spectroscopy (SIMS) can be utilized to measure the total dopants

in the target material. From which, N∗ can be calculated by taking half the harmonic

average of the dopants per equation 2.8:
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N∗ =
NDNA

ND +NA

(2.8)

While there are some limitations to the technique, this measurement provides

valuable data on doping density which can then be combined with the measure JP

and plotted against other tunneling devices as shown in Fig. 2.8. In addition to N∗,

the abruptness of the junction can be measured with SIMS. Because Esaki tunneling

between the bands has a field component, a broader dopant profile between regions

results in a lower built-in field strength. Lower field strength causes a lower JP than

would otherwise be expected for a diode at a given N∗.

Figure 2.8: Utilizing a homojunction Esaki diode an example, keys concepts for under-
standing the diodes are shown above. a. SIMS provides data on the actual doping levels
contained within the sample. These concentrations are utilized in the calculation of N∗ in
Eq. 2.8. Additionally, the abruptness of the junction can be measured to explain variations
from expected performance. b. Taking the doping density and plotting it vs. JP provides
a means for comparing devices of different materials.
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For the purposes of this dissertation, JP , JV , PVCR, VP , and N∗ will be the pri-

mary characteristics used to compare devices. JP and N∗ are necessary to determine

if devices based on the tunnel junctions presented in this work can meet the current

requirements proposed by industry [4, 5].
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2.4.3 Tunnel Models

Models such as Kane [46, 73, 74] and Schenk [75] can be used to predict tunneling

current in homojunction Esaki diodes with fairly excellent accuracy [62]. However,

in the case of heterojunction Esaki diodes this is a more complicated combination

to model, but the Kane model [46] in Eq. 2.9 is useful for explaining the tunneling

mechanisms at play. Material differences in the adjoining material systems such

as dielectric constant, density of states (DOS), band gap alignment, the interface

terminations of the two regions, and many more considerations need to be made for

modeling. While Bastard [76], Bastard et al. [77] has had some success in modeling

heterojunction Esaki diodes by treating the overlap integrals separately, the modeled

current characteristics are approximate at best. In addition to differences in carrier

effective mass, there are hybrid bands, susceptibility, strain, atomistic simulations

such as NEMO or OMEN could possibly perform this task [11].

JT =

(
q2

36πh̄2

)
·
√

2m∗

EG
·D · E · exp−π

√
m∗E

3
2
G

2
√

2h̄
· 1

E
(2.9)

While the Kane model is limited to two parabolic bands in a homojunction and

deriving a relation for JT in heterojunctions is beyond the scope of this dissertation,

this model is sufficient for discussing where improvements may be made to increase

JT . In Eq. 2.9 [46, 62] m∗ is the reduced effective mass of both carriers, E is the

electric field between n and p regions, D is the overlap integral of the valence and

conduction bands, and the remaining components retain standard values. Immedi-

ately, it becomes apparent that reducing EG will greatly affect tunneling and that m∗

will play a role to a lesser extent. Prior work had shown the validity of this hypothesis

[62] for homojunction systems. Heterojunctions will require a different mathematical

treatment, but the reduced EG due to type II and type III heterojunctions implies

that significant gains in JT may be made with the correct combination of materials.
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2.5 Applicable Fields

2.5.1 Tunneling Field Effect Transistors (TFETs)

Much of the recent interest in Esaki tunneling has been related to building better

TFETs [6]. While Si CMOS has the benefit of 50+ years of research in understanding

how to build devices, TFETs have a much shorter history [6]. Understanding the max-

imum tunnel currents for a majority of the device systems is largely unknown. This

dissertation analyzes how the effective band gap for In0.53Ga0.47As/GaAs0.50Sb0.50,

InAs0.91Sb0.09/Al0.40Ga0.60Sb, and InAs/GaSb material systems affects the JP vs. N∗

relationship discussed in Pawlik [62]. This work also examines how tunneling devices

are affected by defects by placing them onto lattice mismatched substrates.

TFETS are p-i-n diodes that have gated the i -layer to make the device operate like

an Esaki diode. Typical designs have been vertical structures like that of Dewey et al.

[8], Romanczyk [9], Bijesh et al. [61] in Fig. 2.9. To design the parameters for these

devices an Esaki can be viewed as the device in the on state whereas the p-i-n can be

considered the offstate for the the device. There are several design issues associated

with this approach related to the gate placement. Gating sidewalls for the devices

and isolating the source or drain have proven to be challenge [9, 78], as gate overlap

can impact the tunneling characteristics. However, as with the implementation of

finFETs, solving the gating solution will be a matter of time [6, 8, 61].
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Copyright c© 2013, IEEE

Figure 2.9: A TEM micrograph of a BG TFET presented by Bijesh et al. [61] presents
the typical approach to TFETs, a vertical p-i-n structure with gated sidewalls.
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Copyright c© 2014, IEEE

Figure 2.10: From Hao and Seabaugh [6], State of the Art for TFETs as of 2014. Often
devices will beat SS, but be low in I or vice versa.

26



Chapter 2. Esaki Diodes: Characteristics and Applications

Figure 2.11: Example of tunnel junctions as contacts in multijunction solar cells from
Miller et al. [92].1

2.5.2 Photovoltaics (PVs)

Solar cells, also commonly referred to as photovoltaics (PVs), often rely on highly

doped contact regions in multijunction solar cells (MJSC) [16, 30, 54, 63, 79–92].

These cells look to use lattice matched materials with successively narrower band

gaps to capture the AM1.5 spectrum [93]. Tunnel junctions provide the low resistance

contact between the junctions that comprise the solar cell as seen in Fig. 2.11. This

work may benefit the community by providing empirical data for determining how

the heterojunction current characteristics will behave with doping.

1 Reprinted with permission from D. L. Miller, S. W. Zehr, and J. S. Harris Jr, “GaAs-
AlGaAs TUNNEL JUNCTIONS FOR MULTIGAP CASCADE SOLAR CELLS,” Journal of Applied
Physics, vol. 53, no. 1, pp. 744–748, 1982. Copyright c© 1982 by American Institute of Physics
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Copyright c© 2009, IEEE

Figure 2.12: Example of tunnel junctions in a VCSEL [97]

2.5.3 Lasers/Light Emitting Diodes (LEDs)

Similar to PVs, Lasers and LEDs utilize degenerately doped contacts to reduce resis-

tance in the system. Optimal design of the contact allows for improved light emis-

sion and quantum efficiency of the devices. A number of GaAs-based [94], InP-

based [45, 95, 96], and GaSb-based [97, 98] Vertical cavity surface emitting laser

(VCSEL) designs rely on Esaki tunnel junctions to contact the active device region.

Understanding the output current at a various effective doping levels may prove help-

ful for improved VCSEL designs. Similarly, multiple LED based on GaN [99–102],

GaAs [103–106], GaSb [107–109], and BeTe/ZnSe [110] rely on Esaki tunnel junctions

for improved efficiency and performance characteristics.

2.5.4 Heterojunction Bipolar Transistors (HBTs)

Series resist ance in the collector of Heterojunction Bipolar Transistors (HBTs) can

significantly reduce the gain. A number of groups have utilized Esaki diodes as a

means of mitigating these effects [64, 66, 67, 111–113]. In these devices the HBT

performance had limits related to the JP of the included Esaki diode. This work has
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applicable benefits for device designers, in that there will now be information, across

a range of effective doping densities, for multiple heterojunction systems.

2.6 Esaki Diode Applications and Characteristics Conclusion

This chapter discussed the basics of homojunction and heterojunction diodes and how

they apply to Esaki diodes. Additionally, the basic principles of Esaki diode operation

were discussed with an emphasis on JT , which is the primary parameter studied in

this dissertation. Applications for Esaki diodes were then discussed to emphasize the

broad impact that this work may have across multiple research topics.

Chapter 3 will explore the various electrical and materials analysis techniques

to be used in this dissertation. And the following chapters will then explore the

implications of stagger and broken gap heterojunctions on JT as well the impact of

defect density on tunneling performance.
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Growth and Materials Analysis Techniques

This chapter is designed to cover the various material growth and characterization

techniques that are used to build and evaluate the devices presented in this disserta-

tion. Sections 3.1.1 and 3.2 cover the growth methods and considerations necessary

to fabricate the Esaki diodes studied in this work. The remaining sections cover the

analysis techniques utilized in this work, e.g. SEM, TEM, XRD, AFM, I-V, and

device fabrication and characterization. The purpose of this chapter is to outline

how the devices are to be evaluated and identify sources for deviations from expected

results.

3.1 Growth Methods

3.1.1 Molecular Beam Epitaxy (MBE)

This dissertation relies heavily upon molecular beam epitaxy (MBE) to build device

layers on a variety of substrates. Fig. 3.1 from Pohl [114] provides a representative

schematic of a MBE system. These chambers require ultra high vacuum (UHV)

pressure levels ≈ 10−9 torr to produce high quality epitaxial films. Typically there will

be a load lock to maintain system pressure and to reduce contamination when a sample

is loaded for growth. Effusion cells are heated and deposition rates are controlled by

temperature and a shutter, for example two different cell temperatures would provide
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a higher level of doping for the warmer setting. Often the growth is monitored by

reflection high energy electron diffraction (RHEED) ensure proper crystal structures

are formed. Depending on the material grown, the doping concentrations and crystal

structure can be confirmed through Hall measurements and/or XRD.

Many of the devices in this work are grown in the reactors at Texas State Uni-

versity. Because of the varied nature of the heterojunctions and limited effusion cell

space per chamber, several different chambers will be utilized.

Figure 3.1: This schematic from Pohl [114] represents a standard MBE system. Substrates
are located such that the deposition rates from the effusion cells can be calibrated to reach
target composition and doping levels in the grown film.1

3.1.2 Other growth methods

Devices in this dissertation will be grown by MBE; however a number of other tech-

niques exist for growing tunnel junctions, each with benefits and drawbacks. His-

1Epitaxy of semiconductors: introduction to physical principles, 2013, p. 301, Molecular Beam
Epitaxy, U. W. Pohl, Fig. 7.21, c© 2013. With permission from Springer Science+Business Media.
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torically, alloy junction growths were used to form tunnel junctions. This technique

utilizes a contact containing high concentrations of a dopant. Subsequently, temper-

ature is increased to the Eutectic point forming a degenerately doped alloy junction

with the substrate. The very first Esaki diodes were all grown via alloyed junctions

[59, 69, 70, 115]. Alloy junction formation is a form of liquid phase epitaxy (LPE).

LPE which relies on a furnace to heat the constituent materials to melting where

they can then be grown on the substrate surface such as with the sliding boat system

[114]. Finally, there is metal organic chemical vapor phase epitaxy (MOVPE), or

metal organic chemical vapor deposition (MOCVD) depending on the author, which

forms epitaxial layers through surface reactions of precursor gases on the substrate.

MOVPE can operate at higher pressures than MBE, but also requires slightly higher

growth temperatures which can lead to slightly broader junction profiles and may also

require an anneal to remove residual H and other gases that may have been trapped

during growth [44, 116, 117]. While a number of other tunnel diodes have been grown

using the aforementioned techniques, this work focuses on growths by MBE.

3.2 Heterointegration

3.2.1 Lattice Mismatch

Due to the nature of atoms within crystalline materials, there are a variety of lattice

types and sizes that result. Generally group IV and III-V crystals form face centered

cubic (FCC) lattices, though other hexagonal and tetragonal lattices may form when

atom sizes are small or paired with partners that are significantly larger.

tc = b
(1− ν cos2 α)

8π|f0|(1− ν) sinα cos β
ln
(
ρ · tc
b

)
(3.1)

These size differences between crystals cause a strain on the lattice that must be

relieved beyond a critical thickness, represented in 3.1 from Pohl [114]. Where tc
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represents the critical thickness for the grown material, b is the absolute value of the

Burgers vector b, ν is the Poisson ratio, α is the angle between the Burgers vector

and the dislocation line vector, β is the angle between the interface glide plane of the

dislocation, f0 is the natural misfit, and ρ is the strain energy of the dislocation.

Such thicknesses become problematic for mismatches much over 1%, beyond that

many materials will relieve stress quickly and cause a highly defected region of ma-

terial. Screw, dislocation, and threading defects are commonly caused by differences

in the lattice constant of crystals [114, 118].

A few techniques have evolved to address issues related to pairing lattice mis-

matched materials. Perhaps the simplest in concept is the use of a buffer layer, where

a thick sacrificial layer is grown of either the target material or a material graded to

match both the host and target crystals [12, 36]. Buffer grown materials will con-

stitute the majority of the work covered in this document are more detailed in next

section. Aspect ratio trapping (ART) is a technique that was recently developed to

reduce defect density in lattice mismatched films [41, 119]. ART utilizes deep dielec-

tric trenches and selective growth to terminate defects prior to reaching a coalesced

region that is grown above the trench walls. Some devices in this work will utilize

ART. One additional method worth noting is delamination and reapplication to an-

other substrate, this process has been successfully been used to integrated InP based

HBTs and other devices onto a Si substrate.

3.2.2 Metamorphic Buffer

An approach utilized to reduce growth and lattice mismatch related defects has been

to create a large buffer region of metamorphic material to join the device region to

the host substrate. Total defect density is related to the overall thickness of the buffer

region, but there are diminishing returns much beyond 1 µm of grown material.

Reasonably high quality devices have been built on substrates utiizing such buffer
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layers. Hill et al. [120] and Lau et al. [12] have built transistors utilizing a buffer

to demonstrate the potential for integration on Si. From Fig. 3.2 it can be seen

how defects could affect device performance. Some systems are largely vertical in

the current transport, but any that would need to cross defect boundaries can be

expected to suffer.

Copyright c© 2010, IEEE

Figure 3.2: Much research has focused on reducing the total number of defects that reach
the surface and active regions [120]. The TEM above exhibits defect reduction towards the
active region at the substrate surface.

3.2.3 Aspect Ratio Trapping (ART)

Aspect ratio trapping was developed by Li et al. [121], and has been successfully

applied to Ge [41, 42, 122, 123], GaAs [43, 119, 121], and InP [124] based systems.

Most other methods of heterointegration suffer from defects that propagate upwards

through the grown regions. ART allows for a reduction of such defects by trapping

many of them against dielectric trench walls which are several times the critical

thickness in height.

<100> Si substrates are utilized to produce ART. An oxide is grown on the Si

surface to form the trench wall material, though other dielectrics have also been

proposed. Threading dislocations originate near the interface of the Si and virtual
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Figure 3.3: (a) GaAs on Si, (b) GaAs in, shallow, 0.2 aspect ratio (AR) trenches, and
(c) GaAs in 1.0 AR trenches. D represents dislocation defects and P represents planar
defects along the virtual substrate/trench interface. ART reduces the total defect density
near the device region of the semiconductor by eliminating a majority of the <311> defects
that propagate upwards from interface between the host substrate and virtual substrate as
demonstrated by Bai et al. [125] and Li et al. [121].2

substrate material and propagate along the <311> direction towards the trench walls.

Unlike direct growth on a substrate, ART trenches eliminate the majority of the

dislocation defects at or near the trench wall leaving a <100> virtual substrate of the

desired material as seen in Fig. 3.3. Defect density utilizing ART approaches that of

lattice matched substrates and electrical performance has been shown to be similar

between ART and literature lattice matched samples [43, 44].

2 Reprinted with permission from J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll,
A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective
aspect ratio trapping,” Applied Physics Letters, vol. 91, 2007. Copyright c© 2007 by American
Institute of Physics
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3.3 Materials Analysis Techniques

3.3.1 Scaning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) will be vital to this dissertation. Not only will

the LEO EVO 50 system be used to measure metal contact area and etch undercut,

it is also the main lithography system used for this work.

(a) Top down measurement of
a metal contact

(b) Undercut measurement of
a metal contact

(c) Undercut measurement of
a metal contact

Figure 3.4: (a) Mesa areas are measured with a top down image capture and extracted by
a MatlabTMscript which provides a best fit for the area. (b) Undercut of the metal contact
is measured from two perpendicular angles to capture the anisotropy of the wet etch for
inclusion in area correction calculations.

SEM measurements are the primary method by which contact areas and undercut

are measured in this dissertation. Prior reports by Pawlik et al. [29, 126] have demon-

strated the measurement of undercuts and metal area per Fig. 3.4. Distortion of the

features defined by ebeam lithography requires that measuring contact metal area be

performed to ensure an accurate extraction of the JP from electrical measurements.

Several top down images are captured across a number of die, ≈80 devices or four

per mask defined size, to determine a median area per size set. Using MatlabTM,

the images are processed to extract areas based on the number pixels that represent

the metal contact. During area analysis, the sample is rotated to a high tilt angle

to observe undercut from the etch. The samples are then rotated 90◦ to measured

because of differences in etch rate for the various crystal planes as seen in Fig. 3.4(b)
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and 3.4(c).

3.3.2 Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) will be utilized on select samples to de-

termine a variety of characteristics about the state of the designed heterojunctions.

Lattice strain can be extracted from the brightness of the ordered region. Defect types

can also be determined with TEM analysis as seen in Fig. 3.5(a) and 3.5(b). When

used in conjunction with X-ray Photo Spectroscopy (XPS) [127, 128] and Electron

Energy Loss Spectroscopy (EELS) [128–131], species intermixing and band alignment

can be determined near the junction interface. Due to the cost and sample prepara-

tion required by this technique, only select samples will require this analysis. XPS can

be utilized to measure valence band edges for materials, but the 10 nm penetration

depth is not optimal for determining band edge alignments for heterojunctions.

(a) Cross-secional TEM of mHEMT device show-
ing substrate and buffer

(b) Cross-secional TEM of mHEMT device

Copyright c© 2008, IEEE

Figure 3.5: (a) TEM is capable of imaging lattice defects throughout the device structure
(b) This mHEMT sample presented by Lau et al. [12] exhibits excellent crystal quality in
the active device region.
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3.3.3 Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) has proven to be a very useful tool in

determining the concentration of impurities within a crystal lattice. While there

are drawbacks to this technique, such as the destructive nature of the process and

the need for reference samples, few methods can determine constituent lattice atoms

as well as SIMS. In most instances only the n and p-type dopants will necessitate

determination. Though, if questions regarding the make-up of ternary film stacks

should arise, the crystal mole fractions can also be extracted. The metallurgical

junction for homojunctions will be considered as the point where n and p-type dopant

concentrations are equal. In heterojunction systems, this determination is simply the

region where both materials abut. Dopant information, along with corrected JP , will

determine where designed devices belong on a figure of merit chart.

Figure 3.6: SIMS plot of a 200 kA/cm2 JP device showing the dopant species and level on
either side of the junction. (a) The inlays detail the methods for calculating the junction
abruptness as well as N∗. (b) Figure of merit plot showing where JP and N∗ will be applied
to compare devices [50, 57, 132].
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Samples for SIMS will be taken from the pieces that can not be utilized for device

processing. Typical samples would originate near the edge or from pieces impractical

for use with lithography. SIMS can give absolute numbers for dopant density and,

depending on system capability, has about a 3 nm precision. However, SIMS counts

all atoms in the lattice including interstitial and inactive dopant species, which may

result in an overestimate of active doping levels. This limitation does not reduce the

utility of SIMS as a technique to determine the dopant profile and junction abruptness.

Extracting doping levels is straightforward; a calibrated counts value corresponds

to specific concentrations of dopant. Generally, the maximum value in the region

proximal to the junction will be utilized as the doping level. Once both n and p

dopant levels have been determined, half of the harmonic average value will be used

in conjunction with the device current density to place the sample on the figure of

merit plot shown in Fig. 7.4 below.

3.3.4 High Resolution X-Ray Difraction (HRXRD)

Figure 3.7: A typical HRXRD measurement set up shown by Shinoda et al. [133].3

3X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems, 2011, p. 108,
Diffraction from Polycrystalline Samples and Determination of Crystal Structure, K. Shinoda, Fig.
4.1, c© 2011. With permission from Springer Science+Business Media.
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X-ray Diffraction will be utilized as a nondestructive technique to confirm material

composition is as desired. A fairly typical HRXRD arrangement can be seen in

Fig. 3.7, where a sample is loaded onto an adjustable stage with a detector that can be

moved independently. By examining the peak width and location, lattice constants

for the layers within the film stack can be determined with great precision. The

sensitivity of this technique is such that differences in lattice constant be determined

down to the 1
1000

of an Angstrom. Strain effects and defect density can also be

extracted using XRD [118] when necessitated by large lattice mismatch layer design

or hetero-integration.

Figure 3.8: (a) Differences in lattice constant and defect density can be detected through
XRD techniques. Typical measurements are performed around the (400) wurtzite peak,
where fringe spacing and peak width can be utilized to determine film thickness and relax-
ation. These measurements were taken from a GaAs on Ge Aspect Ratio Trapping sample,
compliance with the GaAs lattice reduces with wider spacing. (b) Example of a GaAs peak
rocking curve on Si used to determine threading dislocation density by Ayers [118].4

When possible, HRXRD measurements will be taken from samples upon arrival

from the crystal grower. Measurements along the (400) peak can give indication of the

thickness of films, ensuring that layers are near designed parameters. Additionally,

Full Width Half Maximum (FWHM) measurements of the ω (rocking) curve will

4 Reprinted from Journal of Crystal Growth, vol. 135, J. E. Ayers, “Measurement of threading
dislocation densities in semiconductor crystals by X-ray diffraction,” pp. 71–77, Copyright c© 1994
with permission from Elsevier
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indicate, to a reasonable approximation, the relaxation of layers for a given sample

[118]. For example, the peak representing GaAs in Fig. 3.8(a) could have a rocking

curve performed as seen in Fig. 3.8(b), allowing for an extraction of the defect density

from the FWHM. When multiple rocking curves are taken at high, low, and an

additional incidence angle, the defect density due to dislocations, screw defects, and

other defect sites can be extracted [118]. Knowledge of defect density and layer

thicknesses will be advantageous to processing (for etch depths) as well as current

density calculations for defect related tunneling (excess current) [68]. When resources

allow, a reciprocal space map (RSM) can provide great insight into the behavior of

the source material, indicating varying levels of strain or interface related defects as

shown by Penn State in InGaAs on GaAsSb TFET research in Fig. 3.9 [34, 127].

Figure 3.9: RSM of InGaSb/GaAsSb device, the lack of a sharp peak region indicates a
highly defected In0.70Ga0.30As/GaAs0.35Sb0.65 region as well as significant relaxation of the
lattice [34].5

abc

Techniques utilizing a combination of low and high incidence angles combined with

the (400) peak measurement should allow for the best determination of defect density

within a sample. Such measurements will be of great interest when used in conjunction

5 Reprinted with permission from Y. Zhu, N. Jain, S. Vijayaraghavan, D. K. Mohata, S. Datta,
D. Lubyshev, J. M. Fastenau, W. K. Liu, N. Monsegue, and M. K. Hudait, “Role of InAs and GaAs
terminated heterointerfaces at source/channel on the mixed As-Sb staggered gap tunnel field effect
transistor structures grown by molecular beam epitaxy,” Journal of Applied Physics, vol. 112, p.
024306 (16 pp.), 2012. Copyright c© 2012 by American Institute of Physics
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with large lattice constant differences, such as those originating from InP and GaSb

thin films grown on Si substrates. Large defect densities may prove prohibitive to

device performance, thus defect density should be extracted when possible.
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3.3.5 Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is a very versatile technique. There are a variety of

measurements that can be made, including conductivity and surface roughness. AFM

utilizes a probe tip which is scanned across the surface of the sample, through direct

or indirect contact and can provide high resolution of the surface conditions. Fig. 3.10

below from [134] displays a typical AFM setup. A laser is reflected off of the top of

the tip, and the minute changes in the beam vibration and height are measured and

translated into a height. Additional information on the various operational modes

available for AFM analysis may be found in Haugstad [135] or Voigtländer [134].

Figure 3.10: A schematic drawing from Voigtländer [134] exhibiting probe deflection
characteristics for determining sensitivity during AFM measurements.6

In this dissertation AFM will be used to measure surface roughness in terms of

absolute height and root mean square (RMS) roughness. However, RMS roughness

can be a misleading value without careful selection of the scan window and analysis

region. Additionally, RMS roughness values are known to correlate with total defects

in the sample [136] and may be used as an alternate means for qualitatively estimating

electrical performance.

6Scanning Probe Microscopy : Atomic Force Microscopy and Scanning Tunneling Microscopy,
2015, p. 161, Technical Aspects of Atomic Force Microscopy (AFM), B. Voigtländer, Fig. 12.3, c©
2015. With permission from Springer Science+Business Media.
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3.4 Device Fabrication

Generally, devices in this dissertation are grown by MBE. Several different substrates

are used in this work: GaAs, GaSb, InP, and Si. Material is chosen based whether it

has an appropriate lattice constant for the device material. However, the fabrication

process for the tunnel diodes in this dissertation all follow the same general process

flow which has evolved as new metals, resists, or processes were introduced. This

section describes the metal first process developed in conjunction with my colleagues

and published in Applied Physics Letters [27] and the 2012 IEDM Tech. Digest [28].

Table A.2 summarizes the subtle differences between process flows.

First, devices are cleaned in a 1:10 HCl:H2O solution which removes native oxide

and other surface contaminants. Proper adhesion of the metal to the substrate surface

is vital and clean surfaces allow for better adhesion by removing native oxides and

other material that may have found its way onto the sample surface. Following the

clean, samples are promptly mounted onto a carrier substrate with capton tape and

loaded into a deposition tool for the metal 1 (M1) contact layer.

Multiple metals may be utilized for the first level contact, typically Mo is used be-

cause of the excellent contact made to n-type compound semiconductors [137]. While

Ta and W have made reasonably good contacts as well, Mo has provided consistent

contact and etch rates. Both e-beam evaporation and sputtering may used, each with

different benefits. E-beam provides a lower base pressure and ion damage which can

improve electrical results but has been inconsistent during the deposition due to the

high melt temperature of the pellets held in the crucible. Sputtering introduces some

ion damage but generally adheres well to the cleaned surface. However, it can be

adversely affected by prior processes and creates a MoOx surface layer if the base

pressure is too high. Following the Mo recipe in Table 3.1, results in about 200 nm of

metal film. Following M1 deposition, samples are carefully removed from the carrier
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wafer and moved onto the next step, Lithography level 1 (L1).

Table 3.1: CVC601 metal deposition processes

Metal Power Pressure Ar Time Thickness
(W) (mTorr) (sccm) (s) (nm)

Mo† 200 2.2 17 420 200
W 200 2.2 17 750 200
Ta 50 2.2 17 300 200

† Typically performed after an overnight pump down and a base pressure below 5×10−6 Torr.

Following metal deposition, samples are prepared for L1. A quick deionized water

(DI) rinse is performed to remove particulates that may have gathered on the surface

after deposition. The sample is then baked on a hot plate at the softbake temperature

to remove residual H2O from the surface. A primer such as AP3000 may be applied

following this rinse to encourage complete coverage by the negative tone resist. Early

iterations of this process utilized MaN2401 as the negative resist, but moved to a

1:1 (by weight) diluted mixture of AZ nLoF and PMGEA, adapted from Herth et al.

[138], due to the superior etch resistance and exposure requirements. Using the recipe

listed in Table 3.2 a photoresist thickness of 500 nm is targeted to provide sufficient

masking of the metal during etch. Rough alignment marks are scratched into the

edges of the resist for focusing and to allow for stage tilt correction during ebeam

lithography. Following the post application bake (PAB) samples are loaded into the

LEO EVO 50 SEM and alignment of a corner (typically bottom right corner) to

the column is performed to create a consistent starting point. After the beam has

stabilized, the samples are typically written at 300 nA beam current which represents

a crossover of write time and minimum feature size. A pattern consisting of a 10×10

grid is written for each die with a minimum area of 10−2 µm2 or 2.5×10−1 µm2, and a

maximum area of 4×102 µm2. Defined areas often differed greatly from target values

due, in large part, to the large writing size field and how the beam was rastered

across the surface. Typically device areas were smaller than mask defined sizes, with

the greatest variation around the edges of the die area. Changes to the pattern file
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could include moving smaller devices towards the center to improve yield. Following

L1, the samples must undergo a post exposure bake (PEB), otherwise the chemically

enhanced resist will not fully expose and will not develop properly. Samples were

typically developed in CD-26, rinsed, and readied for dry etch.

Table 3.2: nLoF level 1 process

Step Process Time

1 DI rinse and blow dry 10 s - 30 s
2 Dehydration Bake 60 s or greater
3 500 RPM ramp 2 s
4 500 RPM 5 s
5 3000 RPM ramp 2 s
6 3000 RPM 45 s
7 Post Application Bake at 110◦ 60 s
8 e-beam lithography
9 Post Exposure Bake at 110◦ 180 s
10 Develop in CD-26 30 s
11 DI rinse and blow dry 30 s or greater

Samples are then transferred into a dry etch chamber to remove the exposed metal.

Three different systems have been utilized to perform this etch: a LAM490 plasma

etcher, a DryTek Quad reactive ion etcher (RIE), and a TRION RIE. Results from the

LAM490 tend to be isotropic and adversely affect small devices by reducing metal 2

contact area. Whereas the TRION etched samples unevenly when on a carrier wafer,

leading to undesirable results. Utilizing the DryTek Quad provided the most stable

output as well as anisotropic etching of the contact metal. Utilizing the etch recipes

listed in Table 3.3 either Mo or W could be etched with similar output. With Mo, the

photoresist etched at a higher rate than the metal necessitating a thicknesses roughly

double that of the metal. This etch rate provided an additional reason to not use

MaN2401 which only coats films 100 nm thick. Following the RIE, samples were then

subject to a quick O2 clean to remove residual photoresist. However, the O2 plasma

clean may cause a metal oxide to form, which may interfere with contact to the metal
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2 (M2) layer. Additionally, this oxide was the cause of memristor-like device output,

especially with the Ta contact metal.

Table 3.3: DryTek Quad metal etch processes for chamber 2

Metal Power Pressure SF6 O2 CHF3 Temperature Time
(W) (mTorr) (sccm) (C◦) (s)

Mo 150 125 125 - - 50 135
W 150 125 125 - - 50 75
Ta 150 125 125 - - 50 135

Once mesa contacts had been defined by RIE, the Esaki junctions had to be

isolated. While a Cl2 or H2/CH4 based etch could be used to create anisotropic

structures [139–141], wet etch was the preferable formation method due to the lower

cost and lack of ion damage that could affect junction performance. A 20:1 solu-

tion of C6H8O8:H2O2 was used to etch InAs, InAs0.91Sb0.09, and In0.53Ga0.47As. For

Al0.40Ga0.60Sb and GaSb an additional solution of 4:1 NH4OH:H2O2 was utilized to

further etch into the p-regions. Etch times were on the order of 60 s to 75 s for InAs

and In0.53Ga0.47As to etch through the n-region and into or to the p-region. Etch

rates were on the order of 1 nm-s−1 which lead to undercutting of the device contacts

which necessitated measurements to provide accurate device areas for calculating JP

and JV . Due to the anisotropic nature of the wet etch, high tilt SEM images were

utilized to determine the total undercut and actual device size from selected devices

across the written region.

Following mesa etch samples are placed into the SEM to determine both the

undercut and metal mask/contact area. First, top down measurements are made

across multiple die for each size of device. This creates an average area that can

then be used for each device instead of the mask defined area. Precision of this

measurement can be increased by measuring every size on a die and then sampling

single devices across several die to do a planar fit. However, in practice both methods

provide roughly the same extracted current density so the average is used in most cases
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for this dissertation. Measuring the undercut of the devices is equally as important as

the finding the metal area, since it can mean up to a 9× difference in area. Samples

are rotated to a steep angle, > 84◦, to measure the undercut of the metal in one

direction and then the stage is rotated 90◦ to measure undercut in that direction the

importance of this step is seen in Fig. 3.4(c). M1 area is then extracted from the SEM

micrographs using a MatlabTMscript and an average area per device size is determined.

The undercut is then subtracted from this area using rectangle parameters that fit

the extracted area. This area per device will be used later for JP and JV calculations.

Following metrology, samples are then moved to planarization.

To facilitate good contact to 100 nm mesas with 2.4 µm diameter probe tips, an

additional contact layer must be created. First, viscous interlayer dielectric (ILD)

material, bis-benzocyclobutene (BCB) is used to encapsulate the mesas. BCB is then

baked and at 140 ◦C for 5-10 minutes and promptly cured at 250 ◦C in a N2 ambient,

as exposure to atmosphere at high temperatures creates a brittle and oxidized surface

that fails to passivate devices below. The coating process for BCB in Table 3.4 results

in approximately 1200 nm of film, which must be etched back to between the metal

and mesa surfaces. Utilizing a SF6/O2 based plasma, per the BCB etch recipe in

Table 3.5, the sample is etched until the metal is exposed. Large area devices and

the outer die edges tend to clear fastest, which is likely due to how the die couples

to the plasma. This difference in etch can be as large as the metal thickness, leading

to both shorting and open circuits on the same die. Following the BCB etch back

samples can be observed by SEM to see if the metal has cleared the BCB surface

because at high tilt angles charging makes the metal appear especially bright relative

to the surrounding BCB. Once metal has cleared the BCB surface, the samples are

ready for level 2(L2) lithography.

L2 consists of creating the 20 µm diameter contacts and has undergone several

changes to reduce shorting. Originally, a positive resist 950K poly methylmethacry-
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Table 3.4: nLoF level 2 process

Step Process Time

1 DI rinse and blow dry 10 s - 30 s
2 Dehydration Bake 60 s or greater
2 Apply LOR5A
4 500 RPM ramp 2 s
5 500 RPM 5 s
6 3000 RPM ramp 2 s
7 3000 RPM 45 s
8 Apply dilute nLoF
9 500 RPM ramp 2 s
10 500 RPM 5 s
11 3000 RPM ramp 2 s
12 3000 RPM 45 s
13 Post Application Bake at 110◦ 60 s
14 e-beam lithography
15 Post Exposure Bake at 110◦ 180 s
16 Develop in CD-26 30 s
17 DI rinse and blow dry 30 s or greater
18 Deposit M2 300 s or greater
19 Lift-off in remover PG 30 min or greater

late (950K PMMA) was used but required longer exposure times and additional de-

velop steps relative to later iterations. Then a negative L2 layout was created using

AZnLoF, but this method would leave metal bits between the ground and contact

during incomplete lift-off. A final incarnation utilized ARCH8250, a chemically am-

plified resist, that exposed quickly and readily dissolved for lift-off. Using this last

process, only the contacts need defining. Following the process listed in Table A.1,

samples were mounted onto a carrier wafer and loaded for metal deposition. The same

Mo recipe in Table 3.1 is used to deposit M2, allowing coprocessing of samples for M1

deposition. After M2 is deposited the samples are then placed in a lift-off solution

per the recipe in Table 3.6 and are ready to test once the field area of the samples has

been cleared of deposited metal and photoresist. Through the processes listed above

devices as small as 104 nm2 are able to be probed and measured. Fig. 3.11 summarizes
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Table 3.5: LAM 490 etch processes

Material Power Pressure SF6 O2 CHF3 He Electrode spacing Time
(W) (mTorr) (sccm) (cm) (s)

Mo 150 125 125 - - 50 135
BCB 25 300 20 80 - 100 1.65 75
resist 150 125 125 - - 50 135

Table 3.6: ARCH 8250 level 2 process

Step Process Time

1 DI rinse and blow dry 10 s - 30 s
2 Dehydration Bake 60 s or greater
3 500 RPM ramp 2 s
4 500 RPM 5 s
5 3000 RPM ramp 2 s
6 3000 RPM 45 s
7 Post Application Bake at 110◦ 60 s
8 e-beam lithography
9 Post Exposure Bake at 110◦ 180 s
10 Develop in CD-26 30 s
11 DI rinse and blow dry 30 s or greater

previously listed steps in a conceptual schematic going from bare substrate to final

encapsulated mesa. Device yield is of incredible importance to this work to ensure

proper extraction of JP and JV values as shown in later sections.

3.5 Device Characterization and Methodology

The previous sections described the general fabrication process for the diodes in this

dissertation. This section describes how the area and electrical characterizations listed

previously are performed as well as how to interpret the electrical results.

Samples are to be tested on a Keithley 4200 Semiconductor Parameter analyzer.

Utilizing the grid defined in Chapter 3.4 as a ground contact allows the difference

in device R between the ground and test devices to current limit to the smaller
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Figure 3.11: (a) Device areas are taken across several die to attain a representative contact
area to increase the precision of the JP and JV data. (b) The sample is then rotated to
a steep angle, often 84◦, or higher, to measure the undercut in two perpendicular planes
to account for etch anisotropy. (c) A second level metal and ILD must be used with these
mesas to contact devices below 2 µm widths

.

device. Fig. 3.11(c) provides an example of how devices are probed, showing the

ground contact to the grid as well as the measured device. Since RS affects the

location of VP , it is possible that high JP devices will current limit prior to exhibiting

VP . As such, progressively smaller devices must be tested as JP begins to exceed

100 kA/cm2. For each device, JP , JV , VP , VV , and PVCR are recorded from the I-V

measurements. PIVET was developed [62] to greatly reduce the analysis time when

measuring multiple devices, by allowing graphical selection of the peak and valley

locations recording the values automatically.

Once data has been collected, it must be sorted and bad data points removed.

This is easily accomplished by removing any data which has a PVCR near or at 1,
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since tunnel devices are likely to have PVCR greater than 1.01. Once bad points are

removed, the devices are sorted by area and assigned a corrected area as detailed in

Chapter 3.4. At this point, statistical analysis of the data proceeds with extractions of

JP , PVCR, and JV from a Gaussian peak fit to the histogram of the data. Obtaining

these extracted values comprises the bulk of the work in this dissertation.

Figure 3.12: Utilizing sample SSG-TD1 an example, keys concepts for understanding
Esaki diodes are shown above. a. I-V characteristics for SSG-TD1 as devices are scaled
down with area, IP , IV , VP , and VV , are all every apparent for each discrete device. RS

influence is reduced with area, and eventually VP will reach a minimum value. JP is
calculated by dividing IP by the corrected device area. PVCR is calculated from IP and IV

3.6 Growth and Characterization Conclusions

Chapters 2 and 3 describe what Esaki tunnel diodes are and how to fabricate and

examine them. The previous sections discuss which analysis techniques are utilized
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and why they are useful for understanding the behavior of the devices measured in

this dissertation.

Building upon the prior sections, the following chapters will discuss the various

tunnel diodes studied in this dissertation. Chapter 4 will cover small stagger gap

devices, aiming to show how reducing the effective EG can increase JP . Chapter 5

further examines the reduction in effective EG by examining large staggered gap

devices. Chapter 6 explores a completely broken gap system in an attempt to reach

a 10 MA/cm2 JP target. The remaining Chapters 7 and 8 attempt to analyze the

impact of heterointegration onto Si substrates has on tunneling characteristics.
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Chapter 4

Small Staggered Gap/Type II Heterojunctions

4.1 Introduction

This chapter explores the impact of effective bandgap on tunneling characteristics.

In0.53Ga0.47As Esaki diode behavior is well known [28] and can be modeled [62],

but to reach a target of 10 MA/cm2 doping densities would have to exceed what

In0.53Ga0.47As can contain. However, an Esaki diode with lower EG will produce

higher JP at equivalent doping density of an In0.53Ga0.47As device. This chapter

will explore small staggered gap (SSG) and large staggered gap devices (LSG) and

compare the results back to those of In0.53Ga0.47As based systems.

First, a SSG family of devices will be fabricated and tested. This group consists of

In0.53Ga0.47As/GaAs0.50Sb0.50 heterojunctions, which should provide small (<0.2 eV)

reductions to the effective EG. Such a change would be expected to produce JP values

somewhere between those of In0.53Ga0.47As and InAs. Second, strained SSG devices

will be built and tested. Strained SSG devices affect carrier mobility which applies

directly to tunneling probability. As such, these systems are expected to deviate from

the JP that would otherwise be exhibited.
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4.2 Small Stagger Gap Esaki Diodes (SSG)

Two samples for the In0.53Ga0.47As/GaAs0.50Sb0.50 system were built in the prelimi-

nary set, with slightly differing layer schemes as shown in Fig. 4.1. InGaAs layers were

n-type doped using Si, while GaAsSb layers are p-type doped with C. Table 4.1 sum-

marizes the doping scheme and typical electrical characteristics for these devices. Typ-

ical materials and electrical results for the small stagger In0.53Ga0.47As/GaAs0.50Sb0.50

devices will also be shown.

Data for the small stagger system is very promising, exhibiting JP values exceeding

90 kA/cm2. It appears that for equivalent N∗ values, a larger band overlap will lead

to an increase in the tunnel current relative to the In0.53Ga0.47Ashomojunction as

seen in Fig.2.4(b). Excess current does not appear to be problematic for this lattice

matched system, likely due to low defect density and good growth quality. While

this heterojunction does mark an improvement over the In0.53Ga0.47As homojunctions

system, it does not appear to be capable of meeting the 10 MA/cm2 target for peak

current density.

4.2.1 Small Stagger Gap Series 1

SSG-TD1 was designed to have similar doping to previously reported In0.53Ga0.47As

devices to provide for a good comparison between effective EG for the two material

systems. Fig. 4.1(a) gives a representative schematic for the SSG-TD1 film stack.

This system was acquired from a commercial vendor(Intelliepi), and represents the

maximum doping levels for which the system had been calibrated. Other groups

have had a tendency to create a very thin, but highly doped region just prior to the

tunnel junction [142]. This technique is supposed to provide increased doping levels

at the junction without the risk of increased defect density due to the high doping

levels. Fig. 1.3displays where doping density and JP fall relative to other Esaki tunnel
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diodes. SSG-TD1 exhibits JP between In0.53Ga0.47As and InAs as hypothesized.
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(a) SSG-TD1

In0.53Ga0.47As: Si

In0.53Ga0.47As

GaAs0.50Sb0.50: C

In0.52Al0.48As: C buffer

InP:Fe

60 nm

3 nm

300 nm

300 nm

Substrate nm

1×1020 cm−3

uid

5×1019 cm−3

1×1019 cm−3

P+

(b) SSG-TD2

Figure 4.1: (a) Schematic of the film stack for samples SSG-TD1. Doping levels are
targeted to be very high to produce large JP between that of In0.53Ga0.47As and InAs. A
10 nm highly doped region was utilized as an attempt to further increase doping levels.
(b) Schematic of the film stack for samples SSG-TD2. The 10 nm highly doped region has
been replaced with one of uniform doping to reduce parallel resistor issues associated with
the two level doping scheme.

Material analysis for sample SSG-TD1 and SSG-TD2 were limited to SIMS as

shown in Fig. 4.2. Doping densities for SSG-TD1 were lower than targeted, probably

to preserve the quality of the sample over attaining target doping levels. Dopant

concentration was found to be 9×1019 cm−3 for Si and 1.7×1019 cm−3 for C, which

leads to an N∗ value of 1.43×1019 cm−3 for SSG-TD1. Doping profiles for Si and C,

show 10.2 and 4.89 nm/dec., respectively. A lower JP than designed was expected

of SSG-TD1 due to lower doping concentrations at the junction. Doping densities

for SSG-TD2 were near targeted values, though N∗ will slightly higher than targeted

due to slight differences in doping from the specified targets. Dopant concentration

was found to be 1.2×1020 cm−3 for Si and 5.5×1019 cm−3 for C, which leads to an

N∗ value of 3.77×1019 cm−3 for SSG-TD2. Doping profiles for Si and C, show 10.6

and 7.94 nm/dec., respectively, which is marginally broader than SSG-TD1. A JP

greater than SSG-TD1 should be expected.

Over 300 devices were measured for both SSG-TD1 and SSG-TD2 to build a

statistical data set for extracting JP , JV , and PVCR. NDR without series resistance

related latching was readily apparent for numerous devices, indicating JP values will
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Figure 4.2: SIMS for SSG-TD1 (red) from which peak doping levels of 9×1019 cm−3 for Si
and 1.7×1019 for C were extracted. For SSG-TD2 (black) doping levels of 1.2×1020 cm−3

for Si and 5.5×1019 cm−3 for C were extracted. Junction abruptness for this sample is
reasonable for MBE, and should not reduce device performance. Si was found to be 10.2
nm/dec. and C was found to be 4.89 nm/dec. at the metalurgical junction for SSG-TD1.
10.6 nm/dec. for Si and 7.94 nm/dec. for C were extracted for SSG-TD2.

be under 100 kA/cm2 for SSG-TD1. Measured devices typically exhibited I-V curves

like those in Fig. 4.3(a) showing excellent current scaling with reductions in area.

Sample SSG-TD2 was shown to exhibit higher JP than SSG-TD1 due to higher I for

the equivalent sized devices. Fig. 4.3(b) represents typical I-V characteristics for a

given die. As with SSG-TD1, VP quickly moves to lower values with reduced area as

RS related latching is reduced.

JV , JP , and PVCR values were extracted using the procedures in sections 3.4 and 3.

PVCR for samples SSG-TD1 and SSG-TD2 were extracted from a Gaussian fit to a

histogram of the data values. SSG-TD1 exhibited a mean PVCR of 2.75 with a max-

imum of 6.55, while SSG-TD2 showed a mean of 3.11 and maximum of 5.45 as seen

in Fig. 4.4. Due to the limited volume of literature values for PVCR [54], it can not
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Figure 4.3: Family of I-V curves for SSG-TD1 and SSG-TD2 showing current scaling with
reduced area devices. Interestingly, there appears to be a longer distance between VV and
VP relative to a homojunction In0.53Ga0.47As Esaki diode which may be due to a greater
overlap of conduction and valence bands for the heterojunction vs. a homojunction.

be determined if a peak PVCR region exists between or below the effective doping

levels for this sample set. From Fig. 4.5 it can be seen that SSG-TD1 exhibits a JP of

91.3 kA/cm2 and SSG-TD2 has a JP of 572 kA/cm2. From Fig. 4.6 it can be seen that

SSG-TD1 exhibits a JV of 33.3 kA/cm2and SSG-TD2 has a JV of 179 kA/cm2. At

572 kA/cm2 and N∗ at 3.77×1019, the In0.53Ga0.47As/GaAs0.50Sb0.50 heterojunction

system may not reach 10 MA/cm2. Table 4.1 summarizes the results for SSG-TD1

and SSG-TD2. With N∗ at 3.77×1019 cm−3 for a 572 kA/cm2 JP , it does not ap-

pear that this system will reach 10 MA/cm2 before reaching doping limits above the

5×1019 cm−3 N∗ range. However, from Fig. 4.7(a), with an effective EG of roughly

0.50 eV, the SSG samples exhibit JP between In0.53Ga0.47As (0.74 eV) [31] and InAs

(0.34 eV) [31, 58].
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Table 4.1: Summary of device information and extracted values

Device C Si N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

SSG-TD1‡ 1.7 9 1.43 2.64 91.3 7.3 33.3 6.6 2.75 6.56 0.25
SSG-TD2‡ 5.5 12.0 3.77 1.63 572 80 179 43.5 3.11 5.45 0.85

‡ InP substrate
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Figure 4.4: PVCR histogram for SSG-TD1 and SSG-TD2 showing extracted PVCR values
to be 2.75 and 3.11, respectively. The distribution of values for SSG-TD1 is fairly tight,
which indicates uniform performance across the wafer and few defects that would cause
major changes in excess current. The broader profile of SSG-TD2 was likely process related
since XRD analysis appears to show good crystallinity.
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Figure 4.5: JP histogram for SSG-TD1 and SSG-TD2 showing extracted values to be
91.3 kA/cm2 and 572 kA/cm2, respectively. σ values are between 5% and 15%, indicating
that area variation between devices is likely higher than the fitted value on SSG-TD2.
Though doping levels may be pushed higher, it is unlikely that exceeding 1×1020 cm−3 for
both dopants could reach a 10 MA/cm2 JP target.
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Figure 4.6: JV histogram for SSG-TD1 and SSG-TD2 showing extracted values to be
33.3 kA/cm2 and 179 kA/cm2, respectively. σ values are between 20% and 25%, indicating
that area variation between devices is likely higher than the fitted value.
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Figure 4.7: (a) PVCR vs. N∗ FOM plot for SSG-TD1 and SSG-TD2. The small stagger
gap (≈0.5 eV) provides JP values between equivalently doped InAs and In0.53Ga0.47As
doped samples. (b) Figure of merit (FOM) plot comparing published values of JP against
systems with EG below that of InAs
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4.2.2 SSG-TD3

It follows from samples SSG-TD1 and SSG-TD2 that creating a smaller effective EG

will increase JP for the same N∗ value with respect to Esaki diodes from higher EG

material. As such, SSG-TD3 was designed to have a small to moderate stagger by

combining In0.7Ga0.3As with GaAs0.35Sb0.65 for an effective EG similar to that of InAs

and below that of the InAs0.91Sb0.09/GaAs0.50Sb0.50 system. Fig. 4.8(a) shows the

designed film stack for this device. By utilizing the high In content InGaAs combined

with the high Sb content GaAsSb device performance is expected to be along the line

indicated in Fig. 4.8(b). However, it will be shown that no NDR related values were

able to be extracted due to high defect density.
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Figure 4.8: (a) Schematic of the film stack for samples SSG-TD3. Doping levels are
targeted to be very high to produce large JP . (b) Figure of merit (FOM) plot comparing
published values of JP against the projected SSG-TD3 JP value.

For SSG-TD3, doping was Si on the n side of the junction, and C on the p side of

the junction. High doping density values of 5×1019 cm−3, or greater, were targeted

for both Si and C doping. A 1 µm thick In0.7Al0.3As buffer was used to match the

In0.7Ga0.3As lattice constant. Surface analysis in the SEM during area correction
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Figure 4.9: SIMS for SSG-TD3 exhibits steep dopant slopes of 5.4 nm/dec. for Si and
3.6 nm/dec. for C.

indicates that there are many defects that propagated through the epilayers. Images

from a TEM would help determine the density of the defects per layer similar to the

work of Zhu et al. [34, 127].

SEM, SIMS, and XRD were utilized to analyze SSG-TD3. From SIMS it can

be seen that the doping levels were nearly an order of magnitude lower than the

target of 1×1020 cm−3 for both Si and C dopants. Attaining levels of Si and C above

2×1020 cm−3 has been shown to be difficult for In0.53Ga0.47As and GaAs0.50Sb0.50 as

well as for InAs and GaSb [47, 143, 144], the ternary combinations between them

should be expected to be slightly more difficult owing to less calibrated growth and

available literature information. From Fig. 4.9 dopant levels for Si were shown to

be 7.5×1019 cm−3 and 2.25×1019 cm−3 for C. Resultant junction abruptness yielded

5.4 nm/dec. for Si and 3.6 nm/dec. for C, which are within range of the best reported
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Figure 4.10: HRXRD for SSG-TD3 shows a fairly broad InGaAs/GaAsSb layer indicating
the presence of relaxing which will adversely affect tunneling performance.

doping profiles for those dopants by MBE. From Fig. 4.10 there appears to be some

relaxation of the In0.53Ga0.47As/GaAs0.50Sb0.50 layer, which will negatively impact JV

and PVCR.

SSG-TD3 I-V characteristics show kinks that can be associated with tunneling

currents, however from Fig 4.11 is apparent that a large excess current swamps the

system. Sources for the excess current are likely to be defects within the device layer

that have propagated up from the buffer. Viewing Fig. 4.12, it becomes apparent that

surface variation may be affecting the device performance. While this device should

have exhibited JP values similar to those seen in InAs, only I-V curves showing very
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Figure 4.11: Typical I-V characteristics for SSG-TD3. This device was designed to be
closer to InAs in effective EG, however high defect density affected the devices to the point
that excess current completely masks the tunnel region of the I-V curves.

large excess current were able to be extracted. This combination of I-V data and

materials analysis indicates that further study of SSG-TD3 would not yield usable

results at room temperature. Low temperature measurements have proven successful

for other groups when this type of behavior occurs, however other devices in this

dissertation were viewed as having greater potential to exceed the 10 MA/cm2 JP

target, and as such further study of SSG-TD3 was deemed unnecessary.

.
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Figure 4.12: Surface roughness is very apparent for sample SSG-TD3 from SEM micro-
graphs, indicating probable large defect densities and a relaxed layer.

4.3 Small Stagger Strained Heterojunctions

Strain is known to affect carrier mobility for both p and n type carriers. How the

sample is strained may reduce mobilities and quickly referencing [46, 52, 62] makes

apparent how this could lead to lower tunnel current. For Si and Ge devices, devices

can be strained by warping the substrate through applied pressure. III-V semicon-

ductors are not nearly as compliant with the tools used to strain Si devices and break

under low stress conditions. As such, little data can be extracted due to their inher-

ently lower mechanical strength. To test this hypothesis, strain was induced through

lattice mismatch between the tunneling region and the surrounding material. Three

samples were created for this purpose and are described in Figs. 4.13(a), 4.14(a),

and 4.15(a). Fully relaxed In0.70Ga0.30As was grown on an InP substrate to provide

tensile strain across the tunnel region and a capping layer of In0.70Ga0.30As acted to

reinforce lattice compliance. This design was similar to that of Day et al. [30] in that
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the band gap was varied in a 3 nm region between In0.53Ga0.47As n and p regions,

but different in that these layers also incorporated strain. The design of this sample

set was adjusted by partners at SEMATECH and intended to include a control and

compressed tunnel region data point. However, these samples would not meet the

JP targets and did not warrant further resource expenditures. Additionally, further

research was abandoned when high priority broken gap samples arrived.
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Figure 4.13: (a) Schematic of the film stack for the strained staggered gap Esaki diode
SSG-TD4 with an In0.53Ga0.47As tunnel region. (b) I-V curves for SSG-TD4 show scaling
with area reduction. Additionally, low PVCR values are consistent with higher defect
density.

However, in can be noted that with increased strain that the devices exhibit

lower current, with the caveat of an increased bandgap which also decreases JP as

seen in Figs. 4.13(b), 4.14(b), and 4.15(b). This experiment hints at JP reductions

with increased tensile strain but is confounded with an increased EG at the tunnel

junction. Likely, the JP is more affected by the change in EG as well as strain and/or

reduced defect inclusion as the mole fractions approach parity with the capping and

base layers. From Fig. 4.16(a) it can be seen that JP is extracted as 29.2 A/cm2,
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Figure 4.14: (a) Schematic of the film stack for the strained staggered gap Esaki diode
SSG-TD5 with an In0.40Ga0.60As tunnel region. (b) I-V curves for SSG-TD5 show scaling
with area reduction. Additionally, lower JP and PVCR values relative to SSG-TD4 and
SSG-TD6 are seen.

22.7 A/cm2, and 79.4 A/cm2 for SSG-TD4, SSG-TD5, and SSG-TD6 respectively.

From this data set it is difficult to discern if the differences are due to strain, defects,

or EG in the tunnel region. However, as the mole fraction approaches parity with

the cap and base layers it does exhibit improved JP . PVCR for the samples was

extracted in Fig. 4.16(b), and median values were found to be 1.1, 1.7, and 3.1 for

SSG-TD4, SSG-TD5, and SSG-TD6. It is expected that the values should follow the

strain relative to the capping and base layers, but SSG-TD4 and SSG-TD5 appear

out of order in this respect. The maximum PVCR values, however, do follow the

expected trend at 2.53, 1.98, and 3.75, respectively. This difference may be due to

yield differences between the samples, as the SSG-TD4 sample set of 59 devices is low

relative to many of the other systems reported in this work.

Overall, the strained SSG sample study data wasn’t very compelling. JP values

generally tracked with expectations, as did PVCR. When compared to In0.53Ga0.47As,
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Figure 4.15: (a) Schematic of the film stack for the strained staggered gap Esaki diode
SSG-TD6 with an In0.60Ga0.40As tunnel region. (b) I-V curves for SSG-TD6 show scaling
with area reduction. SSG-TD6 appears to exhibit the highest PVCR and JP values, likely
due to the closer lattice match to the straining layers.

Table 4.2: Summary of device information and extracted values

Device Be Si N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (A/cm2) (A/cm2)
(cm−3) (cm−3) cm−3 cm−3 mean σ mean σ mean max σ

SSG-TD4‡ 1 1 0.5 4.47 29.2 7.7 23.3 12.9 1.1 2.53 0.45
SSG-TD5‡ 1 1 0.5 4.47 22.7 8.6 13.5 4.6 1.7 1.98 0.28
SSG-TD6‡ 1 1 0.5 4.47 79.4 12.1 23.9 12.8 3.1 3.75 0.74

‡ InP Substrate

the data shows a relation to mole fraction and EG but doesn’t vary much from ex-

pected JP values for a 5×1018 cm−3 N∗ effective doping level as seen in Fig. 4.17.

Table 4.2 summarizes the results for the strained SSG samples. A possible alterna-

tive approach to straining the samples may be though ILD deposition similar to the

oxide/nitride interaction for CMOS [2].
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Figure 4.16: JP and PVCR histograms for strained SSG samples. (a) JP values decreased
with tensile strain which may indicate an unfavorable change in m∗. However, the strain
samples are also likely affected by the increased EG seen at the tunneling interface [30]. (b)
PVCR are, on average low, indicating a number of defects are increasing excess current and
masking strain effects on PVCR.
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4.4 Small Stagger Gap Conclusions

This chapter demonstrated the implementation of SSG In0.53Ga0.47As/GaAs0.50Sb0.50

heterojunctions on InP substrates and how their performance compares to In0.53Ga0.47As.

Utilizing band offsets provided an effective EG of 0.59 eV, between In0.53Ga0.47As and

InAs, which performed in the expected regime as seen in Fig. 4.17. Pushing doping

density in SSG-TD2 exhibited a max JP near 570 kA/cm2, well below 10 MA/cm2.

SSG-TD3 yielded a null result due to high excess currents caused by high defect den-

sity. Were it not for the defects, this sample would have likely performed similarly to

InAs. Strained sample performance was similar to In0.53Ga0.47As at equivalent doping

levels. Results for the SSG devices are summarized in Table 4.3

Table 4.3: Summary of SSG device information and extracted values

Device C Si N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) cm−3 cm−3 mean σ mean σ mean max σ

SSG-TD1‡ 1.7 9 1.43 2.64 91.3 7.3 33.3 6.6 2.75 16.4 0.25
SSG-TD2‡ 5.5 12.0 3.77 1.63 572 80 179 43.5 3.11 12.9 0.85

SSG-TD3‡ 2.45 3.0 1.35 2.72 – – – – – – –

SSG-TD4‡ 1 1 0.5 4.47 29.2 7.7 23.3 12.9 1.1 2.53 0.45
SSG-TD5‡ 1 1 0.5 4.47 22.7 8.6 13.5 4.6 1.7 1.98 0.28
SSG-TD6‡ 1 1 0.5 4.47 79.4 12.1 23.9 12.8 3.1 3.75 0.74

‡ on InP Substrates

Over 700 devices were tested between SSG-TD1 and SSG-TD2 samples. This

volume of testing created a large dataset from which values of JP , JV , and PVCR

were extracted and contrasted. SSG-TD2 exhibited high PVCR and JP performance,

indicating further improvements may be possible. Strained sample results indicate

that may have negative implications for device performance if not considered. This

information exhibits how slight changes in gap stagger can have somewhat profound

results. This chapter demonstrates that a small stagger increases JP for an equivalent

homojunction doping density. Further enhancements to JP can be made through

larger staggers as seen in Chapter 5.
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Figure 4.17: Figure of merit plot for the SSG series samples vs. other material systems
[27, 54, 62] with an exponential fit showing that a 10 MA/cm2 JP for this material system
may not be possible before dopant activation becomes a serious concern.
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Chapter 5

Large Stagger Gap/Type II Heterojunctions

5.1 Introduction

Chapter 4 presented the results from small stagger gap (SSG) Esaki diodes fabricated

by molecular beam epitaxy (MBE). Samples exhibited negative differential resistance,

confirming tunneling behavior. Relative to homojunction In0.53Ga0.47As Esaki diodes,

the SSG samples produced higher current density (JP ) values for equivalent doping

density. Increased JP , coupled with a reduced effective band gap (EG), confirms the

hypothesis that a heterojunction with a smaller effective gap will exhibit superior

performance. This chapter builds upon the previous study, presenting several large

stagger gap (LSG) devices, and further confirms the improvements to tunnel current

through band gap engineering.

LSG samples in this chapter are varied in two ways: (i) % Al content is varied

from 20% to 60%, and (ii) doping density for the 40% Al content sample is varied

from 9.8×1017 cm−3 to 2.5×1019 cm−3. Large stagger is confirmed to improve JP for

the same doping density and increased Al content decreased JP .
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5.2 Large Staggered Gap Esaki Diodes (LSG)

Four samples are in the preliminary InAs0.91Sb0.09/Al0.40Ga0.60Sb set, LSG-1 through

LSG-4, which were sourced through two different epitaxial growers, IQE and Intelliepi.

This experiment determined the relationship between doping and current density in

heterojunction diodes with an Al0.40Ga0.60Sb p type region. Sample LSG-1 was pro-

vided by SEMATECH through Intelliepi and targeted > 5×1019 cm−3 Si doping in

the InAs0.91Sb0.09 layer and 5×1019 cm−3 C doping in the Al0.40Ga0.60Sb region. Re-

maining samples were procured through IQE and targeted > 5×1019 cm−3 Si doping

in the InAs0.91Sb0.09 layer and varied from 1×1018 cm−3 to 1×1019 cm−3 Be doping in

the Al0.40Ga0.60Sb region. Knoch and Appenzeller [35] have proposed TFETs based

on varying Al composition to address the issues that may be associated with the

off-state [35]. Results from these designs would hint that this system may approach

the 10 MA/cm2 target, but will likely be a little short of the target.

5.2.1 Experimental Setup

The LSG series is designed to have a more aggressive stagger than those in the SSG

series. Where SSG samples had an EGeff of 0.59 eV,≈ 0.2 eV ∆EG from their

constituent materials, the LSG series EGeff is significantly smaller, ≈ 0.08 eV EGeff ;

smaller than either Al0.40Ga0.60Sb or InAs0.91Sb0.09. From Fig. 5.1 the difference in

stagger is very apparent and should increase JP commensurately.

As with the samples in the previous chapter, LSG-1 through LSG-4 were grown

via MBE. However, changes were made to accommodate the difference in material

systems. LSG-1 was grown on a 0.35◦ misscut towards <111> <100> GaSb wafer.

All other samples were grown on <100> GaSb wafers, as confirmed by a 0.35◦ offset

in substrate peak in XRD measurements. Devices consisted of a degenerately Si

doped n-type InAs0.91Sb0.09 layer, a small InAs0.91Sb0.09 intrinsic region, followed by
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Figure 5.1: A relatively small decrease in the effective tunnel barrier for the SSG series
resulted in significant gains in JP , greater gains in JP are expected for the LSG series which
has a much smaller effective band gap.

a degenerately C, or Be, doped p-type Al0.40Ga0.60Sb layer grown directly on the

substrate. Schematics for the specific device designs are shown in Fig. 5.2

Fabrication for the LSG sample set largely follows those used for the SSG set.

However, slight variations to etch time due to a faster etch rate for InAs0.91Sb0.09 vs.

In0.53Ga0.47As were required. Additionally, citric acid is highly selective [145, 146]to

InAs0.91Sb0.09 over Al0.40Ga0.60Sb so overetching beyond the p-type region is not an

issue.

5.2.2 Results

Diodes from the LSG series required small contact areas to consistently show NDR

behavior, in contrast to the SSG series which could often be probed following mesa

etch. Additional development of the contact was also necessary, as the n-type contacts

to III-V’s didn’t work well with liftoff processes as seen in Fig 5.3 a move to a metal

first process became necessary. Initial samples tested Ta as a contact metal because
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InAs0.91Sb0.09

Al0.40Ga0.60Sb: Be
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(a) LSG-TD1
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(b) LSG-TD2
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(d) LSG-TD4

Figure 5.2: Schematic of the film stacks for samples LSG-1 through LSG-4. Doping
levels are varied so as to extract the relationship between N∗ and JP . LSG-TD2 through
LSG-TD4 have a very narrow p-type region which may cause issues related to spreading
resistance.

it was easy to image in the SEM and had a work function compatible with n-type

InAs0.91Sb0.09, this would provide additional benefit as a fiducial for L2 alignment.

However, between BCB and level 2 metallization, the contact properties changed to

be very resistive. This material was thought to be Ta2O5, which can be difficult

to remove and is resistive. Highly resistant contacts would then require biases that

exceeded the carrying capacity of the small diodes and would yield null results. A

such, contacts were changed to Mo resulting in a more robust contact at the expense

of poorer contrast for L2 alignment.

After reaching L2, devices as small as 4.9×10−10 cm2 were measured and exhibited

tunneling characteristics. LSG-TD1 through LSG-TD3 behaved as expected, but

LSG-TD4 did not exhibit NDR as seen in Fig. 5.4. Thus the minimum p-type doping

lies somewhere between 1×1018 cm−3 and 5×1018 cm−3, though lower doping in the

InAs0.91Sb0.09 could still be expected to provide tunneling characteristics so long as

the doping density does not fall much below 8×1018 cm−3. Though LSG-TD4 failed to

77



Chapter 5. Large Stagger Gap/Type II Heterojunctions

(a) Ta Contact to LSG Samples (b) Mo Contact to LSG Samples

Figure 5.3: (a) Initial attempts to utilize liftoff processes for refractory metal contacts
to the LSG samples required a major shift in procedure. (b) Changing from lift-off to a
metal first and etch back process eliminated issues with sidewall metal coating and had the
benefit of producing smaller L1 contacts. Processes for both Mo and W were developed for
L1 contacts, but the limited availability of W lead to Mo utilization as the contact for most
devices.

show NDR, it does show promise as a possible TFET material as had been suggested

by Knoch and Appenzeller [35]. LSG-TD1, TD2, and TD3 show increasing JP with

doping density, but may fall short of being able to deliver 10 MA/cm2.

Over 200 devices were measured for each sample to create a good statistical data

set for JP , JV , and PVCR extraction. From Fig. 5.5(a) it can be seen that I-V scales

with area and there do not appear to be any surface leakage effects reducing device

performance. Outliers are most likely due uncertainty related to area approximation,

since there were significant variations in device area as devices were written farther

from the die center. Smaller devices were more adversely affected by the variation,

as it was often in one direction and lead to areas far smaller than targeted.

Comparing the VP for each device, there are some drastic differences between

LSG-TD1 and the rest of the sample set in Fig. 5.5(b). VP is affected by a number of

factors: doping, band overlap (for heterojunctions), and series resistance. However,

VP for LSG-TD1 is close to 0.2 V below that of LSG-TD2. A difference greater than
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the 10’s of mV which is typical for differently doped devices of the same material

system. Additionally the band overlap for the 40% Al LSG series samples can be

considered the same, excluding the differences due to doping. Only RS remains as

an explanation for the significantly higher VP values for LSG-TD2 and LSG-TD3.

PVCR and JV are affected by the VP shift in that PVCR will be significantly lower

and JV analysis will be uninteresting. As such, LSG-TD2 and LSG-TD3 will only

be analyzed through histogram data because very little information can be extracted

from their JV and IV /IP/PVCR vs. area plots.

JP for samples that showed PVCR were extracted from a Gaussian fit to a his-

togram of JP data from Fig. 5.6. Distribution tails for the devices trended towards

the high side due to overestimated areas. LSG-TD1 was found to have a JP of

874 kA/cm2, followed by 521 kA/cm2 and 356 kA/cm2 for LSG-TD2 and LSG-TD3,

respectively. LSG-TD4 exhibited diffusion current characteristics, but could be ex-

pected to show tunneling with a modest Voltage application. The highest JP was still

lower than the record In0.53Ga0.47As JP of 972 kA/cm2 [28], but at a much lower N∗.

PVCR for the LSG series was extracted from histograms of all the PVCR data.

From Fig. 5.7 LSG-TD1 gives the highest median value of 1.48, whereas LSG-TD3

and LSG-TD2 followed at 1.03 and 1.01, respectively. However, the maximum PVCR

is often the number reported by literature; as such, the values were found to be 3.05,

1.15, and 1.19 for LSG-TD1, LSG-TD2, and LSG-TD3. Low PVCR may be attributed

to a number of factors. Generally, large excess current will severely limit PVCR.

However, the very narrow p-region likely leads to increased spreading resistance which

can also have the effect of reducing PVCR. Additionally, the epitaxy benefits of a miss

cut may be offset by increased excess currents despite a reduced defect density and

other mechanisms which suppress excess current.

Fig. 5.8 represents the typical I-V characteristics of LSG-TD1 devices with mask

defined areas from 0.25 µm2 to 400 µm2. NDR is very clearly observed for many
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devices, especially when compared against the other LSG samples. Excellent current

scaling is represented as devices reach smaller sizes. VP appears to rest between

0.3 V and 0.4 V as seen in Fig. 5.5(b) and hinted in Fig. 5.8. As in the SSG,

an extended NDR region with a broader peak seems to be exhibited by LSG-TD1.

This NDR region broadening may be due to additional tunneling paths that exist in

heterojunctions that do not appear in their homojunction counterparts. These paths

may have different cutoff voltages for tunneling, resulting in the more gradual slopes

seen in the staggered gap systems.

Fig. 5.9 plots IV , IP , and PVCR against device area for LSG-TD1 and indicates

scaling with area and variation between samples appears largely related to IV . IV and

IP scaling is fairly typical for well fabricated devices. Interestingly, the peak in PVCR

appears near device areas close to 1 µm2. Typically, PVCR maximums appear with

the smallest devices since the range increases due to larger differences in the inclusion

of defects/excess current paths between devices. Reduced PVCR at smaller device

sizes indicates there may be some surface or processing effects that are affecting an

increase in excess current.

HRXRD can indicate the presence of defects between samples and if there are

differences in the substrates. From Fig. 5.10 a few characteristics can be inferred

about the samples. First, the GaSb peak is shifted between the two samples. The

slight shift is near 0.35◦ and a commonly used GaSb substrate for growth is miss

cut in 0.35◦ in the <111> direction. In addition to the differences in how sample

LSG-TD1 cleaved relative the rest of the set, it would appear that LSG-TD1 was

grown on an intentionally miscut wafer. Peaks for Al0.40Ga0.60Sb and InAs0.91Sb0.09

appear to be in the same general locations, but with some masking of InAs0.91Sb0.09

on LSG-TD1 due to an over lap with the substrate peak. Second, from peak heights,

it can be seen that the Al0.40Ga0.60Sb layer is thicker for LSG-TD1. Thus, it is very

likely that differences in the PVCR between LSG-TD1 and the rest of the sample
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set are related more to the thickness of the Al0.40Ga0.60Sb region and RS than defect

originated excess currents.

SIMS was performed on LSG-TD1, and shows very high C doping in Fig. 5.12.

However, this measurement was made using GaAs as a calibration sample and had

greater than 50% uncertainty in the doping levels. Additional SIMS of LSG-TD2

through LSG-TD4 were not taken, due to cost and the volume of samples.

Table 5.1: Large Staggered Gap Tunnel Diodes

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

LSG-TD1† 4 C 5 Si 2.2 2.1 874 126 594 139 1.48 3.05 0.19
LSG-TD2‡ 5 Be 1 Si 0.83 3.5 552 54 498 62 1.01 1.15 0.01
LSG-TD3‡ 5 Be 0.5 Si 0.45 4.7 356 76 349 69 1.03 1.19 0.03
LSG-TD4‡ 5 Be 0.1 Si 0.10 0.1 N/A N/A N/A

† 0.35deg offcut to < 111 > GaSb Substrate
‡ < 100 > GaSb substrates

5.2.3 Large Stagger Gap Doping Study Conclusion

LSG samples containing 40% Al follow the hypothesis that reducing the tunnel bar-

rier through band gap engineering is effective for increasing JP for equivalent dop-

ing density. LSG-TD1, LSG-TD2, and LSG-TD3 were shown to have JP values of

874 kA/cm2, 552 kA/cm2, and 356 kA/cm2. LSG-TD4 exhibits JP values signif-

icantly lower than LSG-TD3, indicating the candidacy of this system for TFETs.

JP for the LSG trends upwards with doping density, as expected. However, based

on Fig. 5.11, it does not appear that the LSG series will quite meet the neccessary

10 MA/cm2 value needed to make TFETs competitive with CMOS [4, 148]. Doping

for both Al0.40Ga0.60Sb and InAs0.91Sb0.09 would need to exceed 1×1020 cm−3 and the

trendline indicates this system may not reach 2 MA/cm2. In addition, there may be

dopant activation and compensation issues once concentrations exceed 5×1019 cm−3.

Table 5.1 summarizes the results from the LSG 40% samples.

An issue seems to arise from a combination of excess current and spreading re-

sistance in the IQE samples possibly due to substrate choice; most devices bigger
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than 500 nm do not appear to exhibit NDR before a 1 V bias and devices under 300

nm rarely survive processing. Chidley et al. [149] has demonstrated a precipitous de-

crease in hole mobility with increased Al content in the AlGaSb system, this reduction

in mobility leads to a problematic increase in resistance. One solution was to etch

through the high resistance AlGaSb region and to use the GaSb to conduct current.

However, the doping levels in the GaSb layer are too low for this process to work, and

the calculated resistances of the Al0.40Ga0.60Sb and GaSb happen to be fairly close

in this instance. Any future iterations of this device family must be grown on more

optimal surfaces so as to suppress excess current. Additionally, the resistance issues

might be abated through a couple methods. First, utilizing a thicker Al0.40Ga0.60Sb

would reduce the resistance seen by the system as current travels to ground. Secondly,

a degenerately doped buffer of GaSb could be grown on the substrate. This approach

minimizes additional process development and utilizes the lower resistance of GaSb

thereby reducing spreading resistance. Alternatively, devices could be built in reverse

order but a suitable p-type contact would need to be utilized. Ni is a likely candidate

due to the proximity of the work function to the valence band edge of AlGaSb, which

addresses the issue of n-type regions through a high resistance p-region.
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Figure 5.4: Family of J-V curves for similarly sized devices in the LSG series. LSG-1
exhibits the best JP and PVCR, at 872 kA/cm2 and 3.05, respectively. LSG-2 and LSG-3
show modest PVCR and JP commensurate with their doping density, at 521 kA/cm2 and
356 kA/cm2. LSG-4 presents an interesting case, as no NDR is observed, but the doping is
only 1/5 that of LSG-3 indicating a promising candidate material system for a TFET.
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Figure 5.5: (a) Peak current scales with area for the 40% Al content LSG series. LSG-
TD3 shows variation with reduced area which is likely due to an underestimated area for
the shown devices.(b) VP decreases with area as expected, however LSG-TD2 and LSG-
TD3 show significantly higher VP relative to similarly sized LSG-TD1 devices. While VP
variation is expected, LSG-TD1 should have the lowest because it is the highest doped, the
large difference between the samples indicates there is likely a significant RS in LSG-TD2
and LSG-TD3.
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Figure 5.6: JP of 874 kA/cm2 was extracted from sample LSG-TD1, which was the highest
reported JP value for the InAs0.91Sb0.09/Al0.40Ga0.60Sb system reported [147]. Dopant
levels for both p and n-type may be pushed higher, but reaching a 10 MA/cm2 target is
questionable.
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were extracted from Gaussian fits to the histogram data. LSG-1 appears to exhibit the best
PVCR performance, which may be related to the different substrate.
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Figure 5.8: Family of I-V curves for LSG-TD1 show excellent current scaling area is
reduced.
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Figure 5.9: Current vs. area plot for LSG-TD1 which shows excellent scaling with area.
PVCR is also plotted vs. area, and appears to have a peak which may be due to a number
of leakage paths.
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Figure 5.10: Comparing the 2θ/ω profiles for LSG-1 and LSG-2, one can see some differ-
ences. Notably the substrate peak is shifted from the (400) peak location due to the 0.35◦

miss cut. LSG-1 also exhibits sharper peaks for InAs0.91Sb0.09, as well as more pronounced
fringes, and may have a slightly lower Al content than LSG-2 due to the shoulder instead
of a peak to the right of the GaSb peak.
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Figure 5.11: Figure of merit plot for the 40% Al LSG series samples with an exponential
fit showing that a 10 MA/cm2 JP for this material system may not be possible.
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Figure 5.12: This SIMS plot for LSG-TD1, shows exceptionally high C levels while hitting
the Si doping target. This shows an excellent junction profile, despite the uncertainty in
the doping measurement.
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5.3 Other Al content samples

Samples in this section are inspired by the modeling work of Knoch and Appenzellar

[35] to show how an AlGaSb based system could prove useful for both p and n-type

TFETs. LSG-TD5 and LSG-TD6 were designed to have the same N∗ as LSG-TD3,

but would vary Al content to 20% and 60% from the 40%. Utilizing the lowest doping

levels should create a wider spread between devices to make any effects due to band

gap more apparent.

5.3.1 20% Al content sample

In theory, reducing the Al content of the LSG series didoes will bring the system

closer to a broken gap (BG) arrangement and will result in increased JP relative to

the trends shown in prior sections. Fig. 5.13 shows a schematic of LSG-TD5, where

the Al0.40Ga0.60Sb region has been replaced with a 20% Al content region. However,

in this instance increasing the Ga content appeared to reduce the JP for the sample.

InAs0.91Sb0.09: Si

InAs0.91Sb0.09

Al0.20Ga0.80Sb: Be

GaSb

60 nm

3 nm

30 nm

Substrate

5×1019 cm−3

uid

5×1018 cm−3

Figure 5.13: Schematic of the film stack for LSG-TD5.

From Fig. 5.14 it can be seen that LSG-TD5 I-V scales with area. Also evident

is that PVCR does not venture far from 1.01, this may be due leakage paths in (100)

crystals that are mitigated by small miscuts as shown by the differences between

LSG-TD1 and the remaining samples of this set. PVCR does increase with reduced

area, but due to the issues affecting VP , it does not stray far from 1.0. Spreading

resistance is likely high due to the 30 nm Al0.20Ga0.80Sb, and is causing the reduced

PVCR performance. Considering the very large VP values shown in Fig. 5.15, the

reduced PVCR for LSG-TD5 is likely due to RS.
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Figure 5.14: LSG-5 displays scaling with area, however due to undercut during wet etch
most devices were etched away.

93



Chapter 5. Large Stagger Gap/Type II Heterojunctions

10-10 10-9

0.5

0.6

0.7

0.8

0.9  VP LSG-TD5

Vo
lta

ge
 (V

)

Area (cm2)

Figure 5.15: LSG-TD5 VP values are very large, indicating the presence of large resistance
values vs. excess current being the source of the small PVCR values.

Data from the 20% Al content InAsSb/AlGaSb samples indicate a reasonable large

JP , but large series resistance as evidenced by large VP in Fig. 5.15. A respectable

JP of 471 kA/cm2 was extracted for LSG-TD5 from the histogram in Fig. 5.16(a), a

value less than LSG-TD2 the equivalent 40% Al content sample. This result is coun-

terintuitive as the system should be nearly a broken gap diode at 20% Al, however

considering the how few experiments have utilized this combination it is not surpris-

ing. Likely there are doping activation and optimization issues at play for this sample.

JV extraction for LSG-TD5 was considered uneccesary, as the PVCR values hovered

near 1.0 and are therefore uninteresting. A median PVCR of 1.01 was extracted from
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Figure 5.16: (a) A JP of 471 kA/cm2 was extracted from sample LSG-5, which is lower
than anticipated and may be due to calibration differences between 20% and 40% Al content
epitaxy at the grower. (b) A median PVCR of 1.01 was extracted from sample LSG-5,
indicating significant excess currents.

Fig. 5.16(b), with a meager maximum of 1.10. Low PVCR values indicate that the

sample has a very large excess current, or, more likely, a combination of spreading

and series resistance. LSG-TD5 is compared to the rest of the sample set in Table 5.2,

and shows the lower JP relative to LSG-TD2.

Table 5.2: LSG summary table with 20% Al sample

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

LSG-TD1† 4 C 5 Si 2.2 2.1 874 126 594 139 1.48 3.05 0.19
LSG-TD2‡ 5 Be 1 Si 0.83 3.5 552 54 498 62 1.01 1.15 0.01
LSG-TD3‡ 5 Be 0.5 Si 0.45 4.7 356 76 349 69 1.03 1.19 0.03
LSG-TD4‡ 5 Be 0.1 Si 0.10 0.1 N/A N/A N/A
LSG-TD5‡ 5 Be 0.5 Si 0.83 3.5 471 93 1.01 1.10 0.005

† 0.35◦ offcut to < 111 > GaSb Substrate
‡ < 100 > GaSb substrates
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5.3.2 60% Al content sample

Sample LSG-TD6 was to show the impact of decreasing the band overlap in the

InAsSb/AlGaSb system. Fig. 5.17 shows a change in Al content while maintaining

target doping levels. However, minimal data was retrieved from the sample. 200+

InAs0.91Sb0.09: Si

InAs0.91Sb0.09

Al0.60Ga0.40Sb: Be

GaSb

60 nm

3 nm

30 nm

Substrate

>5×1019 cm−3

uid

5×1018 cm−3

Figure 5.17: Schematic of the film stack LSG-TD6.

devices were measured for LSG-TD6, but only four demonstrated tunneling charac-

teristics. Therefore, only minimal qualitative analysis for the sample was realistic.

Data from the 60% Al containing InAsSb/AlGaSb sample indicates a lower JP than

that of LSG-TD3 and LSG-TD5, in the ball park of 284 kA/cm2. Only devices in

row three, 4.9×10−9 cm2 mask designed area, exhibited NDR which indicates that JP

may be over estimated. Additionally, only one PVCR value exceeded 1.1. Table 5.3

summarizes the results from LSG-TD6 and constrasts the device with the rest of the

LSG series. It can be seen that by increasing Al content, a reduction in JP can be

expected. From Fig. 5.18 some slight relaxtion may be occuring in the InAs0.91Sb0.09

region due to widening peak near that of the substrate and is likely not the source for

low device yield. LSG-TD6 exhibits characteristics of a spreading resistance limited

system, similar to other devices tested by the group. In those cases, the resistance

of the transit region between devices was large enough to completely mask tunneling

characteristics. This increased resistance was overlooked during device design, but is

in line with the findings of Chidley et al. [149] who showed the precipitous decrease

in hole mobility in AlGaSb with increasing Al content.

However, PVCR near 1.01 is generally considered questionable for reporting pur-
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Table 5.3: Summary of LSG series results

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

LSG-TD1† 4 C 5 Si 2.2 2.1 874 126 594 139 1.48 3.05 0.19
LSG-TD2‡ 5 Be 1 Si 0.83 3.5 552 54 498 62 1.01 1.15 0.01
LSG-TD3‡ 5 Be 0.5 Si 0.45 4.7 356 76 349 69 1.03 1.19 0.03
LSG-TD4‡ 5 Be 0.1 Si 0.10 0.1 N/A N/A N/A
LSG-TD5‡ 5 Be 0.5 Si 0.83 3.5 471 93 - - 1.01 1.10 0.005
LSG-TD6‡ 5 Be 0.5 Si 0.83 3.5 285 - - - 1.01 1.01 -

† 0.35◦ offcut to < 111 > GaSb Substrate
‡ < 100 > GaSb substrates

poses. It is very likely that the spreading resistance of the 60% Al sample is masking

the results. Inspection of the data would indicate a large spreading resistance which

may be able to be designed out of future growths. One method for improved results

would be to grow a degenerately doped contact layer below the Al1−xGaxSb, a rough

calculation of the resistance indicates that the substrate and ptype epitaxy are of

similar resistance, a highly doped contact region could mitigate problems associated

with this resistance. Alternatively, the device could be grown upside down on an

InAs starting substrate, creating a low resistance path to ground. A respectable JP ,

285 kA/cm2, was estimated for this sample, though SIMS and additional data points

are necessary to confirm this JP and N∗.

5.3.3 %Al Content Conclusions

Comparing results from Table 5.3 it can be seen that LSG-TD2 exceeds the per-

formance of both LSG-TD5 and LSG-TD6. LSG-TD5 and LSG-TD6 do follow the

trend of increased stagger yielding greater JP , however LSG-TD2 does not fit with

this result. Because Al0.40Ga0.60Sb is a much more common film, [35] it is probable

that achieving target active doping levels is better known and that LSG-TD5 and

LSG-TD6 have lower active levels resulting in lower JP . In addition the VP values

were generally over 0.5 V, which indicates a high RS affecting the devices.

HRXRD indicates the change in Al content between samples as well as the presence

of the misscut in LSG-TD1 as seen in Fig. 5.18. Only LSG-TD6 appears to show any
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Figure 5.18: HRXRD of the LSG series samples. Peaks due to the Al content are shown to
migrate to smaller angles commensurate with the larger lattice constant of AlSb compared
to GaSb and InAs. LSG-TD6 appears to show some additional relaxation compared to the
other samples, as evidenced by the broadness around the substrate peak.
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Figure 5.19: Figure of merit plot of the full LSG series. LSG series data exhibits a higher
JP than InAs for a given doping density which is further confirmation of the hypothesis
that JP can be increased through bandgap engineering. Notably, Al content also affected
JP indicating additional band gap engineering potential for this system.

signs of relaxation as seen by the broader shoulder for InAs0.91Sb0.09 near the substrate

peak.

5.4 Large Stagger Gap Conclusions

This chapter has demonstrated doping density and band gap variations to those

demonstrated by the SSG systems in prior sections. A larger stagger gap of ≈0.08 eV

was introduced to further illustrate the relationship between JP and N∗. Further-
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more, the doping density of the structure was then varied from 1×1018 cm−3 to

2.2×1019 cm−3 to build a trend line that could be utilized to extrapolate device per-

formance. The highest doped sample, LSG-TD1, was found to have a maximum

PVCR of 3.05 and JP of 874 kA/cm2. It should be noted that this sample was grown

on an miscut wafer and that the Al0.40Ga0.60Sb region was 10× as thick as the remain-

ing devices in the set. It is believed that this substrate and film combination lead

to better overall device performance through reduced excess current and RS. LSG-

TD2 was found to have JP of 552 kA/cm2 and maximum PVCR of 1.15, the narrow

Al0.40Ga0.60Sb region likely contributed to the reduced PVCR. LSG-TD3 was found to

have JP of 356 kA/cm2 and maximum PVCR of 1.19, likely this sample suffered from

the same RS issues as LSG-TD2. LSG-TD4 did not show tunneling characteristics,

and illustrates the fine line between having a tunneling device and low breakdown

voltage diode. LSG-TD4 shows how a lighter doped sample may be prove useful for

future TFET applications as carrier concentration needs a relatively modest change

to begin exhibiting tunneling behavior. As such the FOM plot Fig. 5.19 is expected

to show a sharper drop past LSG-TD3.

Variations to the Al0.40Ga0.60Sb layer were then presented. Al content was changed

to 20% and 60% from 40% in the prior series. Fig. 5.18 shows that all the samples

exhibit reasonably good crystallinity, with some slight relaxation likely for the 60%

sample. It was found that there is a relation between the Al content and JP , but the

40% sample exhibited the highest JP . LSG-TD5 and LSG-TD6 were shown to exhibit

JP values of 471 kA/cm2 and 285 kA/cm2, respectively. This difference is very likely

due to active doping levels, due to the growths being non-calibrated. Doping content

is likely at the desired levels, but not as active as those in the 40% sample. Maximum

PVCR was found to be 1.09 and 1.01 for LSG-TD5 and LSG-TD6, indicating excess

current or RS influence. Likely, the samples were mostly plagued by RS due to the

narrow AlGaSb region.
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Samples from this chapter further illustrate the relationship between effective

bandgap and JP . From Fig. 5.19 it is apparent that LSG samples exhibit greater

JP at equivalent doping density when compared many of the other material systems

known to have Esaki diodes. These results lead into Chapter 6 where the effective

bandgap becomes negative due to broken nature of the band alignment. Results from

the 20% and 60% samples were not quite in line with expectations, but that may be

due to a doping activation and optimization issues resulting in lower effective doping

for those samples than for the comparable 40% sample.

Results from the 40% Al content work has been cited by Desplanque et al. [147]

to show additional large stagger diodes. Those samples have shown JP in excess of

1 MA/cm2, but no doping density was listed, nor are the contact areas for the mesas

straight forward to consider. Future papers by the group may prove more informative

and may push JP further.
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Broken Gap Type III Heterojunctions

6.1 Introduction

Chapters 4 and 5 investigated the effects of increasing band gap stagger on the JP for

a given Esaki diode. Broken gap heterostructures are expected to provide the greatest

JP due to extended overlap of the valence and conduction bands as exaggerated in

Fig. 6.1. This chapter studies how a broken gap/type III heterojunction affects JP

over an effective doping range greater than prior reports [57, 132, 150].

Prior to this work, few reports had investigated the tunnel properties of a single

barrier tunnel junction. Collins et al. [57], Ganjipour et al. [132], and Luo et al.

[150] investigated this junction. However Luo and Collins had only utilized low de-

generate doping levels, with devices under 100 kA/cm2. Whereas Ganjipour studied

InAs0.91Sb0.09/GaSb nanowires, and N∗ calculation is not straight forward in such

cases nor are the devices quite the same as InAs/GaSb. This work greatly expands

the knowledge for Broken Gap (BG) Esaki diodes.

This chapter investigates several factors affecting JP in the InAs/GaSb Esaki diode

system. First,the effect of N∗ on JP is explored from 9.1×1017 cm−3 to 6.7×1018 cm−3,

a range significantly higher than prior reports. Next δ-doping is investigated to de-

termine if JP can be pushed higher when a system is temperature limited. Following

that work, a second series of BG devices was grown at an alternative grower to ensure
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repeatability and to push doping density up to 2.3×1019 cm−3. Lastly, the impact of

i -layer design on JP are tested through thickness and material changes.

BG Esaki diodes were found to exhibit higher JP than previously tested devices,

with the second series exceeding 3 MA/cm2. Additionally, i -layer material and thick-

ness were found to affect PVCR and JP for measured systems, with the unsurprising

result of increased PVCR and lower JP as i -layer thickness is increased.
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Figure 6.1: Band diagram courtesy of Mathieu Luisier. Type III/broken gap heterojunc-
tions are thought to eliminate the barrier to tunneling. From above it can be seen that InAs
and GaSb show a broken gap behavior, which will allow for greater tunneling currents.

6.2 Broken Gap Diodes: Series 1

6.2.1 BG Series 1 Design

The samples in this study were grown by molecular beam epitaxy atop p+ GaSb sub-

strates. Fig. 6.2 illustrates the schematic diagram of the device layers, which consists

of 300 nm of p+ GaSb (Be-doped, from 1×1018 cm−3 to 1×1019 cm−3), a 3 nm thick
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nominally intrinsic InAs layer, and a 50 nm n+ InAs (Si-doped, 3×1019 cm−3). All

growths were carried out in a DCA solid source molecular beam epitaxy (MBE) sys-

tem using elemental Ga and In metals in standard effusion cells and Sb and As valved

cracker sources set to produce dimeric group V species. Si and Be were used as n-and

p-type dopants respectively which were calibrated using secondary ion mass spec-

troscopy (SIMS) technique. Epi ready p-type GaSb <100> substrates were mounted

in In-free holders and introduced into the growth chamber after an initial outgas in

the load lock at 150◦C. Growth rates were determined using the RHEED oscillation

technique on native substrates. Growth rates of 0.5 ML/s and 0.3 ML/s with V/III

ratios of 5 and 7 were used for GaSb and InAs respectively. Substrate thermocou-

ple temperatures were calibrated using a combination of pyrometer and KSA bandit

system. Oxide desorption was monitored exclusively with RHEED. Oxide desorption

from GaSb substrates was observed to occur at substrate temperatures of 530◦C.

GaSb layer growth occurred at 500◦C while the InAs layers were grown at 480◦C .

Device fabrication closely follows a process reported by Pawlik et al. [29] but

with differences in contact metal and contact definition. 200 nm of Mo is blanket

deposited, via DC magnetron sputtering, on the sample surface. A negative ebeam

resist, nLOF, is diluted in PGMEA (≈1:1 by mass) and masks the mesa contact

during a SF6-based dry etch which to defines the Mo patterns ranging from 100 nm

to 20 µm squares. Mesas are etched in a 20:1 citric acid: peroxide solution for 60 s.

Both the contact area and undercut are measured over a variety of device sizes and

locations to estimate the device area across the sample to increase the precision of JP

extracted values. This undercut is estimated to be approximately 100 nm. Samples

are then coated with a bisbenzocyclobutane ILD which acts to passivate devices and

support a large level 2 Mo contact pad.

Current-voltage characteristics (I-V ) were obtained via a Keithley 4200 Semicon-

ductor Parameter Analyzer. As in Romanczyk et al. [27], a large area Esaki diode
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(>1000 × the measured junction area) is used as a virtual ground. The ground plane

was designed to fully surround the devices to minimize any effects of current crowding;

this is critical for measuring high current tunnel junctions as it minimizes unwanted

resistive-based latching that obscures the negative differential resistance. Data was

collected and processed to extract the JP from a histogram. HRXRD of the samples

was performed on a Bruker 8 system to confirm film stack. HRXRD profiles were

compared against film stacks modeled in LEPTOSTM software from Bruker which

explained possible sources for variation from the design.
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Figure 6.2: (a) Schematic for highest doped BG sample, BG-TD1. (b) Schematic for
BG-TD2 with lower doping levels. (c) Schematic of the film stack for BG-TD3 which was
designed to doped higher than previous InAs/GaSb reports [57, 132]. (d) A repeat growth
of BG-TD3, after the former shattered prior to fabrication.

6.2.2 BG Series 1 Materials Analysis

HRXRD and SIMS measurements were taken from the BG series diodes. XRD pro-

vided an extra peak between GaSb and InAs, indicating the presence of an additional

material. Using LEPTOSTM modeling software, there was an indication as to the

composition of the additional peak material. SIMS measurements indicated that Si
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Figure 6.3: ω/2θ curves for the InAs/GaSb tunnel diodes exhibit an additional sharp peak
near the GaSb line. This peak may be indicative of a variation in film composition for the
300 nm GaSb region.

doping was, generally, higher than targeted.

Figure 6.3 exhibits secondary peaks near the GaSb substrate peak, indicating

that the GaSb epitaxy layers lattice constant is smaller than designed (right shifted).

Lacking a symmetric peak to the left of the GaSb peak would indicate that this feature

is not a side lobe. Figure 6.4 displays the expected ω/2θ scan for the designed film

with an overlay of a film containing a small percentage of As incorporation consistent

with the overpressure of As during growth. Remarkably, the inclusion of the As in

the model fits quite closely with the measured data, hinting that the sample likely
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includes As therefore shifting the band edge alignment at the junction. A quick linear

interpolation would indicate that the bands now are near perfect alignment, increasing

the band offset 80 meV to 0 eV. Each peak shifts with increased Be concentration,

which behaves similarly to reports of Be in super lattice structures [18] at similar

concentration levels. Thereby indicating that XRD could be used as a nondestructive

means to determine dopant concentration in tunnel diode applications.

SIMS provided doping density values for BG-TD1, BG-TD2, and BG-TD3. From

Fig. 6.5 it can be seen that the doping profile is reasonably abrupt for both Si and Be.

Doping values for Si were found to be ≈3×1019 cm−3 for all three samples. Be concen-

trations were shown to vary, roughly as designed at 2×1019 cm−3, 5×1018 cm−3, and

1×1018 cm−3 for BG-TD1, BG-TD2, and BG-TD3 respectively. These doping concen-

trations lead to extracted values of 6.67×1018 cm−3, 3.33×1018 cm−3, 9.09×1017 cm−3

for N∗. These doping levels are higher than previous reports [57, 132], and expected

to exceed the JP of equivalently doped LSG and SSG devices.

TEM analysis was also performed on BG-TD1. There were no detectable defects

measured during analysis. HAADF scans showed an InSb-like interface between the

InAs and GaSb regions which may have an effect of lowering VP [151].
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Figure 6.4: Assuming a 5% As incorporation into the GaSb film, LEPTOS was used to
predict a ω/2θ curve. Interestingly, the same peak appears in simulation as was exhibited
by each sample. Implying that there was As incorporated into the film.
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Figure 6.5: SIMS was performed on the samples to determine dopant levels present within
the sample. BG-TD1, BG-TD2, and BG-TD3 were found to have Si and Be doping levels
near the targeted values. Detectable levels of As were found to be within the GaSb film
region.
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Figure 6.6: TEM analysis of the TD7A junction shows an InSb like interface and was
found to be largely defect free.
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6.2.3 Broken Gap Series 1 Electrical Analysis
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Figure 6.7: Family of I-V curves for BG-TD1 show current scaling and a very clear NDR
region.

Many devices across each of the three samples were tested, generally 200 or more

to provide a sufficient population for JP extraction. Figure 6.7 shows the typical

diode characteristics with scaling, with large device areas a latch characteristic is

present indicating a significant contribution from series resistance. As devices scale,

this resistance diminishes. The device size at which these effects become negligible is

typically larger for lower current devices. The latching phenomenon created by large

RS, became less prominent as device area decreased below 1 µm2. Characteristic
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Figure 6.8: IV , IP , and PVCR vs. Area for BG-TD1 shows current scaling with area and
the relatively stable range for PVCR across device sizes.

curves for the three BG samples in this study are exhibited in Fig. 6.9. As expected,

JP increased as the Be doping shifted from 1018 cm−3 to 1019 cm−3. BG-1 exhibits a JP

of roughly 220 kA/cm2 which is 5× greater than the numbers reported by Collins et al.

[50] and Ganjipour et al. [132]. Increasing Be doping in GaSb to 5×1018 cm−3 results

in a 2.5× improvement in JP . Sample BG-3 exhibits the largest JP , 2.2 MA/cm2, of

any reported tunnel diode [28]. It is interesting to note the increase in PVCR with

increased doping, which is atypical of Esaki diodes with such large JP values. Usually

the PVCR value peaks at much lower level of doping, indicating that this structure

could still see improvements to JP with even greater doping levels. Over 200 devices
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Figure 6.9: Representative I-V curves for similarly sized devices from the BG Series 1
diodes.

were tested per sample, allowing the authors to extract the JP from the histograms

shown in Fig. 6.10 as well as the median PVCR from Fig. 6.11. Table 6.1 summarizes

the values extracted from the characteristic curves of the devices shown in Figure 6.9.

Relative to the InxGa1−xAs homojunction system, the InAs/GaSb BG system

exhibits decreased sensitivity to doping for tunnel current, while maintaining signifi-

cantly higher currents densities. A TFET might be able to attain an output current

of 100 MA/cm2 if performance translates from the In0.53Ga0.47As TFET systems to

date [8]. However, the slow decrease in current for the change in doping level may

make the BG system a less ideal candidate for future TFET systems.
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Figure 6.10: JP histograms for BG series 1 diodes from which 2.2 MA/cm2, 552 kA/cm2,
and 212 kA/cm2 JP values were extracted for BG-TD1, BG-TD2, and BG-TD3.

6.2.4 BG Series 1 Summary

The author has reported BG tunnel diodes with a record peak current density of

2.2 MA/cm2. These diodes show the potential for the BG heterojunction systems to

meet the requirements placed on TFETs to replace CMOS. At this point, it is unclear

if As incorporation into the GaSb layer was detrimental to the final output current.

Additional growths would be required to decouple this information on the FOM plot.

One sample would utilize the same growth conditions but at doping levels similar to

the Collins papers [50, 57], while the other would have to repeat the highest doped
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Figure 6.11: From the histogram of PVCR values, there appears to be a bimodal distri-
bution of PVCR as shown by the two peak fits. It possible that there are processing factors
in play that would cause such a characteristic to appear.

sample while excluding As from the GaSb lattice. It is the opinion of the author that

the InAs/GaSb BG system can likely exhibit JP near 10 MA/cm2, since the both Si

and Be dopants can exceed 1020 cm−3 within their respective layers [47, 144].

Table 6.1: Broken Gap Series 1 Summary

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

BG-TD1‡ 2 Be 1 Si 0.67 3.87 2200 337 2200 139 1.48 3.95 0.19
BG-TD2‡ 0.5 Be 1 Si 0.33 5.48 552 54 498 62 2.45 3.1 0.11
BG-TD3‡ 0.3 Be 3 Si 0.27 6.06 212 12.3 136 28.8 1.71 1.83 0.06
BG-TD4‡ 0.1 Be 1 Si 0.09 10.5 172 16.6 109 30.5 1.63 2.12 0.27

‡ < 100 > GaSb substrates
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6.3 i -layer Series 1

6.3.1 BG i -layer Series 1 Design

Following the results from the previous section, the importance of the i -layer was

investigated. Collins et al. [57] had shown a twofold increase in JP when doubling

the width of the i -layer. This section investigates the changes in the InAs i -layer

thickness. Fig. 6.12 displays the designed changes to InAs thickness in BG-TD5 and

BG-TD6. By comparing 0 nm InAs to 6 nm InAs, a relation for JP and PVCR is

likely to emerge. Removing the i -layer may increase the JP by increasing E while

reducing PVCR through increased leakage paths.
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InAs

GaSb: Be
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50 nm

0 nm
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1×1019 cm−3

uid
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(a) BG-TD5
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(b) BG-TD6

Figure 6.12: (a) Schematic of the film stack for BG-TD1 which was designed to doped
higher than previous InAs/GaSb reports [57, 132]. (b) Schematic for BG-TD2 with higher
doping levels. (c) Schematic for highest doped BG sample, BG-TD3. (d) A repeat growth
of BG-TD1, after the former shattered prior to fabrication.

6.3.2 BG i -layer Series 1 Materials Analysis

HRXRD 2θ/ω measurements were taken from samples BG-TD5 and BG-TD6 and

compared to BG-TD3. Slight differences in the peak location for the grown GaSb film

appear, and may create marginal differences between samples. From Fig. 6.13 BG-

TD5 closely resembles BG-TD3, while BG-TD6 would appear to have less As present

in the GaSb layer. Otherwise, the samples appear to exhibit excellent crystallinity

which will minimize the impact of defects on excess current.
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Figure 6.13: HRXRD of samples BG-TD5 and BG-TD6 compared against BG-TD3 show
slight differences in the 300 nm film which are likely due to As remaining in the chamber
following flux measurements.

Comparing SIMS results between BG-TD3, BG-TD5, and BG-TD6 shows that

the origin for higher JP in BG-TD3 is the higher than intended doping. SIMS was

not performed on BG-TD4 because the material that survived shipping was dedicated

to fabrication. The i -layer appears to be on target for 0 nm, 3 nm, and 6 nm per

the designs shown in Fig. 6.12. From Fig. 6.14, N∗ values of 2.7×1018 cm−3 and

7.5×1018 cm−3 were extracted for BG-TD3 and BG-TD5 and BG-TD6.
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Figure 6.14: SIMS was performed on the samples to determine dopant levels and com-
pare i -layer thickness. N∗ values of 2.7×1018 cm−3 was extracted for BG-TD3 and
7.5×1018 cm−3 was extracted for BG-TD5 and BG-TD6.

6.3.3 BG i -layer Series 1 Electrical Analysis

Examining samples from BG-TD5 and BG-TD6 electrical performance is relatively

similar, but with some expected differences in PVCR and JP . From Fig. 6.15, it can

be seen that similarly sized devices exhibit low RS but BG-TD5 exhibits a slightly

lower JP and slightly higher PVCR than BG-TD6.

Current scaling in Fig. 6.16 further illustrates the differences between devices

created by changing i -layer thickness. Generally, BG-TD5 shows lower IP and IV
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Figure 6.15: Normalized JP histograms for InAs i -layer study showing the effect of InAs
thickness on JP . As expected, decreasing the i -layer thickness causes an increase in JP .
Confounding the results are the values from BG-TD3 and BG-TD4, which both have a 3 nm
i -layer but is likely related to growth system drift.

while having higher PVCR than BG-TD6. Higher PVCR for BG-TD5 is likely due

to a wider i -layer suppressing leakage paths. A wider i -layer also lowers the field

between the n and p regions, thereby reducing JP at value proportional to the i -layer

width [46]. As summarized in Table 6.2, increasing i -layer thickness to 6 nm shows

a 20% decrease to JP while providing ≈ 10% improvement to PVCR relative to no

i -layer. This result varies from those of Collins et al. [50], but may be due to an

interaction that exists when the i -layer encompasses the heterojunction. However,

depending on the design targets for tunneling devices, varying i -layer thickness for

InAs could be used to balance between PVCR and JP .

119



Chapter 6. Broken Gap Type III Heterojunctions

10-10 10-9 10-8 10-710-7

10-6

10-5

10-4

10-3

10-2

10-1

 IP  IV
 IP IV

C
ur

re
nt

 (A
)

Area (cm2)

0

1

2

3

4

5

6
PVCR  - BG-TD5
PVCR  - BG-TD6

PV
C

R
Figure 6.16: IV and IP vs. area for BG-TD5 and BG-TD6 show an increased JP when
reducing the i -layer thickness between the n and p regions, due to an increased electric field
allowing increased carrier tunneling. Similarly, PVCR increases when the i -layer thickness
is increased likely due to the increased screening that a wider tunnel region presents for
excess currents.

Comparing VP between BG-TD5 and BG-TD6 shows a slight increase for the 0 nm

i -layer sample. VP would be expected to be lower for the 0 nm i -layer sample, since

the fields are higher and should peak at lower voltages. When compared to 3 nm

i -layer, samples BG-TD3 and BG-TD4, BG-TD5 and BG-TD6 exhibit lower values

but all converge within 0.1 V. Differences may be due to time between sample growths

or any number of other process variations. However, the VP data shows that RS for

these BG samples is exceedingly low, but also indicates the need for better process
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control if fine control of JP and PVCR is required for device design.
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Figure 6.17: Typical minimum VP values for the InAs i -layer devices appear to fall
between 0.3 V and 0.2 V, indicating minimal influence from RS .

Observing Fig. 6.18, it appears that variations between growths can contribute as

much to differences in JP as do changes to the i -layer. While BG-TD4 firmly falls

between the 0 nm and 6 nm devices, JP for BG-TD3 is greater than all the other

devices. Unfortunately, the sample set for BG-TD4 was limited to a few small pieces

due to a fall prior to shipping and could not be investigated further. Generally, a

claim could be made that JP tracks with i -layer thickness with ≈7 kA/cm2 reduction

in JP for each nm of InAs added to the i -layer. However, variations in doping from

target values can quickly exceed the benefits of i -layer thickness variation.

121



Chapter 6. Broken Gap Type III Heterojunctions

100 150 200 250 300
0.00

0.28

0.56

0.84

JP = 212 kA/cm 2

 = 12.3 kA/cm 2

n = 131

JP = 172 kA/cm 2

 = 16.6 kA/cm 2

n = 91

JP = 160 kA/cm 2

 = 15.3 kA/cm 2

n = 182

JP = 200 kA/cm 2

 = 17.2 kA/cm 2

n = 198

N
or

m
al

iz
ed

 C
ou

nt
s

JP (kA/cm2)

 BG-TD3
 BG-TD4
 BG-TD5
 BG-TD6

Figure 6.18: Normalized JP histograms for InAs i -layer study showing the effect of InAs
thickness on JP . As expected, decreasing the i -layer thickness causes an increase in JP .
Confounding the results are the values from BG-TD3 and BG-TD5, which both have a 3 nm
i -layer but is likely related to growth system drift.

Similar to the JP results, PVCR for the 3 nm samples also deviated from the

trend seen between the 0 nm and 6 nm i -layer samples. BG-TD3 and BG-TD4 both

appear to have lower PVCR than BG-TD6 in Fig. 6.20 . Sources for lower PVCR

for the 3 nm samples are not clear, but are likely process related as BG-TD3 and

BG-TD4 were part of the initial sample set in which process parameters were still

being defined and tuned. BG-TD4 low PVCR may be related to early iterations of

the fabrication process which could leave small stringers of metal near the side wall

after metal 1 was lifted off instead of the etch back process which was developed later
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as seen in Fig. 6.19. Regardless, the differences in PVCR illustrate the challenges of

targeting specific values as i -layer and doping both affect JP and PVCR outcomes.

(a) Lift-off on BG-TD4 (b) Stringers on BG-TD4

Figure 6.19: Intitial lift off processes for L1 lead to stringers which would cause shorting
between the contact and the mesa. This creates additional shunt paths which reduce PVCR.

6.3.4 BG i -layer Series 1 Summary

Modifying i -layer thickness to affect JP and PVCR was found to be effective but with

a few caveats. Table 6.2 summarizes the i -layer results and shows that for devices

grown consecutively, i.e. under the same conditions, changing thickness between the

n and p regions can create differences in the JP and PVCR. However drift in system

calibration can negate the effects as seen by the BG-TD3 falling outside of the trend

that would have been created when looking at the results of the remaining samples.

Additionally, a change in doping will likely exert a greater influence on JP than slight

changes to i -layer thickness.

Table 6.2: BG i -layer Series 1 Summary

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

BG-TD3‡ 0.3 Be 3 Si 0.27 6.06 212 12.3 136 28.8 1.71 1.83 0.06
BG-TD4‡ 0.1 Be 1 Si 0.09 10.5 172 16.6 109 30.5 1.63 2.12 0.27
BG-TD5‡ 0.15 Be 1.5 Si 0.75 3.65 160 82 20.7 1.03 2.08 2.54 0.25
BG-TD6‡ 0.15 Be 1.5 Si 0.75 3.65 200 123 84 1.10 1.87 2.27 0.14

‡ < 100 > GaSb substrates
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 BG-TD5        1.87
 BG-TD6        2.08

Figure 6.20: Normalized JP histograms for InAs i -layer study showing the effect of InAs
thickness on JP . As expected, decreasing the i -layer thickness causes an increase in JP .
Confounding the results are the values from BG-TD3 and BG-TD5, which both have a 3 nm
i -layer but is likely related to growth system drift.
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6.4 Broken Gap δ-Doping Series

With BG-TD1 representing the maximum doping available from TSU, alternative

doping methods were investigated. It is well known that δ-doping is an effective

means for creating highly doped regions in a semiconductor [152, 153]. Under the

premise that δ-doping could increase JP , this series of BG devices investigates two

different doping schemes. Fig. 6.21(a) and Fig. 6.21(b) show film schematics for the

δ-doping series. BG-TD7 utilizes δ doping in the InAs region, only. Whereas BG-TD8

uses Si for δ-doping in both InAs and GaSb. Utilizing δ-doping in this manner should

create high JP BG Esaki diodes.
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(a) Schematic of BG-TD7
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(b) Schematic of BG-TD8

Figure 6.21: (a) Schematic of the film stacks for BG-TD7. This structure integrates δ-
doping into the design to push N∗ higher. (b) Schematic of the film stacks for BG-TD8.
This structure integrates δ-doping into both the n and p regions to push N∗ higher.

6.4.1 δ-doping Series Materials Analysis

Growth for samples BG-TD7 and BG-TD8 was based on growth rates established by

the previous experiments. BG-TD7 had five δ-doping planes at 0 nm, 10 nm, 20 nm,

30 nm, and 40 nm from the InAs i -layer. Each layer was run at the growth rate

established for the 3-4×1019 cm−3 Si doped InAs for 100 s. Similarly, BG-TD8 six
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δ-doping planes at -10 nm, 0 nm, 10 nm, 20 nm, 30 nm, and 40 nm from the InAs

interface at the previously mentioned growth rate. BG-TD8 utilized Si as a p-type

dopant in GaSb, and the growth rated for GaSb was measured as being roughly twice

that of InAs, so the δ-doped GaSb Si deposition rate is expected to be on the order

of 1≈2×1019 cm−3.

Samples BG-TD7 and BG-TD8 were fabricated using the techniques established

in prior chapters. A blanket Mo layer was deposited on the surface and contacts

were designated by negative e-beam resist. During area characterization it became

apparent that determination of the exact JP for these devices would be unlikely due

to the odd undercutting of the contacts as shown in Fig. 6.27(a). While JP may

be much higher for these samples, the roughness across the device surface provides

inaccurate area measurements.

6.4.2 δ-doping Series Electrical Analysis

Prior to level 2 metallization, samples BG-TD7 and BG-TD8 exhibited low resistance

I-V curves which indicated that the samples are highly conductive and would have

large JP . Figs. 6.22(a) and 6.22(b) show representative I-V curves for BG-TD7 and

BG-TD8. Both samples are highly conductive and BG-TD7 seems to show a very

high JP .

BG-TD7 and BG-TD8 both appear scale linearly with area, indicating that addi-

tional current paths do not dominate small area devices. BG-TD8 had wider variation

than BG-TD7, but generally scaled with area and significant deviations are likely due

to variation in exposure dose during lithography. In Fig. 6.23(a) the PVCR exhibits

a peak at device areas around 6×10−9 cm2, which indicates there may be a process-

ing artifact creating leakage paths for small devices. Fig. 6.23(b) also shows a slight

peak in PVCR between 8 and 9 ×10−8 cm2, with causes similar to those for BG-

TD7. Fig. 6.24 compares VP vs. area for BG-TD7 and BG-TD8. VP for BG-TD7
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Figure 6.22: Family of I-V curves for δ-doped BG series. L2 metal was required to
get samples to show NDR, indicating a current density over 100 kA/cm2 for the δ-doped
samples.

has a minimum near 0.25 V, indicating a low RS for the device. VP for BG-TD8 is

less clear, additional sample measurements would probably have a result similar to

BG-TD8 but due time constraints no further measurements were made.

As with previous sections PVCR and JP were extracted from Gauss fits to the

histogram data for BG-TD7 and BG-TD8. BG-TD7 exhibited a JP of 2.49 MA/cm2

and a maximum PVCR of 3.42, which is very competitive with the BG-TD1 for PVCR

and JP . However, inconsistent area under the contact and difficulty in calculating N∗

with δ-doped regions makes placing the samples on the figure of merit plot difficult.

However, based on equations 6.1 and 6.2 (1.2 and 1.3 from Schubert [153]), N∗ may

be considered to be ≈6.8× 1018 cm−3 for BG-TD7. Thus N∗ could be calculated as

2.5× 1018 cm−3 for BG-TD8. For BG-TD8, 432 kA/cm2 was extracted for JP and

a maximum PVCR was found to be 1.61. Lack of an intrinsic region combined with

an unknown Si activation in GaSb probably resulted in the reduced PVCR and JP

for this sample. Additionally, since few devices were tested(46 and 17 each), more

measurements would provide more accurate extracted values. δ-doping might provide
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(a) IV , IP , and PVCR vs. area for BG-TD7
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(b) IV , IP , and PVCR vs. area for BG-TD8

Figure 6.23: IV ,IP , and PVCR vs. area for δ-doped BG series shows a general current
scaling trend. PVCR for the samples seems to show a peak at larger device areas, which
indicates there may be some process related increased to JV .

a path to exceeding 10 MA/cm2 if processing issues can be overcome.

N2D = Nνgt (6.1)

N3D = (N2D)
3
2 (6.2)

6.4.3 δ-doping Series Summary

In this section BG-TD7 and BG-TD8 were measured and found to exhibit JP values

of 2.49 MA/cm2 and 432 kA/cm2, as well as maximum PVCR values of 3.42 and

1.61. These results, summarized in Table 6.3, indicate δ-doping may be on the path

to exceeding 10 MA/cm2, but a few processing issues would need to be addressed. Si

doping layers appear to have caused irregularities in etching as seen in Fig. 6.27, a

physical component of a dry etch might be less prone to such effects. Further analysis

of BG-TD8 would also beneficial in understanding if the reduced performance was

related to either the doping change, lack of i -layer, or some combination thereof.
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Figure 6.24: (a) VP vs. area for BG-TD7 showing a VP that should settle near 0.25 V. (b)
VP vs. area for BG-TD8 showing that is unclear where VP should settle without additional
data. VP for both samples indicates that the samples are not limited by RS

Despite the promise of δ-doping performance, the uncertainty of the device areas

and doping lead to a need for the more consistent bulk doping schemes seen in later

sections.

Table 6.3: δ-doped BG Diode Data Summary

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

BG-TD7‡ x Be x Si 0.68 3.83 2490 197 1173 428 1.9 3.41 0.06
BG-TD8‡ x Si x Si 0.25 6.32 432 44.8 236 104 1.31 1.61 0.17

‡ < 100 > GaSb substrates
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Figure 6.25: (a) PVCR exhibits a maximum of 3.42 and a mean of 1.9 which is consistent
with high doped BG samples being greater than lower doped samples. (b) With a maxmi-
mum PVCR of 1.61 and mean of 1.31, the δ-doping scheme used for BG-TD8 appears to
be less effective or in need of optimization. PVCR for both samples was extracted from a
Gauss fit to the histogram data, the small data set for BG-TD8 may skew the results.
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Figure 6.26: Histogram of JP for δ-doped BG series from JP values were extracted from
Gauss fits. BG-TD7 shows a JP of 2.49 MA/cm2 and BG-TD8 shows 432 kA/cm2. Etch in-
consistencies for the samples necessitated approximations for extracted values, development
of alternative etch processes such as RIE may alleviate this issue.
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(a) Micrograph of BG-TD7 (b) Micrograph of BG-TD8

Figure 6.27: As shown in the SEM micrographs (a) and (b), processing issues confound
area analysis by leaving uneven contacts and possible shorts to the mesa.
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6.5 Broken Gap Series 2

This section investigates samples grown by a commercial grower, IQE, in an attempt

to push doping levels higher than what had been available at TSU. Samples were

designed to be similar to BG series 1 devices, but with higher doping levels and on

<100> GaSb wafers miss cut 0.35◦ to <111>. Film schematics for the devices in

this section are shown in Fig. 6.28. Sample BG-TD9 from Fig. 6.28(a) is designed

to match the performance of BG-TD1 to ensure that BG device performance is not

growth system dependent. BG-TD10 and BG-TD11, Figs. 6.28(b) and 6.28(c), were

designed to exceed the doping levels of BG-TD1 with the expectation that BG-TD11

might approach 10 MA/cm2.
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Figure 6.28: (a) Schematic of the film stack for BG-TD9 which is supposed to match dop-
ing and performance levels of BG-TD1. (b) BG-TD10 film stack with target doping levels
higher which should result in JP over 2.2 MA/cm2. (c) BG-TD11 film stack representing
highest doping levels capable from IQE equipment, which should be close to 10 MA/cm2,
but is short of the N∗ of 5 × 1019 cm−3 which should guarantee 10 MA/cm2.
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6.5.1 Broken Gap Series 2 Materials Analysis

BG series 2 materials analysis included HRXRD, SIMS, and Raman spectroscopy from

which some interesting characteristics were notable. HRXRD ω/2θ plots supplied

by the vendor indicate excellent crystallinity for BG-TD9 and BG-TD10 as seen in

Fig. 6.29. Deviations from target doping levels is apparent from SIMS for series

2 as seen in Fig. 6.30. Additionally, there appear to be slight material differences

between series 1 and 2 that appear in both the HRXRD and SIMS profiles. Raman

spectroscopy was also performed on the BG series 2 samples, and exhibited a trend

that tracked with doping concentration.

HRXRD ω/2θ plots supplied by the vendor indicate excellent crystallinity for BG-

TD9 and BG-TD10 as seen in Fig. 6.29. HRXRD also showed there was significant

relaxation in BG-TD11. As such, the resultant InAs film will likely exhibit high

excess currents thereby masking any NDR behavior for BG-TD11. Notably, there

does not appear to be a secondary peak near the substrate peak which indicates the

IQE chamber is capable of removing residual As from flux measurements at a greater

rate than chamber 7 at TSU.

SIMS was performed by EAG labs to confirm doping concentrations within the

series 2 samples, a second sample from BG-TD1 was included to ensure that system

drift could be ruled out. SIMS results for all the samples from series 2 are shown

in Fig. 6.30 where it quickly becomes apparent that doping levels are not quite to

targeted levels. BG-TD9 is close to target Si and Be levels, with Si being low and Be

on the high side. BG-TD10 hits near 1×1020 cm−3 Si doping and 3×1019 cm−3 Be

doping, which is twice the intended Si doping and half the Be target and provides a

10% lower N∗ of 2.31×1019 cm−3. BG-TD11 appears to exceed 2×1020 cm−3 Si, but

the Be doping levels are nearly two orders of magnitude higher in the InAs region

than they should be. If BG-TD11 can show NDR, it will not be without significant

difficulty due to the broad doping profiles. However, BG-TD9 and BG-TD10 should
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Figure 6.29: HRXRD information provided by the vendor show minimal relaxation for
BG-TD9 and BGTD-10, while BG-TD11 appears to be fully relaxed. NDR should be
expected to appear for samples BG-TD9 and BG-TD10, however the relaxation in BG-
TD11 will be problematic for extracting tunneling characteristics. BG-TD11 will likely
perform similarly to SSG-TD3, being highly conductive but failing to show NDR due to
high defect density related excess current.

provide excellent electrical characteristics on either side of those of BG-TD1.

6.5.2 Broken Gap Series 2 Electrical Results

Samples for BG-series 2 were tested electrically and proved to be slightly more dif-

ficult to test than anticipated. BG-TD11 was highly conductive but did not show

any instances of NDR as was to be expected from the materials analysis in the previ-
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Figure 6.30: SIMS was performed on the samples to determine dopant levels present
within the sample. BG-TD9, BG-TD10, and BG-TD11 were found to have Si and Be
doping levels near the targeted values. As levels within the GaSb film region were near the
detection limit, and should not produce a satellite peak in HRXRD measurements.

ous section. Fig. 6.31(c) exhibits the typical I-V performance for BG-TD11 devices

which indicates that further investigation of the sample will be unlikely to yield usable

results. Samples BG-TD9 and BG-TD10 benefited from a brief Ammonium Hydrox-

ide etch(NH4OH:H2O at a 5:1 ratio) into the GaSb layer, the dual layer nature of

the film may have caused some unintended measurement problems. BG-TD9 perfor-

mance, shown in Fig. 6.31(a), was quite similar to that of BG-TD1 albeit with lower

JP due a lower N∗ value. Initial measurements of BG-TD10 exhibited low PVCR
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values, however post etch devices performed better as seen in Fig. 6.31(b).
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Figure 6.31: (a) BG-TD9 performed similarly to BG-TD1, per its design, but exhibited
lower PVCR. (b) BG-TD10 generally exhibited higher JP , but was also more difficult to
measure due to RS effects combined with the high JP . (c) BG-TD11 exhibited some kinks
in the I-V characteristic, but did not show NDR at any device size. There were likely too
many defects in this sample that masked the tunneling performance.

RS appears to be problematic for the high JP sample. VP performance of BG-TD9

was very similar to BG-TD1. BG-TD10 appears to be affected by RS in that it shows

VP values over 0.45 V down to the smallest measured devices.
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Figure 6.32: Typical minimum VP values for series 2 devices appear to fall between 0.3 V
and 0.2 V, with greater influence from RS for BG-TD10 due to the higher JP .

Table 6.4: Broken Gap Tunnel Diode Series 2 Summary

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

BG-TD9† 3 Be 1.5 Si 1 3.16 1860 175 726 214 2.62 3.49 0.33
BG-TD10† 3 Be 8 Si 2.14 10.5 3212 302 2867 532 1.18 2.24 0.05
BG-TD11† 3 Be 15 Si 2.5 2 - - - - - - -

† < 100 > GaSb substrates miscut 0.35◦ <111>

6.5.3 Broken Gap Series 2 Summary

This section reported BG tunnel diodes with a JP of 3.2 MA/cm2. Notably, p-type

doping can still be increased to reach the 10 MA/cm2 target [47]. These diodes show
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Figure 6.33: Current was shown to scale for both BG-TD9 and BG-TD10 with area.

the potential for the BG heterojunction systems to meet the requirements placed on

TFETs to replace CMOS and the results are summarized in Table 6.4. As incor-

poration into the GaSb layer does not appear to be detrimental to the final output

current. However, the change from <100> substrates to miscut substrates does ap-

pear to lower PVCR, and will be examined further in Section 6.6. Additionally,

BG-TD9 exhibited a JP of 1.8 MA/cm2 which is close to the target of 2.2 MA/cm2

based on the BG-TD1 sample. While BG-TD11 did not produce measurable tunnel

characteristics, the InAs/GaSb BG system can likely exhibit JP near 10 MA/cm2

since the both Si and Be dopants can exceed 1020 cm−3 within their respective layers

[47, 144].
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Figure 6.34: Normalized JP histograms for series 2 study showing 1.82 MA/cm2 and
3.21 MA/cm2 JP for BG-TD9 and BG-TD10. Based on the SIMS data, JP may be pushed
higher if both dopants can exceed 1×1020 cm−3.
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Figure 6.35: Normalized JV histograms for series 2 study. BG-TD10 shows wider variation
likely due to the additional processing requirements to etch into the GaSb layer.
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Figure 6.36: Normalized PVCR histograms for series 2 study showing that, after a peak
value, PVCR is reduced with increased doping as has been shown in multiple other material
systems.
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6.6 Series 1 to Series 2 Comparison

Broken Gap series 1 and series 2 were designed to push JP towards 10 MA/cm2,

but they also present an opportunity to compare growers. Because the samples were

grown in different reactors by different growers, a comparable device needed to be

built at both sites. BG-TD1 and BG-TD9 are the comparable devices between TSU

and IQE. From Fig. 6.37, current scaling is not an issue for any of the grown devices.

Further comparing the JP peaks in Fig. 6.38 reveals that both BG-TD1 and BG-TD9

are very similar and have overlapping σ.

HRXRD of both BG-TD1 and BG-TD9 were performed, as can be seen in Fig. 6.39.

Because of the miscut of 0.35◦ towards <111> on BG-TD9, the XRD plots were

aligned to the GaSb (400) peak to provide an easier comparison between the two

samples. It becomes immediately apparent that BG-TD9 lacks the satellite peak

that exists in the prior samples. A discussion with Prof. Droopad determined that

this peak was likely As incorporation due to As remaining following As flux measure-

ments. The excess As signal in Fig. 6.40 also confirms this theory.

Determining the origins for the performance difference between the two samples

warranted TEM analysis. Both samples were exceptionally defect free as seen in

Fig. 6.41(a) and Fig. 6.41(b). However, BG-TD1 was found to have an InSb like

interface between InAs and GaSb in Fig. 6.42, while BG-TD9 was found to have a

GaAs-like interface in Fig. 6.43. Studies by Khan-Cheema et al. [154] had shown a

that there can be a influence on VP and JP due to the heterointerface.
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Figure 6.37: IP scaled with area for the BG series 1 and series 2 diodes. The wider
spread in IP for BG-TD10 is due to the increased area variability from a two-step mesa
etch process.
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Figure 6.38: JP histograms for the Series 1 and Series 2 BG diodes. BG-TD1 and BG-TD9
were nearly identical and BG-TD10 exhibits JP greater than 3 MA/cm2.
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Figure 6.39: HRXRD of BG-TD1 and BG-TD9 samples indicates the presence of an
offcut as well as the lack of a secondary peak near the GaSb substrate peak for BG-TD9, a
correction of 0.7◦ was inclduded to align the GaSb peaks. The excellent crystal structure of
both samples would indicate that dislocation defects should have minimal impact on device
performance.

145



Chapter 6. Broken Gap Type III Heterojunctions

0 40 80 120
1014

1015

1016

1017

1018

1019

1020

1021  

C
on

ce
nt

ra
tio

n 
(c

m
-3
)

Distance from Junction (nm)

GaSb
(Be)

InAs
(Si)

Solid: BG-TD9
Dash: BG-TD1

As Conc 

10-11

10-9

10-7

10-5

10-3

10-1

A
s 

(a
.u

.)

Figure 6.40: SIMS of BG-TD1 and BG-TD9 samples indicates the presence of an As in
BG-TD1. Doping for BG-TD9 was slightly lower than that of BG-TD1
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(a) BG-TD1 TEM of heterointerface (b) BG-TD9 TEM of heterointerface

Figure 6.41: TEM micrographs of the heterointerfaces for both BG-TD1 and BG-TD9
exhibit no visible defects, indicating excellent crystal quality for both samples.

Figure 6.42: XPS during TEM analysis of the BG-TD1 junction shows an InSb like
interface and was found to be largely defect free.
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Figure 6.43: XPS during TEM analysis of the BG-TD9 junction shows an GaAs like
interface and was found to be largely defect free.
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6.7 GaSb i -layer study

Previous reports have indicated some sensitivity to i -layer design for Esaki diode

performance in the BG diode systems [50]. This section investigates the substitution

of the i -layer from InAs to GaSb. Fig. 6.44 shows schematics representing the devices

tested in this series. Changes with respect to BG-TD2 include: Te substituted for

Si as the n-type dopant, substrates are now on miss cut wafers, InAs thickness has

been slightly reduced, and the i -layer consists of GaSb. Te does not have the same

counterdoping problems as Si, but the dopings levels are not so high as to expect

dopant species to be much of an issue. Changing to miss cut wafers is theorized to

be better for epitaxy, but prior results from this study do not appear to exhibit any

impact due to this change. Thinner InAs should reduce the likelihood of problems

associated with critical thickness from appearing. Changing to GaSb from InAs in

the i -layer may affect performance due to the more extreme bending seen in GaSb,

but the tunnel region for the BG diodes is larger than the i -layer and may show little

or no impact on JP and JV .
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uid

5×1018 cm−3

(a) BG-TD2
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GaSb

GaSb: Be
GaSb

25 nm
3 nm
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1×1019 cm−3

uid
5×1018 cm−3

(b) BG-TD12

Figure 6.44: (a) and (b) Schematic of the film stacks for samples BG-TD2 and BG-TD12
compared in this study. Doping levels are targeted around an N∗ value of 1.5×1019 dopants
per cm3 which allows for the highest PVCR for a given diode JP .

At first glance current scaling in Fig. 6.45 illustrates that InAs and GaSb i -layer

devices perform similarly. However, further analysis will show some subtle but impor-

tant differences when changing i -layer material. PVCR and VP appear to be affected

by the change in i -layer, with both characteristics showing improvement. PVCR for

the GaSb i -layer tends to be greater and VP tends to be lower.
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Figure 6.45: BG-TD2 and BG-TD12 show excellent I-V scaling characteristics as seen
above for device areas from 2.5× 10−9 cm2 to 4× 10−8 cm2. Typical PVCR values for
BG-TD12 are greater than those for BG-TD2, while JP is lower. VP also appears to be
lower with the GaSb i -layer.

Examining IP , IV , and PVCR for BG-TD2 and BG-TD12 show excellent current

scaling in Fig. 6.46, with the exception of the smallest devices. The leftmost data

points are all from the 500 nm die, which must have been overexposed due to the

current exceeding that of much larger mask defined devices. Generally, PVCR appears

to increase as device sizes decrease for both samples until reaching the edges of the

process control window. Fig. 6.47 shows that both BG-TD2 and BG-TD12 exhibit

low VP values near 0.2 V, though BG-TD12 appears to have a lower VP floor than

BG-TD2. It is possible that the change in i -layer to GaSb was enough to cause a

slight shift in the electrostatics resulting in the lower VP value.

Observing Fig. 6.48, it appears that changing i -layer material can result in JP

changes as much as 40%, going from 552 kA/cm2 to 336 kA/cm2. Conversely, ob-

serving Fig. 6.49 indicates a roughly 40% increase in PVCR when changing to GaSb,

going from 2.31 to 3.49. Such a large difference was unexpected since the tunnel

region is effectively the same for both samples. JP , PVCR, and JV findings for this
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(b) IP , IV , and PVCR vs. area for BG-TD12

Figure 6.46: IV and IP vs. area for BG-TD2 and BG-TD12 show excellent scaling
characteristics with area. Additionally, the influence of GaSb as an i -layer can be seen
above.

section are summarized in Table 6.5. One additional growth integrating an i -layer

with both InAs and GaSb could provide interesting results.
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Figure 6.47: Typical minimum VP values for the series 2 i -layer devices appear to fall
between 0.3 V and 0.2 V, indicating minimal influence from RS .
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Figure 6.48: Normalized JP histograms for BG i -layer series 2 study showing the effect
of InAs and GaSb i -layer content on JP . Such a large change in JP was unexpected, as the
devices are essentially the same for modeling purposes.
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Figure 6.49: Normalized PVCR histograms for BG i -layer series 2 study showing the
effect of InAs and GaSb i -layer content on PVCR. PVCR was expected to increase slightly,
since the wider gap GaSb was expected to suppress excess current. However an increase of
nearly 50% was much greater than anticipated.
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6.8 Broken Gap Esaki Diode Conclusions

This chapter demonstrated the implementation of BG InAs/GaSb heterojunctions

on GaSb substrates and compares their performance. Pushing doping density in BG-

TD10 exhibited a max JP near 3.2 MA/cm2, well below 10 MA/cm2 but not out of

range. Results for the BG devices are summarized in Table 6.5

All samples in this chapter were designed to map changes in JP and PVCR with

respect to N∗ with the goal of approaching a 10 MA/cm2 JP . Fig. 6.50 plots the

change in JP vs. N∗ against prior reports and other material systems. Reaching

10 MA/cm2 is a real possibility if maximum doping levels are tested for this system

[47, 144].

Table 6.5: Broken Gap Tunnel Diode Summary

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

BG-TD1‡ 2 Be 1 Si 0.67 3.87 2200 337 2200 139 1.48 3.95 0.19
BG-TD2‡ 0.5 Be 1 Si 0.33 5.48 552 54 498 62 2.45 3.1 0.11
BG-TD3‡ 0.3 Be 3 Si 0.27 6.06 212 12.3 136 28.8 1.71 1.83 0.06
BG-TD4‡ 0.1 Be 1 Si 0.09 10.5 172 16.6 109 30.5 1.63 2.12 0.27
BG-TD5‡ 0.15 Be 1.5 Si 0.75 3.65 160 82 20.7 1.03 2.08 2.54 0.25
BG-TD6‡ 0.15 Be 1.5 Si 0.75 3.65 200 123 84 1.10 1.87 2.27 0.14
BG-TD7‡ x Be x Si 0.68 3.83 2490 197 1173 428 1.9 3.41 0.06
BG-TD8‡ x Si x Si 0.25 6.32 432 44.8 236 104 1.31 1.61 0.17
BG-TD9† 3 Be 1.5 Si 1 3.16 1860 175 726 214 2.62 3.49 0.33
BG-TD10† 3 Be 8 Si 2.14 10.5 3212 302 2867 532 1.18 2.24 0.05
BG-TD11† 3 Be 15 Si 2.5 2 - - - - - - -
BG-TD12† 0.5 1.0 0.33 5.48 336 79 117 44.7 3.43 4.47 0.63

‡<100> GaSb
†<100> GaSb 0.35◦ offcut to <111>

Over 2000 devices were tested between BG-TD1 through BG-TD12 samples. This

volume of testing created a large dataset from which values of JP , JV , and PVCR

were extracted and contrasted. This work demonstrates that broken gaps increase JP

for an equivalent doping density. Further enhancements to JP will have to be made

with larger broken gaps or higher doping. The remaining chapters will investigate

the performance of III-V Esaki diodes that have been integrated onto a Si platform

to demonstrate the viability of III-V devices integrated on Si in general, and III-V
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Figure 6.50: Figure of merit plot with data from all BG samples in this dissertation
overlayed with other reported tunnel diodes.

tunnel devices integrated on Si in particular.
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Chapter 7

Homojunction III-V Esaki Diodes on Si Substrates

7.1 Introduction

1 Tunneling devices are of renewed interest due to increased research of tunneling

field effect transistors (TFETs), a potential low power CMOS replacement technology.

Prior work by the authors [28, 126] has investigated the application of Esaki diode

properties to improve TFET design. Most reports around the In0.53Ga0.47As tunnel

devices focused on applications related to bipolar junction transistors (BJTs) [64–

66, 155] and photovoltaics (PVs) [63, 156, 157] and were typically grown by Molecular

Beam Epitaxy (MBE) on lattice matched InP substrates. Often, these devices are over

20 µm in diameter, designed to maximize peak current density (JP ), and only present

a few representative devices. As such, it can be difficult to predict the performance

range for a group of parallel processed tunnel diodes.

Concurrent to the investigation of low power devices, III-V on Si platforms are

widely reported for In0.53Ga0.47As on Si transistors as demonstrated by Lau et al. [12]

and Hill et al. [120]. While there are reports of In0.53Ga0.47As and other material

systems grown on a GaAs substrate, to the author’s knowledge, very few reports

1 Significant portions of sections 7.1,7.2, and 7.3 have been reprinted with permission from
P. Thomas, M. Filmer, A. Gaur, E. Marini, D. Pawlik, B. Romanczyk, S. L. Rommel, K. Ma-
jumdar, W. Loh, M. Wong, C. Hobbs, K. Bhatnagar, R. Contreras-Guerrero, and R. Droopad,
“Performance Evaluation of In0.53Ga0.47As Esaki Tunnel Diodes on Silicon and InP substrates,”
IEEE – Transactions on Electron Devices, c©2015 IEEE.
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exist on the integration of In0.53Ga0.47As tunnel diodes on a Si substrate. Low In%

content InGaAs Esaki tunnel diodes have been integrated on virtual Ge aspect ratio

trapping (ART) substrates [43], but other reports of III-V on Si Esaki diodes are

quite rare [156–158]. This work provides an extensive set of data directly comparing

an In0.53Ga0.47As control to one heterointegrated on a Si substrate.

Prior studies have pushed to maximize JP [28, 64–67, 126, 157], which is relatively

robust with regard defect assisted current mechanisms. However, valley current den-

sity (JV ) is sensitive to defect density [68], and can vary widely between devices.

Therefore to compare performance across different substrates the peak to valley cur-

rent ratio (PVCR) is a more appropriate metric as it captures both characteristics.

Per Fig. 7.1(a), the maximum PVCR correlates to a mid range JP between 10 and

90 kA/cm2, and device doping levels in this study were targeted accordingly. Thus,

utilizing changes in JV due to heterointegration on Si, this work measures relative

performance of In0.53Ga0.47As on Si to a control sample on InP and shows that, below

8.7 × 10−10 cm2, PVCR for both systems can be considered equivalent.

7.2 Experimental Procedure

Tunnel diodes for this experiment were designed to maximize PVCR to highlight dif-

ferences due to epitaxy on different substrates. Devices were designed to maximize

PVCR, which, for In0.53Ga0.47As, appears between 3.5 kA/cm2 and 62 kA/cm2 per

literature values in Fig. 7.1(a).[64, 66, 67] Doping levels for the devices were de-

termined using prior experimental and modeling work to map JP for In0.53Ga0.47As

systems [28, 62]. An effective doping, N*, value near 1.5×1019 cm−3(≈ 3× 1019 cm−3

of both n and p dopants) was selected, which would target a JP of 30 kA/cm2. Where

N∗ is defined by Eq (7.1):

N∗ =
NDNA

ND +NA

(7.1)
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Figure 7.1: (b) Schematic of the film stacks for samples InP-TD1 and Si-TD2. Doping
levels are targeted around an N∗ value of 1.5 × 1019 cm−3 dopants which allows for the
highest PVCR for a given diode JP . (a) Figure of merit (FOM) plot comparing published
values of JP against the PVCR reported or extracted for the In0.53Ga0.47As system. This
study targets JP values near 30 kA/cm2(circled),within range of the maximum PVCR values
expected for In0.53Ga0.47As devices. High defect density samples reduce PVCR through an
increase in the measured JV values.

c© 2015 IEEE

In this regime, PVCR is generally high and the impact of growth defects between

the two samples should be pronounced. JP may see a slight increase due to excess

current, but the sample is not expected to respond strongly to an increased defect

density. However JV and PVCR are expected to show a strong response with defect

density, as this region is dominated by excess current. High defect densities create

additional current paths, which will cause increased JV with respect to a sample with

lower defect density. [64–68, 126]

The samples in this study were grown by molecular beam epitaxy atop either

p+ (001) InP or 4◦ to <110> miscut (001) Si substrates. Figs. 7.1(b) and 7.1(c)

illustrate the schematic diagram of the device layers, which consists of 300 nm of

p+ In0.53Ga0.47As:Be (2.4×1019 cm−3), a 3 nm thick unintentionally doped region
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(uid) In0.53Ga0.47As layer, and a 60 nm n+ In0.53Ga0.47As:Si (2.4×1019 cm−3). The

growths on Si substrates include buffer layers that consists of GaAs, graded InAlAs,

and In0.52Al0.48As to achieve the lattice constant of InP. All growths were carried out

in a DCA solid source molecular beam epitaxy (MBE) system using elemental Ga

and In in standard effusion cells and As valved cracker sources set to produce dimeric

species. Si and Be were used as n-and p-type dopants, respectively, which were cali-

brated using electrochemical C-V and Hall measurements. Epiready substrates were

mounted in In-free holders and introduced into the growth chamber after an initial

outgas in the load lock at 150◦C. Growth rates and alloy compositions were cali-

brated using the RHEED oscillation technique and measured using x-ray diffraction.

The substrate temperature used for In0.53Ga0.47As active region growth on InP was

490◦C as determined using an optical pyrometer. For growth on the Si substrate, a

metamorphic buffer [120] is used to reduce defect density in the top In0.53Ga0.47As

active layers. This is achieved by using various layers to grade the lattice constant

along the growth direction allowing lattice matched growth of the top active layers.

The metamorphic buffer also helps to relieve the lattice mismatch generated strain

through defect formation and defect filtering [159, 160].

High resolution x-ray diffraction (HRXRD) measurements were performed on a

Bruker 8 system to confirm the film stack and to qualitatively measure differences

in film quality. A relation exists between full width half maximum (FWHM) and

threading dislocation defect density (TDD) for GaAs and GaAs on Si films [118]. In

principle, a similar relationship should apply for an In0.53Ga0.47As on InP (control) and

In0.53Ga0.47As on Si and would appear as differing peak widths. In addition to XRD,

atomic force microscopy (AFM) was utilized to measure the surfaces of InP-TD1 and

Si-TD2, as surface roughness can have a large impact on electrical characteristics.

Accurate JP determination requires known doping levels within the device. Sec-

ondary ion mass spectroscopy (SIMS) was performed to determine n and p doping
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Figure 7.2: (a) Device areas are taken across several die to attain a representative contact
area to increase the precision of the JP and JV data. (b) The sample is then rotated to a
steep angle, often 84◦, or higher, to measure the undercut in two perpendicular planes to
account for etch anisotropy. (c) To prevent the probe from shorting the contact to the mesa
wall, a second level metal and ILD must be used with these mesas to contact devices below
2 µm widths.

c© 2015 IEEE

densities within the sample. Carrier levels measured by SIMS in this study should

be sufficiently below solubility limits and are assumed fully active. Additionally, the

two samples were fabricated concurrently to ensure the greatest precision between

measurements.

Device fabrication generally follows the approach used in prior work [27–29, 68].

First, the sample surfaces are cleaned in a 10:1 H2O:HCl solution for 10 s. Then, a

200 nm thick layer of Mo is sputtered onto the sample. nLOF, diluted in PGMEA

(≈1:1) [138], and e-beam lithography in a Nabity driven LEO EVO 50 SEM define the

mesa and ground contacts. SF6-based reactive ion etching (RIE) removes the exposed
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Mo and leaves devices ranging from 1×10−2 µm2 to 4×102 µm2 mask defined areas.

A brief O2 surface clean is used to remove residual photoresist. A 20:1 citric acid:

hydrogen peroxide solution etches the sample for 75 s to form Esaki diode mesas.

Following mesa etch, contact area and undercut are measured by SEM for each size

on several die to give a mean device area per Figs. 7.2(a) and 7.2(b). Variability

for JP and JV values originate from differences in device area from the mean. Bis-

benzocyclobutane (BCB) is used as an inter layer dielectric (ILD) and planarization

layer as detailed by Pawlik et al. [29]. Level 2 contacts are then defined by e-beam

lithography and a lift-off process producing devices depicted in Fig. 7.2(c) so devices

as small as 1×10−2 µm2 can be manually probed.

Current-voltage characteristics (I-V ) are obtained via a Keithley 4200 Semicon-

ductor Parameter Analyzer. As in the work by Pawlik et al. [28, 29], a large area

Esaki diode (> 1000× the measured junction area) is used as a virtual ground. The

ground plane was designed to fully surround the devices to minimize any effect from

current crowding; this is critical for measuring high current tunnel junctions as it

minimizes unwanted resistive-based latching that obscures the negative differential

resistance. To ensure an accurate statistical set, data was collected from over 1000

devices on InP-TD1 and Si-TD2. PVCR, JP , and JV were extracted and corrected

based on the aforementioned area analysis. Statistical values were then extracted

from the sample set to determine the JP for the device.

7.3 Results

Device yield for both the control and the III-V on Si sample was high without any

notable differences between samples. Device sizes varied from mask definition across

die and between die by more than 5%, which will likely increase the variability of the

JV and JP extracted values. Most of the data presented represents mask defined areas

ranging from 0.25 µm2 to 400 µm2. Electrical measurements determined that InP-
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TD1 exhibited higher JP and PVCR characteristics than Si-TD2, a finding similar to

those of Freundlich et al. [157].

7.3.1 III-V on Si Materials Analysis

(a) Control sample (b) III-V on Si

Figure 7.3: AFM measurements were taken from both InP-TD1 and Si-TD2. (a) InP-
TD1 provided an expected smooth surface with RMS of 0.24 nm over the 4 µm2 area. (b)
Si-TD2 had regions of varying haziness, so roughness values were expected to vary across
the surface, and a RMS of 14.8 was measured over the haziest region.

c© 2015 IEEE

AFM measurements revealed a substantially rougher surface for Si-TD2 relative to

InP-TD1. InP-TD1, shown in Fig. 7.3(a), has a root mean sqaure (RMS) of 0.24 nm.

Measurements on Si-TD2 revealed wide surface variation. RMS values ranging from

8.2 nm to 14.5 nm, per Fig. 7.3(b), corresponded to the observed haziness of the

sampled regions. RMS roughness values have been shown to correlate well with

threading dislocation density (TDD) [136, 161], which will cause increased JV [68] for

Si-TD2. Additionally, surface roughness affects sample processing, e.g. irregular mesa

etch patterns and metal flakes that can short to the side of the mesa. These manifest

electrically as lower PVCR (short related) and JP (area related) measurements. As
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Figure 7.4: InP-TD1 and Si-TD2 appear to have similar doping levels. The broader slope
of dopants for Si-TD2 are, presumptively, related to knock-on effects due to the roughness
of the sample

c© 2015 IEEE

such, the author’s expect Si-TD2 to exhibit greater variability from device to device.

SIMS analysis revealed that total doping between samples was roughly equivalent,

but would seem to reveal some differences in the doping profile. Fig. 7.4 shows that

doping levels were nearly equivalent for both devices on either side of the junction. Si-

TD2 appeared to have a broad junction profile; however, due to the surface roughness,

the authors believe that knock on effects and the measurement angle caused the

relaxed dopant concentration profiles. However, if the junction profile is truly more

broad for Si-TD2 the authors would expect a reduced JP due to the lower electric field

between the n and p regions. Peak dopant values indicated concentrations of 2.5×1019

cm−3, Be, and 3.0×1019 cm−3, Si, for InP-TD1, and 2.4×1019 cm−3, Be, and 3.0×1019
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cm−3, Si, for Si-TD2. N∗ was calculated to be 1.36×1019 cm−3 and 1.30×1019 cm−3

for InP-TD1 and Si-TD2, respectively. As such, Si-TD2 was expected to exhibit

similar, but lower, JP to InP-TD1.

HRXRD scans in Fig. 7.5 exhibit excellent crystallinity for InP-TD1, and the

possibility of some relaxation in Si-TD2 per the broader In0.53Ga0.47As peak. Total

threading dislocation density was reported to be ≈7.6×109 cm−2 for Si-TD2 [68],

corresponding to higher defect assisted tunneling. Relaxation in the In0.53Ga0.47As

for Si-TD2 increases JV due to higher defect assisted tunneling contributing to the

total excess current. Mean PVCR values for Si-TD2 should approach that of InP-TD1

as device area is reduced and fewer defects contribute to the total excess current.

7.3.2 III-V on Si Electrical Results

Over 1000 diodes have been measured per sample to build a good statistical dataset

for extracting JP and JV . Fig. 7.6 and Fig. 7.7 present select I-V characteristics

for diodes on Si-TD2 ranging from 0.25 µm2 to 100 µm2 areas as mask defined.

Negative differential resistance (NDR) was clearly present at room temperature, and

the oscillations seen in the curves are a common artifact of the measuring equipment

commonly seen in other reports [27, 28, 43, 66]. The extent to which the samples

have been tested can be seen in Fig. 7.8 and Fig. 7.9, from which a few trends can

be observed. First, devices tested on InP-TD1 exhibit less variation than those on

Si-TD2, which indicates that fewer defects are present. Second, electrical data for

both samples shows excellent scaling with area. Any surface or other leakage paths

do not appear to affect JV as devices are scaled down, as neither system appears to

show a change in slope with smaller device areas. Third, InP-TD1 generally exhibits

a higher PVCR than Si-TD2 as seen in Fig. 7.10. InP-TD1 typically has a higher

PVCR around 10.6, whereas Si-TD2 is generally somewhere near 8.6 for PVCR, a

result similar to those of Freundlich et al. [157] and consistent with the modeling work
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Figure 7.5: ω/2θ scan of InP-TD1 and Si-TD2, comparing the difference in peaks. Si-TD2
exhibits a broader In0.53Ga0.47As peak, indicating the existence of a higher defect density
in the film.
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by Majumdar et al. [68]. Interestingly, devices with mesa areas below 3×10−9 cm2

begin to show an increased overlap of the PVCR range. This may be due to devices

approaching a critical size under which defects play a diminished role in JV .

The authors surmise that the origins of the differences in JP between the samples

may be related to a few possibilities. First, the junction profile for Si-TD2 may be

broader than InP-TD1 , but the SIMS data is inconclusive due to the surface topology.

However, a shallower dopant profile effectively increases the tunnel barrier thereby

reducing current density for, otherwise, equivalent diodes. Second, a combination of

surface topology and the amphoteric nature of Si [152] may create an environment
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Figure 7.6: Representative I-V characteristics for InP-TD1 device areas ranging from
0.25 µm2 to 100 µm2. NDR was present at room temperature, indicating the presence of
good tunnel junctions.

with lower effective n-type doping due to counterdoping. Third, due to the different

thermal properties of Si and InP, it may be possible that dopants diffused or incor-

porated differently between the samples. Generally, lower doping or broader dopant

profiles would create differences in JP without adversely affecting the PVCR.

A Gaussian fit to the data was made following exhaustive electrical testing, roughly

1000 per sample, and area analysis. The extracted means for InP-TD1 and Si-TD2

PVCR are 10.6 and 8.6. Maximum PVCR of 16.4 and 12.9 for the samples are

amongst the highest reported in the In0.53Ga0.47As system [66, 67]. InP-TD1 and

Si-TD2 were determined to exhibit JP values of 27.2 kA/cm2 and 12.2 kA/cm2,

respectively. Extracted JV values were found to be 2.6 kA/cm2 and 1.5 kA/cm2,
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Figure 7.7: Representative I-V characteristics for Si-TD2 device areas ranging from 0.25
µm2 to 100 µm2. NDR was present at room temperature, indicating the presence of good
tunnel junctions.

for InP-TD1 and Si-TD2. As expected, Si-TD2 (the III-V on Si), exhibited greater

variability between devices. However, it is important to note that InP-TD1 and Si-

TD2 PVCR means and range show significant overlap at reduced areas per Fig. 7.10.

Following procedures for performing a t-test [162], devices below 8.7 × 10−10 cm2

exhibit the same PVCR with a 1% risk of being different. Results from both devices

are summarized in Table 7.1. Due to the interest in integrating non-native crystals

on Si, this is an important data point proving that certain applications may see

acceptable performance despite the defect density.
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Table 7.1: Summary of device information and extracted values

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

InP-TD1† 2.45 Be 3.0 Si 1.35 2.72 27.2 3.3 2.6 0.3 10.6 16.4 0.16
Si-TD2‡ 2.34 Be 3.0 Si 1.31 2.76 12.2 2.7 1.5 0.45 8.6 12.9 0.64

† InP
† <100> miscut 4◦ to <110>

c© 2015 IEEE
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7.4 In0.53Ga0.47As on Aspect Ratio Trapping substrates
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Figure 7.11: (a) Schematic of the film stack ART-TD3. Doping levels are targeted around
an N∗ value of 1.5 × 1019 cm−3 dopants which allows for the highest PVCR for a given
diode JP . (b) Figure of merit (FOM) plot comparing published values of JP against the
PVCR reported or extracted for the In0.53Ga0.47As system. This study targets JP values
near 30 kA/cm2, within range of the maximum PVCR values expected for In0.53Ga0.47As
devices. High defect density samples reduce PVCR through an increase in the measured
JV values.

One growth was performed on a non-epitaxy ready surface of a sample of InP ART.

This sample was grown in the same reactor as the InP control, and was targeted to

have the same levels of doping. The resultant epitaxy was not optimal, however some

devices did show NDR.

Upon visual inspection, the sample surface was very hazy, even more so, than

the In0.53Ga0.47As on Si sample. Normally, devices grown on an ART surface would

be expected to exhibit far better material and electrical characteristics [43, 124],

however that was not the case. The double grooved trenches in Fig. 7.12 gives some

explanation as to why. ART should exhibit a single V-groove interface between the

Si substrate and the III-V, the double groove indicates an incomplete groove etch due
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mm

Figure 7.12: Sample ART-TD3 was cleaved to view the seed location in each trench.
Normal samples should show a single V-groove due to the selective Si etch, these samples
have a double groove indicating an incomplete groove etch which likely contributed to the
epitaxy issues for the sample.

to oxide masking the Si which is used in Germanium on Nothing processing, GON

[163, 164]. The abnormal trench lead to abnormal growth conditions for the InP,

which affected the coalesced InP and In0.53Ga0.47As that had been grown on top.

AFM measurements of the ART-TD3 surface revealed a surface roughness RMS

value of 25.7 nm, high quality epitaxy on optimal conditions is often under 1 nm.

25.7 nm corresponds to step heights of over 250 nm. Considering the device on the

film stack is approximately 63 nm tall and variation across the surface can be as

much as 3× the device height. Such variability across the surface will make device

processing difficult and area characterization near impossible, a significantly reduced

yield is to be expected for this sample.

Electrical characterization of over 800 devices was performed, however the rough
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Figure 7.13: AFM of Si-TD3 showing an exceedingly rough surface with RMS values of
25.7 nm. This sample was not on an epi-ready ART wafer, as such, this roughness should
not be considered typical for future samples that may be grown on ART, considering that
lasers have been built using this technology [43, 45, 124].

nature of the sample surface limited the number of viable diodes to 134. Many devices

yielded low PVCR values and JP with respect to their control sample counterparts,

though some were as high as 6.7. Fig. 7.14 exhibits the typical I-V characteristics for

In0.53Ga0.47As devices on the ART substrate. Reduction in PVCR appears consistent

with the effects of defect density presented by Majumdar et al. [68].

Extracted values for JP appear to have a bimodal distribution of 4.4 kA/cm2 and

19.8 kA/cm2, respectively, and are shown in Fig. 7.15. However, closer inspection

of the data reveals that the distribution is largely dependent on area. Therefore,

it is quite likely that the estimated area for the smallest devices is an overestimate

and is artificially reducing the calculated JP values. This discrepancy is due to the
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Figure 7.14: Sample ART-TD3 exhibits a reduced NDR region, this is very likely due to
the roughness of sample surface. Because the sample is more rough than Si-TD2, it displays
poorer PVCR characteristics which are commensurate with the level of defects within the
film.

combination of surface morphology with mesa fabrication, leading to oddly shaped

and smaller than designed device areas. Based on JP , but without SIMS confirmation,

it would appear that ART-TD3 has a doping density between InP-TD1 and Si-TD2.

A N∗ value of 1.33×1019 cm−3 was calculated for ART-TD3 based on empirical fit

data derived from prior experiments [28, 62]. Variation in the doping level could

be expected due to the MBE system not being calibrated for the combined thermal

properties of an ART substrate. Confirmation of doping density by SIMS would likely

be unsuccessful for ART-TD3. Significant variation across the surface would likely
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lead to knock-on effects which would skew the dopant measurements. Additionally,

the doping profiles would show lower slope than is present due to surface roughness

leading to multiple surfaces being measured. The lower surface variability of Si-TD2

allowed for a good comparison between it and InP-TD1, but such a comparison would

likely be futile in this case. PVCR extracted from Fig. 7.17 was shown to be 2.84,
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Figure 7.15: (a) A bimodal distribution of JP caused by large area defects required a two
peak extraction. (b)Histogram of JP for ART-TD3, which shows the JP value as compared
to the control and buffer layer samples.

only a single peak is present because PVCR is independent of area. This finding is

in line with those presented by Majumdar et al. [68], seeing as the PVCR decreased

with increased defect density allowing greater excess current culminating in JP values

greater than both InP-TD1 and Si-TD2. The increased defect level has clearly affected

the PVCR, as typical values are near 2.8 instead of 10 for the control sample.

Fig. 7.16 shows the performance of JV for ART-TD3. Similar to the JP values,

there is a bimodal distribution due to the variety of device sizes. JV was found to be

≈ 6.6 kA/cm2 and ≈ 1.4 kA/cm2. Devices with 1.4 kA/cm2 are likely smaller than

assumed, thus the actual JV for ART-TD3 should be considered 6.6 kA/cm2. When
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Figure 7.16: Histogram of JV for ART-TD3, which shows a higher JV value as compared
to the control and buffer layer samples due to the higher defect density.

compared to Si-TD2 and InP-TD1, ART-TD3 has significantly higher JV due to a

greater defect density. However, this sample should not be considered typical for the

technology considering that low In content Esaki diodes on ART currently hold the

record for PVCR [43].
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Figure 7.17: Histogram of PVCR from which a value of 2.84 was extracted from a Gaussian
fit.
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Table 7.2: Summary of device information and extracted values

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

InP-TD1† 2.45 Be 3.0 Si 1.35 2.72 27.2 3.3 2.6 0.3 10.6 16.4 0.16
Si-TD2‡ 2.34 Be 3.0 Si 1.31 2.76 12.2 2.7 1.5 0.45 8.6 12.9 0.64

ART-TD3a 2.39 Be 3.0 Si 1.31 2.73 19.8 4.6 6.6 2.1 2.84 6.4 0.42
† InP

† <100> miscut 4◦ to <110>
aART Virtual InP Substrate on Si

7.5 In0.53Ga0.47As on Si Conclusion

This chapter demonstrated the integration of In0.53Ga0.47As homojunctions on Si sub-

strates and how their performance compared to a control sample on InP. All samples

in this chapter were designed to have high PVCR values to assess how defects due

to the substrate impact performance. The device layer was designed to be the same

across all three samples: control, GaAs buffer on Si, and ART. JP was highest in InP-

TD1 (27.2 kA/cm2) followed by ART-TD3 (19.2 kA/cm2) and Si-TD2 (12.2kA/cm2).

PVCR was also highest in InP-TD1 (10.6) followed by Si-TD2 (8.6) and ART-TD3

(2.8). Table 7.2 summarizes the results taken from these samples.

Over 1000 devices were tested for the InP-TD1 and Si-TD2 samples, and over

130 were tested for ART-TD3. This volume of testing created a large dataset from

which values of JP , JV , and PVCR were extracted and contrasted. Si-TD2 exhibited

performance within several standard deviations of the control performance. The ART-

TD3 results should be considered atypical of devices grown on an ART platform,

as there are several exemplary reports showing parity with lattice matched devices

[43, 124]. This information exhibits the excellent potential for integrating III-V tunnel

junctions onto a Si platform.

This work demonstrates that In0.53Ga0.47As Esaki diodes can be integrated directly

onto a Si platform, with performance very near a control sample. Further enhance-

ments can be made through growth control and buffer design, such that future devices

may exhibit minimal degradation. Further, Chapter 8 will show that large lattice mis-
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matched systems such as In0.53Ga0.47As/GaAs0.50Sb0.50 [27] or InAs/GaSb[28] can be

integrated onto a Si platform with similar performance outcomes compared to control

samples.
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Broken Gap Esaki Diodes on Si Substrates

8.1 Introduction

Chapter 6 and Chaptger 7 demonstrated broken gap tunnel junctions on GaSb that

approach 10 MA/cm2 JP and demonstrated integrating large lattice mismatched

In0.53Ga0.47As devices on Si. To date, few groups have attempted to integrate GaSb

onto Si substrates due to the large lattice mismatch and accompanying defects. This

section tests BG tunnel diodes grown on Si to a control GaSb substrate to demon-

strate the possibility of integrating InAs/GaSb devices onto a Si platform. A number

of modern devices rely heavily on InAs/GaSb tunnel junctions as THz emitters and

NIR detectors, moving such devices to a more forgiving substrate such as Si may

reduce costs to the point where they are ubiquitous on personal electronics.

8.2 Device design

Devices for this section are based on the BG-12 GaSb i -layer design. Represented in

Fig. 8.1(a), GaSb-TD1 was the control sample grown on GaSb and designed to be

similar to BG-TD2 in doping and BG-TD12 in layer structure. This allowed a larger

range of PVCR values, over which to compare the four samples. Shown in Fig. 8.1(b),

AlSb-TD2 is a BG diode grown on a Si substrate with an AlSb buffer. In Fig. 8.1(c)
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GaAs-TD3 was grown on GaAs, which is a common lattice mismatched substrate for

this material system. Much of the work by Collins et al. [50, 57] was grown on GaAs

substrates. Fig. 8.1(d) exhibits STO-TD4, a novel buffer approach to incorporating

lattice mismatched III-V’s onto Si. STO-TD4 should exhibit electical qualities that

are superior to AlSb-TD2.

InAs: Te

GaSb

GaSb: Be

GaSb

25 nm

3 nm

300 nm

Substrate

1×1019 cm−3

uid

5×1018 cm−3

(a) GaSb-TD1

InAs: Te

GaSb

GaSb: Be

GaSb: Be

AlGaSb

Si

25 nm

3 nm

300 nm

50 nm

500 nm

Substrate

1×1019 cm−3

uid

5×1018 cm−3

uid

uid

(b) AlSb-TD2

InAs: Te

GaSb

GaSb: Be

GaSb: Be

GaAs Buffer

GaAs

25 nm

3 nm

300 nm

50 nm

500 nm

Substrate

1×1019 cm−3

uid

5×1018 cm−3

uid

uid

(c) GaAs-TD3

InAs: Te

GaSb

GaSb: Be

GaSb: Be

GaAs
SrTiO3 buffer

Si(001)

25 nm

3 nm

300 nm

500 nm

500 nm

10 nm

Substrate

1×1019
cm−3

uid

5×1018 cm−3

uid

uid

4◦ < 110 >

(d) STO-TD4

Figure 8.1: Film stacks for the four devices in the BG on Si series. (a) GaSb-TD1
represents the control sample grown on GaSb and designed to be similar to BG-TD2. (b)
AlSb-TD2 is a BG diode grown on a Si substrate with an AlSb buffer. (c) GaAs-TD3 was
grown on GaAs, which is a common lattice mismatched substrate for this material system.
(d) STO-TD4 represents a novel buffer approach to incorportating lattice mismatched III-
V’s onto Si.

8.3 Broken Gap Esaki Diodes on Si Materials Analysis

XRD analysis for this sample set reveals the expected pattern for device quality. From

Fig. 8.2 it can be seen that GaSb-TD1 > GaAs-TD3 > STO-TD4 > AlSb-TD2 in

terms of GaSb sharpness. From this, the defect density (Threading Dislocation Den-

sity, TDD) for the diodes was found to be 1.47×107 cm−2, 3.89×108 cm−2, 2.27×109

cm−2, and 5.77×109 cm−2, respectively. As seen in Chapter 7, this will have an ap-

preciable effect on PVCR. SIMS was not performed on these systems due to time and

182



Chapter 8. Broken Gap Esaki Diodes on Si Substrates

resource constraints, but prior growths have been well within %50 of designed doping

levels and those levels will be used for calculating N∗.

In addition to XRD, AFM measurements were taken for the BG on Si series

samples. The level of surface roughness can be seen in Fig. 8.3 for each of the four

samples. GaSb-TD1 exhibited the lowest RMS of 0.11 nm. while AlSb-TD2 had the

highest at 5.73 nm. GaAs-TD3 and STO-TD4, had measured values of 1.23 nm and

2.32 nm respectively. While the height differential for AlSb-TD2 and STO-TD4 are

on the order of the InAs thickness, fabricating measurable devices will likely only see

real impact for area analysis and undercut measurements.
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Figure 8.2: HRXRD of BG on Si series samples which have been aligned to the GaSb peak.
Differences between the on buffer samples and control appear similar to those presented in
Chapter 7, and will likely show decreased PVCR and JP relative to the control.
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(a) GaSb-TD1 - RMS =0.11 nm (b) AlSb-TD2 - RMS =5.74 nm

(c) GaAs-TD3 - RMS =1.23 nm (d) STO-TD4 - RMS =2.32 nm

Figure 8.3: AFM measurements were taken at TSU for each of the BG on Si series samples,
GaSb-TD1, AlSb-TD2, GaAs-TD3, and STO-TD4. (a) GaSb-TD1 provided an expected
smooth surface with RMS of 0.11 nm over the 100 µm2 area. (b) AlSb-TD2 exhibited the
roughest surface due to the largest mismatch in lattice constant from Si, and had a RMS
of 5.74 nm. (c) GaAs-TD3 exhibited lower RMS roughness (1.23 nm) than AlSb-TD2 but
higher than GaSb-T1, as expected. (d) exhibited RMS values of 2.32 nm and was expected
to perform between the AlSb and GaAs TD samples.
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8.4 Broken Gap Esaki Diode on Si Electrical Analysis

Over 100 diodes have been measured per sample to build a reasonable dataset for

extracting JP and PVCR. Fig. 8.4 presents select I-V characteristics for BG on Si

series diodes ranging from 0.25 µm2 to 4 µm2 areas as mask defined. Negative differ-

ential resistance (NDR) was clearly present at room temperature, and the oscillations

seen in the curves are a common artifact of the measuring equipment commonly seen

in other reports [27, 28, 43, 66]. Mean PVCR for each system was extracted from

histograms is summarized in Table 8.1. Surprisingly, AlSb-TD2 had the highest mean

PVCR of all the on buffer devices. Similar to Chapter 7, as device areas shrink PVCR

range overlaps more as seen in Fig. 8.6. Interestingly, GaAs-TD3 exhibits a larger

PVCR maximum value than GaSb-TD1, at 4.95 and 4.47 respectively. STO-TD4

held a maximum PVCR of 3.25, while AlSb-TD2 provided a maxmimum of 2.89.

Maximum PVCR values are generally in line with defect density, though at ≈4×108

cm−2 most GaAs-TD3 devices are below the critical device area for matching control

diode performance.

JP was extracted from the histograms shown in Fig. 8.7, and was shown to follow

along with defect density. Differences in JP between the samples may be related to a

few possibilities. Without SIMS to confirm doping levels, the different thermal prop-

erties of Si, GaAs, and GaSb may have had dopants diffuse or incorporate differently.

Generally, the same issues affecting In0.53Ga0.47As performance on Si will affect GaSb

on Si devices. JV values were also extracted and are summarized in Table 8.1 along

with JP .
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Figure 8.4: Representative I-V characteristics for BG on Si devices with areas ranging
from 0.25 µm2 to 4 µm2. NDR was present at room temperature, indicating the presence
of good tunnel junctions for each sample.
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Figure 8.5: Normalized PVCR histograms for BG on Si study, with GaAs-TD3 and STO-
TD4 scaled for visibility, showing that median values for PVCR are quite similar across
devices on a buffer. However, samples with the smallest defect density show significantly
higher PVCR range.
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Figure 8.6: Devices are plotted by PVCR vs. area showing that PVCR tends to show
maximum values prior to reaching the limits of the process control window. Both GaAs-TD3
and GaSb-TD1 show maximum PVCR around 4×10−9 cm2.
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Figure 8.7: Normalized JP histograms for BG on Si series showing the effect of various
buffers on JP . Varying results for JP between the four samples may be due to the difference
in thermal properties as STO-TD4 and AlSb-TD2 appear to have similar JP , while GaSb-
TD1 and GaAs-TD3 are more than double the JP of the on Si samples.
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Figure 8.8: Typical minimum VP values for the BG on Si devices appear to fall between
0.2 V and 0.3 V, indicating minimal influence from RS . STO-TD4 appears to have higher
VP , likely due to variations in etch back of BCB affecting device measurements.
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Table 8.1: Summary Broken Gap on Si Device Data

Device p n N∗ N∗−0.5 JP JV PVCR
×1019 ×1019 ×1019 ×10−10 (kA/cm2) (kA/cm2)
(cm−3) (cm−3) (cm−3) (cm−3) mean σ mean σ mean max σ

GaSb-TD1† 0.5 1.0 0.33 5.48 336 79 117 44.7 3.43 4.47 0.63
AlSb-TD2‡ 0.5 1.0 0.33 5.48 119 30.9 93.6 26.1 1.65 2.89 0.36
GaAs-TD3a 0.5 1.0 0.33 5.48 137 71.6 68.0 65.3 1.44 4.95 0.45
STO-TD4b 0.5 1.0 0.33 5.48 218 39.5 114 72.4 1.29 3.25 0.7

† GaSb <100>
‡ AlSb Buffer on 4◦ miscut <110> Si<100> substrate

a GaAs <100>
b SrTiO3 buffer on 4◦ miscut <110> Si<100> substrate

8.5 Broken Gap Esaki Diodes on Si Conclusion

This chapter demonstrated the integration of InAs/GaSb heterojunctions on Si and

GaAs substrates and compared their performance to a control sample on GaSb. All

samples in this chapter were designed to have high PVCR values to assess how de-

fects due to the substrate impact performance. The device layer was designed to

be the same across all four samples: control, on GaAs , on AlSb buffer, and on a

SrTiOx buffer. JP was highest in GaSb-TD1 (336 kA/cm2) followed by GaSb-TD3

(218 kA/cm2), STO-TD4 (137 kA/cm2), and AlSb-TD2 (119kA/cm2). PVCR was

highest in GaAs-TD3 (4.95) followed by GaSb-TD1 (4.47), STO-TD4 (3.25), and

AlSb-TD2 (2.89). Table 8.1 summarizes the results taken from these samples.

Over 100 devices were tested for each device. This volume of testing created a

dataset from which values of JP and PVCR were extracted and contrasted. Additional

test volume would allow for the extraction of the critical device sizes for AlSb-TD2

and STO-TD4 for similar performance vs. the control sample. This information

exhibits the potential for integrating broken gap tunnel junctions onto a Si platform.

This work demonstrates that InAs/GaSb Esaki diodes can be integrated directly

onto a Si platform, with performance approaching a control sample. Further enhance-

ments can be made through growth control and buffer optimization, such that future

devices may exhibit minimal degradation.
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Conclusions and Recommendations

This dissertation demonstrated a relationship between effective band gap and doping

density that had not been shown. By reducing the effective bandgap significant gains

can be made to tunnel currents for the same doping density. Thirty three (33)

different samples were grown, and thousands of devices tested for this dissertation.

This dissertation demonstrates the highest JP for any tunneling system, 3.2 MA/cm2,

as well as one of the highest JP for any tunnel diode on a Si platform, 137 kA/cm2.

This work mapped the relationship between JP and N∗ for multiple heterojunction

systems showing that reduced effective bandgap results in higher JP for a given doping

density. Furthermore, this dissertation demonstrates that below a critical area devices

can between a control and one grown on Si can not be differentiated.

9.1 Impact of Work

This dissertation mapped the performance of multiple (≈ 25) tunnel diode systems

with varying band gaps to show that ultra high current densities may be possible for

broken gap tunneling systems as seen in Fig.9.1. When combined with other litera-

ture values, an excellent chart for determining JP based on N∗ has been expanded

to include the heterojunction systems of InAs/GaSb, In0.53Ga0.47As/GaAs0.50Sb0.50,

and InAs0.91Sb0.09/AlGaSb. From Fig. 9.1, it appears that the InAs/GaSb hetero-
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junction system could possibly reach the 10 MA/cm2 if effective doping can exceed

2×1020 cm−3.

Some of this effort has been cited by other authors in their work and some can be

shown to fit along the figure of merit plot in Fig. 9.2 [11, 94, 147, 165–172]. Interest

in LSG devices for TFETs current was studied by Desplanque et al. [147][173] and

have shown some improvement in the case of InAs0.91Sb0.09/Al0.40Ga0.60Sb, pushing

1.3 MA/cm2 for the InAs/Al0.40Ga0.60Sb system. Investigation of this concept by

other groups implies that this work will have impact on future tunneling devices.

Other groups have begun to use this work for modeling tunneling junctions.

Luisier [11] and Agarwal and Yablonovitch [170] have used this work to model elec-

trical transport in tunnel junctions and to predict substhreshold slope for TFETs.

Chun-Hsing and Nguyen Dang [168] investigated low EG heterojunctions for TFET

applications, and cited the JP for the BG diodes for design and modeling of TFET

performance.

Outside of TFETs and associated tunneling models, PV investigators have also

utilized this work for comparing MJSC’s. Garca et al. [94] showed JP values tracked

for heterojunctions Esaki diodes that have EG between In0.53Ga0.47As and GaAs. This

data is further validation for JP tuning with heterojunctions and effective EG.

Additionally, this work has improved upon the information available for heteroin-

tegration onto Si substrates. This dissertation reports both the highest In0.53Ga0.47As

and InAs/GaSb JP reported on Si. This work shows that similarly designed devices

can perform nearly identically on Si and lattice matched substrates. It may be pos-

sible to integrate III-V based sensors, lasers, and other devices onto inexpensive Si

substrates if defect density is reduced to levels that allow for acceptable device to

device variation.
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Figure 9.1: Final figure of merit plot with data from all samples in this dissertation
overlayed with other reported tunnel diodes.
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Figure 9.2: Figure of merit plot with data from reports that have cited this work[94, 147,
174].
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9.2 Final Recommendations

This work did not meet the 10 MA/cm2 JP specified in previous sections. Future

work could show that increased doping density in the InAs/GaSb system is capable

of reaching this target. In addition, much more research could be applied to the

InAs0.91Sb0.09/Al0.40Ga0.60Sb system. As a potential TFET candidate this system has

excellent off characteristics, but additional work similar to that of Desplanque et al.

[147] is needed to approach higher current levels.

Near the end of this work it was noticed that odd speckling became visible on

InAs/GaSb samples that had the GaSb exposed to atmosphere for long periods.

This may indicate that there is an oxidation mechanism at play, which may have

detrimental effects on device performance. It should also be noted that samples

which incorporated As into the GaSb layer did not show this effect. This may prove

important if these devices are to become common place.

Future studies should investigate the impact of i -layer design on the total tunnel-

ing current, as there may be something to the design by Collins et al. [57] where there

may be an ideal device length. Additionally the impact of the terminations at the

heterointerface warrant further study as the InSb-like GaAs-like interfaces have been

shown to have an impact on RTDs [154] and may impact Esaki diodes and TFETs

as well. Raman spectroscopic study of the systems in this work may also prove in-

teresting, as initial work showed an odd coupling between the InAs and GaSb doped

regions that would not normally be expected.

Prior to this work a comprehensive map of device performance, JP , with respect

to effective doping, N∗ did not exist. Additionally, integration of tunnel diodes on

Si had been limited to sub-kA/cm2 JP for III-V devices. Now, it has been shown

that large lattice matched systems can perform well on a Si platform. This work has

accomplished part of its goal by building an empirical data set which may be used
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for the design of many different devices.
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Appendix A: Sample Processes

A.1 Process Recipes

Table A.1: CVC 601 metal depsition process

Step Process Time

1 Mount samples near center of carrier wafer 10 - 20 min
2 Load carrier wafers 5 min
3 Clean seal 1 min
4 Pump Down to below 6×10−6 Torr 3-18 hours
5 Deposit Metal 30 min set up 5- 15 minute run time
6 Unload chamber and shut down tool 5 min
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Appendix A. Sample Processes

A.2 Process Traveler

Table A.2: Process Traveler

Step Process Completed

1 Sample identified and origin mapped
2 Level 1 metalization Lift off or Metal first

3

Lift off

Photoresist:
Process recipe:
beam current:
x move ——–, y move ——–
Surface clean:
Deposition tool:
Deposition metal:
Recipe:
Base Pressure:
Thickness:

a
Metal First

Surface clean:
Deposition tool:
Deposition metal:
Recipe:
Base Pressure:
Thickness:
Photoresist:
Process recipe:
beam current:
x move ——–, y move ——–
Metal Etch Tool:
Recipe:

4 Mesa Etch: Chemistry:————— Time:——– Target Height: ——–
5 Undercut: x:——– y:———
6 Area Analysis
7 M1 testing notes:
8 BCB application Time:—– Temp:—–

9

a
L2 Lift off

Photoresist:
Process recipe:
beam current:
x move ——–, y move ——–
Surface clean:
Deposition tool:
Deposition metal:
Recipe:
Base Pressure:
Thickness:

10

Level 2
Tool:
Process recipe:
Etch time:

11 M2 testing notes

217



Appendix A. Sample Processes

A.3 Die Maps

A.3.1 NPGS Layout

Figure A.1: Example layout of die
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Appendix A. Sample Processes

A.3.2 ETD layout 12

Figure A.2: Die layout for ETD12 ebeam file
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Appendix A. Sample Processes

A.3.3 ETD layout 13

Figure A.3: Die layout for ETD13 ebeam file

A.3.4 ETD layout 13b
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Appendix A. Sample Processes

Figure A.4: Die layout for ETD13b ebeam file
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Appendix B: Sample Descriptions

Table B.1: Broken Gap Tunnel Diode

Device Name Substrate

External Internal Grower

SSG-TD1 TD1 Intelliepi InPa

SSG-TD2 TD1A IQE InPa

SSG-TD3 TD2 Intelliepi InPa

SSG-TD4 TD08 5-2206 InPa

SSG-TD5 TD09 5-2207 InPa

SSG-TD6 TD10 5-2208 InPa

LSG-TD1 TD3 Intelliepi GaSb‡

LSG-TD2 TD3B IQE GaSb†

LSG-TD3 TD3D IQE GaSb†

LSG-TD4 TD3E IQE GaSb†

LSG-TD5 TD3A IQE GaSb†

LSG-TD6 TD3C IQE GaSb†

BG-3 TD7-D 7-546 GaSb†

BG-2 TD7-B 7-536 GaSb†

BG-1 TD7-A 7-524 GaSb†

BG-4 TD7-C 7-537 GaSb†

BG-5 TD7-E 7-616 GaSb†

BG-6 TD7-F 7-617 GaSb†

BG-7 TD7-G 7-618 GaSb†

BG-8 TD7-H 7-619 GaSb†

BG-9 TD7-I IQE GaSb‡

BG-10 TD7-J IQE GaSb‡ 5
BG-11 TD7-K IQE GaSb‡

BG-12 TD11-D 7-960 GaSb‡

InP-TD1 TD0G 1506 InPa

Si-TD2 TD0F 1478 Sib

ART-TD3 TD0H 1518 Si

GaSb-TD1 TD11D 7-960 GaSb‡

AlSb-TD2 TD11I 7-1220 GaSb‡

GaAs-TD3 TD11J 7-1370 GaSb‡

STO-TD4 TD11K 7-1312 GaSb‡

†<100> GaSb
‡<100> GaSb 0.35◦ offcut to <111>

a <100> InP
b<100> Si 4◦ offcut to <110>
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