
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

4-2012 

A Data Driven Frequency Based Method For Electrical-Mechanical A Data Driven Frequency Based Method For Electrical-Mechanical 

Actuator Condition Monitoring Actuator Condition Monitoring 

Anthony J. Chirico III 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Chirico, Anthony J. III, "A Data Driven Frequency Based Method For Electrical-Mechanical Actuator 
Condition Monitoring" (2012). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8701?utm_source=repository.rit.edu%2Ftheses%2F8701&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


A Data Driven Frequency Based Method
For Electrical-Mechanical Actuator

Condition Monitoring
by

Anthony J. Chirico III

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science
in Mechanical Engineering

Supervised by

Assistant Professor Dr. Jason Kolodziej
Department of Mechanical Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

April 2012



ii

Approved by:

Dr. Jason Kolodziej, Assistant Professor
Thesis Advisor, Department of Mechanical Engineering

Dr. Mark Kempski, Professor
Committee Member, Department of Mechanical Engineering

Dr. Ferat Sahin, Associate Professor
Committee Member, Department of Electrical Engineering

Dr. Edward Hensel, Department Head
Committee Member, Mechanical Engineering



Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title:

A Data Driven Frequency Based Method For Electrical-Mechanical
Actuator Condition Monitoring

I, Anthony J. Chirico III, hereby grant permission to the Wallace Memo-

rial Library to reproduce my thesis in whole or part.

Anthony J. Chirico III

Date



iv

Dedication

It is not possible to complete such a journey without the support and

sacrifice of my family, to whom I dedicate this Thesis. I am grateful to my

Mom and Dad for giving me an appreciation for the world and providing

the opportunity to have such an education. I would especially like to thank

my wife Emily. I would not be successful in this effort without her patience

and support of my dreams and goals.



v

Acknowledgments

This research would not be possible without the support of Moog Inc.

which funded my graduate education and provided the test equipment and

resources necessary for laboratory set-up and data collection. I would like

to personally thank Larry Hall for his guidance and support of this research

and his contribution to my personal and professional development. I am

fortunate to have the support of several others at Moog Inc. who allowed

me to dedicate time to this research in concert with my daily work

initiatives. Special thanks go to Rick Fosdick, Paul Stoelting, and Duff

Bushway. I would also like to thank my thesis advisor, Dr. Jason

Kolodziej, who provided constant guidance and support.



vi

Abstract
A Data Driven Frequency Based Method For Electrical-Mechanical

Actuator Condition Monitoring

Anthony J. Chirico III

Supervising Professor: Dr. Jason Kolodziej

This research investigates a novel data driven approach to condition mon-

itoring of Electro-Mechanical Actuators (EMAs) consisting of feature ex-

traction and fault classification. Since many common faults in rotating ma-

chinery produce unique frequency components, the approach is based on

signal analysis in the frequency domain of both inherent EMA signals and

accelerometers. The feature extraction process exposes fault frequencies in

signal data that are synchronous with motor position through a series of sig-

nal processing techniques consisting of digital re-sampling, Power Spectral

Density (PSD) computation, and feature reduction. The resulting reduced

dimension feature is then used to determine the condition of the EMA with

a trained Bayesian Classifier. Signal data collected from EMAs in known

health configurations is used to train the algorithms so that the condition

of EMA’s with unknown health may be predicted. Laboratory results show

that EMA condition can be determined over multiple non-steady operating

conditions and is capable of isolating multiple faults that produce unique

fault signatures.
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Chapter 1

Introduction

1.1 Flight Control Actuation

Currently, many aircraft utilize hydraulic Servocontrols (SC) to control pri-

mary flight control surfaces. These types of actuators typically use Elec-

trohydraulic Servovalves powered by a hydraulic supply system, and con-

vert electrical position commands to an hydraulic output for positioning the

ram. SC actuators are reliable and provide precise position accuracy. How-

ever, the hydraulic supply system includes many elements which drive the

cost and weight of a vehicle. More recently, Electrohydrostatic Actuators

(EHAs) have been incorporated on primary surfaces in addition to SCs (such

as on the A380 and A350) or as a replacement for SCs completely (such as

F35). Unlike SCs, EHAs are closed hydraulic systems with a motor and

pump as the prime mover for the actuator and do not require a supporting

hydraulic system.

Electrical-Mechanical Actuators (EMAs) are the next progression in flight

control actuators as the industry continues to move towards the goal of All

Electric Aircraft [1]. Currently, these types of actuators are used mainly on

secondary flight control surfaces, such as Spoilers and Horizontal Tail Sta-

bilizers. This is mainly due to the failure modes of the EMAs which can
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not be mitigated in flight as easily as its EHA and SC counterparts. Specifi-

cally, the risk of jamming can cause a flight control surface to lock in place,

compromising the safe operation of the flight control system. However,

there are many benefits for more electric aircraft such as overall weight re-

duction, increased reliability, better maintainability, reduced operating costs

and increased safety [2].

1.2 Integrated Health Management

Integrated Health Management (IHM) offers an advantage to make the adap-

tation of EMAs in critical applications more practical by indicating the need

for service prior to catastrophic EMA failure and disruption of service. IHM

is also a viable progression from Statistical Based Maintenance to Condition

Based Maintenance (CBM) for flight control actuation systems. In CBM,

the condition of the equipment is monitored and maintenance is based on

the assessed condition. As such, IHM systems must be capable of monitor-

ing degradation and detecting faults at the early stages of development, in

advance of full functional failure.

IHM is usually comprised of data acquisition, signal reduction/feature

extraction, condition assessment, fault diagnosis, prognostics, and decision

support [3]. The signal data contains information about the condition of

the unit, but in most cases is difficult to expose due to the size and hidden

nature of the fault signatures within the data. As such, feature extraction is a

technique or set of techniques to expose patterns or indicators in the data that

give insight into the condition of the equipment and reduce the amount of

data. These features are then used to provide a condition assessment and one

or more fault diagnoses. Prognostics is the discipline related to predicting

the future condition of the equipment which can then be used in decision
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support. Approaches to IHM may be broadly categorized into experience,

knowledge, data driven, and model based. Hybrid systems combine two or

more of these approaches in order to take advantage of the strengths and

minimize the weaknesses of each approach.

1.3 Review of EMA Condition Monitoring Techniques

The most common approaches for EMA IHM to date have been model based

and data driven. Model based approaches typically involve the creation of

an accurate mathematical model to predict the outputs to a set of inputs for

assessing health. For instance, the error between the actual outputs and the

model predicted outputs can be used to estimate system parameters such as

damping and efficiency. The estimated parameters can then be compared

to the parameters of a healthy system to determine if there is a fault. This

approach was utilized in [4] by injecting faults or altering model parameters

in a validated actuator model and then diagnosing the faults through param-

eter estimations. For instance, the effective number of motor windings were

derived from motor current and voltage signals through least squares opti-

mization. The parameter could then be used to diagnose the severity of the

fault. Another recursive model estimation approach was demonstrated in

[5] which estimated frictional damping coefficient, local gear stiffness and

torque constant parameters to assess health, isolate faults, and predict fault

severity.

Noted benefits of the model based approach were that failure modes are

traced back to model parameters to lend insight into the failure for fault di-

agnosis. In addition, the severity of the fault could be characterized by the

deviation of the estimated parameters to the healthy EMA parameters which
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were previously characterized. This type of approach is also suited to pre-

dict health over multiple non-steady operating conditions, but only as long

as command and disturbances can be measured or calculated. The drawback

of the model based approach is that models are often complex and must be

validated. As such, the models are then very specific to the application

and new models must be created and validated for each new application.

In addition, implementing this type of scheme in an EMA controller would

require a significant amount of processing capability when added to the nor-

mal control and management schemes typically employed for flight control

actuators.

As opposed to model based techniques, data driven approaches operate

directly on signal data without the use of mathematical models, and use sig-

nal processing techniques to expose patterns/signatures in signal data that

give insight into machine condition. Data driven approaches are an attrac-

tive option to IHM since it does not require complex models and can be

applied to many types of systems.

Within the field of actuator fault detection and isolation, data driven tech-

niques have included Wavelet analysis, Statistical analysis, Neural Network

analysis, and Frequency Domain analysis. For instance, [6] used several

statistical features including accelerometer sensor standard deviation, ther-

mocouple temperature deviation from nominal, and thermocouple drift. In

[7] vibration sensors were used to detect fault frequencies that would appear

as components started to wear. In [8] one of the methods employed was to

measure the degree of overlap of signal probability densities between a base-

line ”Healthy” EMA set and EMAs with artificially aged capacitors during

steady state operating conditions.

The previous works cited focused primarily on feature extraction, but
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several other works also included health classification and prognostics, such

as [9] which was applied to a hydraulic actuator. Here, FFT based features

were used in addition to a neural network error tracking method. Automated

health classification was accomplished by a Fuzzy Logic classifier with data

fusion. Finally, a prognostics model was developed using a Kalman filter

feature based state space tracking routine for fault to failure prediction. An-

other approach taken by [10] used the Hilbert Transformation as the feature

extraction technique for identifying turn-to-turn winding faults for a Brush-

less DC motor in an EMA and a particle filter for anomaly detection and

prognostics.

One of the main problems cited in EMA condition monitoring research

is the masking of defects due to differing and non-constant operating con-

ditions. For instance, as motor speed and load vary, the amount of vibration

changes and fault frequencies are spread throughout the frequency spec-

trum, making fault identification difficult. This problem was also cited by

[11] who proposed the use of the Discrete Wavelet Transform (DWT) to

show how frequency content varies with time with non-stationary condi-

tions. The energy of each DWT detail was used as the feature for fault

detection. An alternate approach using Wavelets was proposed by [12],

who combined the wavelet transform with FFT post-processing to isolate

specific fault frequencies. Another approach to deal with non-steady motor

velocities was proposed in [13] who used a digital re-sampling method to

map signals from the time domain to the spatial domain, since many faults

in rotating machinery are synchronous with motor position.

There are several other challenges in EMA condition monitoring that

could benefit from research done in related areas. One issue that arises in
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EMA condition monitoring is the permissibility of using specialized sen-

sors. As a result, emphasis has been placed on the ability to use only avail-

able EMA signals. A technique known as Motor Current Signature Analysis

(MCSA) has been shown to be successful for identifying faults in compo-

nents that are part of motor controlled systems, such as motor, bearing and

gear faults [14]. Another challenge is due to the potentially large number of

feature variables that result from using multiple feature extraction methods.

Principal Components Analysis (PCA) is a way of identifying patterns in

data and reducing the dimensionality of the data. Another important aspect

of PCA is that it transforms a set of possibly correlated variables into a set of

principal components which are linearly uncorrelated. The PCA technique

has been used for various applications, including face recognition and image

compression, but also in fault detection and classification. For instance [15]

uses PCA as a feature selection scheme for contending features for bearing

defect classification.

1.4 Approach and Objectives

This research focuses on the feature extraction and fault diagnosis portions

of the IHM process for condition monitoring of EMAs. The goal is to im-

prove upon previous research in EMA health monitoring by creating a data

driven approach that is able to handle non-steady motor speeds and multiple

loading conditions, is able to use standard and non-standard EMA sensors,

and can handle multiple contending features.

The research paper is organized as follows: Chapter 1 gave an assess-

ment of the current state of Flight Controls Actuators and the progression
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from hydraulic actuators towards EMAs. The need for EMA Health Man-

agement was given and a comprehensive review of EMA health monitor-

ing research was presented including the challenges that exist. Chapter 2

presents the proposed approach to feature extraction and fault classification

together with the associated principles and mathematics. In Chapter 3 the

approach is demonstrated via simulation using generated data for healthy

and defective signals. In Chapter 4, the approach is tested with laboratory

generated EMA data over five different operating conditions using a healthy

EMA and an EMA with a bearing fault. The performance of the approach

is demonstrated by the percentage of false positives and false negatives. Fi-

nally, plans for improvement and future work is given in Chapter 5.
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Chapter 2

EMA Fault Detection Approach

The fault detection scheme after data acquisition is comprised of feature ex-

traction and fault classification as shown in Figure 2.1. The objective is to

assign a class that relates to the condition of the EMA based on the sensor

measurements, x. Ideally the predicted condition matches the true condition

of the EMA. The system from which measurements are obtained includes

the EMA to be monitored and the associated environment. The system is

excited with inputs r, and results in the measurement outputs, x. The mea-

surement data is transformed after data acquisition by the feature extraction

process in order to give insight into the condition of the EMA. It also serves

to reduce the size of the data prior to classification. A feature vector, z, is

then input to a classifier which uses this data to predict the condition of the

EMA, ω(z), from a possible set of conditions ω ε {ω1, ω2, ω3, . . .}.

System
r x Feature 

Extraction
Classification

z w( z )

Inputs Measurements Features Assigned 
Class

Figure 2.1: EMA Fault Detection Architecture
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2.1 Feature Extraction Technique

In Feature Extraction, the measurement data is transformed in order to ex-

pose patterns and signatures within the data that give insight into the con-

dition of the EMA. The feature extraction method proposed in this paper

is aimed at exposing faults that produce fault signatures in the frequency

domain that are synchronous with motor position. Frequency analysis of

vibration and motor current signals has been shown to be effective in expos-

ing fault signatures in rotating machine equipment, including: bearing and

gear faults, screw defects, stator and armature faults, broken rotor bar and

end ring faults, and eccentricity faults among others [16, 17, 18, 19]. For

instance, the mechanical defect frequency produced by an inner race defect

on a ball bearing is

fIR =
n

2
fr

(
1− BD

PD
cosφ

)
(2.1)

where n equals the number of rotating elements (balls), BD is the ball di-

ameter, PD is the pitch diameter, φ is the contact angle, and fr is the motor

speed expressed in Hz.

The defect will appear in the motor current signal at the following fre-

quency:

fc = |fe ±mfIR| (2.2)

where m is an integer accounting for the harmonic contributions, and fe

is the fundamental current frequency. For a three phase Permanent Mag-

net Synchronous Motor, the fundamental current frequency is related to the

rotor frequency by

fe =
p

2
fr (2.3)
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where p is the number of motor poles. Therefore equation 2.2 becomes

fc = fr

∣∣∣∣p2 ± mfIR
fr

∣∣∣∣ (2.4)

In general, EMAs have velocities which are non-constant, therefore fault

frequencies will vary with the motor frequency.

In this research, the feature extraction architecture shown in Figure 2.2

is proposed. Signal data that is originally sampled according to the fixed

time sampling interval, Ts, is re-sampled to the spatial domain according

to the spatial sampling interval, θs. The signal is then transformed to the

order domain (as opposed to the frequency domain as a result of the spatial

resampling) by computing the Power Spectral Density (PSD). The PSD is

filtered and then a binning process groups the frequency content into energy

bins. The data is then reduced by a Feature Space Transformation process

which maps the data to a lower dimension space via a transformation matrix.

The transformation matrix is optimized using training samples so that the

most important information in the data is retained.

x: Signal Data

ω : Motor Velocity

Resample PSD

BinningFeature 
Transformation

z: Feature Data
Filter

Figure 2.2: Feature Extraction PSD Method
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2.1.1 Resampling Technique

Many electrical and mechanical fault signatures in rotating equipment are

synchronized with the angular motor position. Since normal operation of an

EMA for many applications involves varying motor speeds, fault signatures

will be periodic with motor position, but not in time. If signals are acquired

according to the fixed-time sampling period, Ts, a post processing method

must exist to resample the signal according to the spatial sampling period,

θs, to expose the periodic nature of the fault.

Consider a motor velocity signal, ω(t) that ramps uniformly in time and

the corresponding cumulative motor angle, θc(t):

ω(t) = 100t (2.5)

θc(t) = 50t2 (2.6)

When the signal is sampled with period Ts, the discrete signal representation

is

ω(k) = 100kTs (2.7)

θc(k) = 50k2T 2
s (2.8)

If the motor angle is not acquired directly, it may be approximated from the

motor velocity signal, for instance (Trapezoidal Integration):

θc(k) =
Ts
2

k∑
m=0

ω ((m− 1)Ts) + ω (mTs) (2.9)

Note that this is an expression for the cumulative motor angle. The circular

motor angle has a value in the interval (0, 2π) which may be obtained by

θm(k) = mod (θc (k) , 2π) (2.10)
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Next, consider a signal, x1(t), that has a fault frequency dependent upon the

motor angle as follows:

x1(t) = sin (6θc(t)) = sin
(
300t2

)
(2.11)

After time sampling, the discrete signal may be represented by

x1(k) = sin
(
300k2T 2

s

)
(2.12)

A simulation of the resulting signals over 0.5 seconds is shown in Figure

2.3. Note that the signal, x1, is not periodic in time, but is periodic when

plotted against the cumulative motor angle.
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Figure 2.3: Example of Defect Signal Periodicity with Motor Angle
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To make the sampled signal, x1(k) periodic, the time sampled signal

must be re-sampled based on motor angle. For this research a simple linear

interpolation formula is used:

x(n) = x(k) +
x(k)− x(k − 1)

θc(k)− θc(k − 1)
(nθs − θc(k − 1)) (2.13)

The equation maps the time sampled signal x(k) = x(kTs) to the spatially

sampled signal x(n) = x(nθs). Note that there will be an associated in-

terpolation error since the exact value of the signal between data points,

θc(k − 1) < nθs < θc(k) is unknown. In order to prevent signal aliasing

the sample period, θs, should be less than one half the smallest period per

revolution of the motor for a given signal. For instance, the signal x1 has

a frequency of six times per motor revolution, therefore θs < 2π
12 rad. The

finer the sampling period, the more accurate the resampled signal will be

until it exceeds the resolution of the time sampled motor position signal at

which point the signal is essentially upsampled. Figure 2.4, shows the re-

sampled signal x1(n) using Equation (2.13), with θs = 2π/60 radians. The

samples shown appear at 10 times per period. Thus, for any motor velocity

this method will synchronize the frequencies of a signal that are periodic

with motor position, as expected with common EMA defects.



14

0 20 40 60 80 100 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Defect Signal Re−sampled, x
1
(n)

x 1(n
)

Sample No.,n

 

 
Samples

Figure 2.4: Example of Defect Signal After Resampling

2.1.2 Power Spectral Density

The two sided power spectrum of a discrete signal is

Sxx(k) =
1

wfL2
Xw(k)X∗w(k) − L/2 < k ≤ L/2 (2.14)

where L is the number of samples, and Xw(k) is the Discrete Fourier Trans-

form (DFT) of the windowed signal xw(n):

Xw(k) =
L−1∑
n=o

xw(n)e−i2πk
n
N (2.15)



15

The windowed signal xw(n) is the signal x(n) multiplied by a window func-

tion w(n):

xw(n) = w(n)x(n) (2.16)

For instance, a rectangular window results when w(n) = 1, or a Hanning

Window of length L may be used to reduce the effect of leakage to out of

band frequencies, Equation (2.17).

w(n) =
1

2

(
1− cos

(
2π
n

L

))
(2.17)

The window factor, wf , is needed to scale the power spectrum to account

for the loss of amplitude when using a non-rectangular window,

wf =
1

L

L−1∑
k=0

w(k)2 =
1

L
w′w (2.18)

In many cases, the DFT may be computed by a more computationally ef-

ficient algorithm known as the Fast Fourier Transform (FFT). For instance

when the number of samples is a power of two, the radix-2 Cooley-Tukey

FFT algorithm may be used. Since a single FFT has some uncertainty, sev-

eral FFTs of length L are computed for a given signal and the resulting two

sided power spectrums are averaged together to get a more accurate estimate

S̄xx(k) =
1

M

M∑
m=1

Smxx(k) (2.19)

where M is the total number of computed two sided power spectrums, and

Smxx denotes the mth power spectrum. Next, the one sided power spectrum

is computed from the averaged two sided power spectrum

Gxx(k) = 2S̄xx(k) k = 1, ..., L/2 (2.20)

Gxx(0) = S̄xx(0) (2.21)
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Finally, the one sided continuous PSD is estimated from the one sided dis-

crete power spectrum by

G̃xx(k) = TpGxx(k) (2.22)

where Tp = L/Fs is the period of the signal sampled with frequency Fs =

1/Ts.

Consider the sinusoidal signal, x2, with unit amplitude and cyclic fre-

quency, F ,

x2(t) = sin(2πFt) (2.23)

When the signal is sampled with frequency, Fs, the resulting sampled signal

is

x2(n) = sin(2πfn) (2.24)

where f = F/Fs. As an example, let F = 40Hz, and Fs = 640Hz. The

corresponding continuous and discrete sampled signals along with their re-

spective one sided power spectrums are shown in Figure 2.5. As expected,

the discrete power spectrum has an amplitude of 0.5 at a normalized fre-

quency of f = F/Fs = .0625 cycles per sample and the continuous power

spectrum has an amplitude of .025 at F = 40 Hz. Note that the number of

samples used in the simulation was L = 32 and a rectangular window was

used to compute the FFT.
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Figure 2.5: Continuous and Discrete Sampled Signals and Power Spectrum

Next consider the signal x1(t) in Equation (2.11) whose frequency is

dependent upon the motor angle θ. The signal along with the corresponding

PSD is shown in Figure 2.6.
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Figure 2.6: Signal and Power Spectrum of x1(t)

Since the motor velocity is increasing uniformly, the frequency of the

signal, x1(t), is also increasing. This results in a smearing of the frequency

content from 0 to about 100 Hz. If the motor velocity waveform were to

change, as in the case of EMAs under different operating conditions, the

frequency content of the signal x1(t) would also change, making it diffi-

cult to detect any defect frequencies that are synchronous with the motor

velocity. However, if the signal is resampled according to Equation (2.13),

with θs = 2π/60 radians per sample, then the resulting PSD has a narrow

frequency band around 6 orders only (Figure 2.7). The scale continues to

Omax = 30 orders since the resample frequency was 60 times per motor
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revolution. The frequency resolution for the samples of the continuous PSD

is δo = Omax/L = .1172 since the number of samples used in the FFT

was L = 256. There is not a single sharp peak since 6 orders is not an

exact multiple of the resolution, resulting in a slight leakage effect using a

rectangular window. The other source of leakage is due to integration and

interpolation errors. Despite the leakage effects, the approximate frequency

of the signal can be determined from the PSD without attenuating the signal

amplitude much. Therefore the combination of resampling and PSD com-

putation will reveal the frequency content in a signal that is synchronous

with motor velocity as expected with common EMA defects.
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Figure 2.7: Resampled Signal and Power Spectrum
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2.1.3 Feature Space Transformation

After resampling and PSD computation, the PSD samples are grouped into

energy bins of size δb using the trapezoidal integration method, illustrated

in Figure 2.8.
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Figure 2.8: Illustration of Binning Concept

Since the signal is first translated to the rotational domain, the PSD trans-

forms the data into an order spectrum (as opposed to the frequency spec-

trum). The resulting binned PSD vector from a single data set consists of N

elements,

y = [y1, y2, y3, ..., yN ]T (2.25)
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Each of the components of y correspond to the magnitude of the binned

PSD at specific orders of motor frequency for a single trial run. SinceN will

typically be large in PSD computations, a method must be used to reduce

the size of the PSD vector prior to classification in order to limit the number

of training samples required. The exact orders of interest are assumed to

be unknown for a data driven process and we cannot simply choose certain

components of the PSD vector and discard the rest. Thus, in order to reduce

the dimension of the vector, a transformation is needed to map from a space

with a large dimension N to a smaller dimension D while retaining the

information needed to identify a fault. This is accomplished using the linear

transformation,

z = Wy (2.26)

The linear transformation (or weight) matrix, WεD × N , maps the PSD

vector y onto the reduced dimension feature vector z (Figure 2.9).

W

W
y1

y2

z1

z2

Nx1 
Space, S1

Dx1
Space, S2

Figure 2.9: Feature Space Transformation
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Principal Components Analysis (PCA) is chosen to obtain the compo-

nents of the weight matrix using data from a training set. A training set

consists of PSD computations from signal data collected from a population

of known healthy units, and units that are known to have defects. The PCA

technique produces principal components that explain a percentage of the

variances present in the data (training) set. The goal of the PCA technique

when applied in this manner is to obtain a transformation matrix that weighs

the PSD orders which give the most insight into the health of the machine

more heavily (i.e. the components that differ between healthy and defective

units). The orders that differ in magnitude between the healthy and defective

data should produce a larger variance resulting in a larger weighting.

For multiple trial runs in which data is collected from EMAs over the

course of several experiments, the PSD vector will have random variation

from one run to the next. As such, the elements of y may be treated as

random variables having a specific probability distribution based on the

condition of the EMA. For example, a set of normal/healthy EMAs may

have a different probability distribution for some PSD orders than for EMAs

with defects. Let the training set PSD vector be denoted by Yts (Equation

(2.27)), consisting of training data from a population of known healthy units,

Yh (Equation (2.28)) and data from a population of EMAs with known de-

fects, Yd1, Yd2, · · · , Ydm (Equation (2.29)).

Yts = [Yh,Yd1,Yd2, · · · ,Ydm] (2.27)

Yh =


yh11 yh12 yh13 · · · yh1N

yh21 yh22 yh23 · · · yh2N
... ... ... . . . ...

yhK1
yhK2

yhK3
· · · yhKN

 (2.28)
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Ydi =


ydi11 ydi12 ydi13 · · · ydi1N

ydi21 ydi22 ydi23 · · · ydi2N
... ... ... . . . ...

ydiK1
ydiK2

ydiK3
· · · ydiKN

 (2.29)

Each of the rows represent a different sample from the training set popu-

lation and each of the columns represent a specific order in the binned PSD

vector. The PCA technique computes the eigenvectors and corresponding

eigenvalues of the covariance matrix of the training set matrix. Each eigen-

value and corresponding eigenvector explains a percentage of the total vari-

ation of the training set. The larger the eigenvalue, the more representative

the associated eigenvector explains the variation. A total of N eigenval-

ues and eigenvectors are computed, but only the D largest are retained that

explain a certain percentage of the variation (typically 90%). The weight

matrix is given by the D eigenvectors ordered from the largest eigenvalue

to the smallest:

W =


e11 e12 e13 · · · e1N

e21 e22 e23 · · · e2N
... ... ... . . . ...

eD1 eD2 eD3 · · · eDN

 (2.30)

From Equation (2.26), the PCA technique maps the vector y onto the feature

vector (also known as principal component vector), z = [z1, z2, ..., zD]T by

zi = ei1y1 + ei2y2 + ei3y3 + ...+ eiNyN (2.31)

Thus, the first principal component explains the most training set variance,

the second component explains the second most variance, and so on. In

addition, the PCA transforms the set of possibly correlated variables into a

set of principal components which are linearly uncorrelated.
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To demonstrate the methodology, let the PSD vector y consist of N = 4

elements

y = [y1, y2, y3, y4] (2.32)

Each of the components of y correspond to the magnitude of the PSD at a

specific order for a single trial run. Treating each of component of y as a

random variable, each component is assumed to have a specific probability

distribution based on the condition of the EMA. As an example, let yH

denote the PSD vector from a healthy unit containing components that are

normally distributed

yH ∼ [N(1, .01), N(10, .01), N(5, .01), N(4, .01)] (2.33)

The notation N(µ, σ2) is the representation for a normal probability density

with mean µ and variance σ2. Let’s now assume that an EMA with a bearing

inner ring defect has a PSD vector, yD with the following distributions:

yD ∼ [N(1, .01), N(10, .04), N(6, .01), N(4, .01)] (2.34)

In this example, the distribution from the healthy EMA is the same as the

distribution for the EMA with bearing defect except for components y2 and

y3, which have a slightly different variance and a slightly different mean,

respectively. The probability distributions for the healthy and defective sets

are shown in Figure 2.10.
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Figure 2.10: Probability Distributions for Healthy and Defective Sets

A set of 500 samples of training set data is generated according to the

probability distributions for both the healthy and the defective distributions

resulting in a training set vector that is 1000x4. The resulting eigenvalues

and associated eigenvectors of the training set covariance matrix is shown in

Table 2.1. The first eigenvalue contributes 86% of the total variance in the

training set and the weighting of the y3 component dominates. This result

is expected since this component shows the greatest distinction between the

healthy and defective data. The second eigenvalue contributes another 8%

to the total training set variance, largely due to the second component y2

which was the other distinguishing component. For all intents and purposes
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Table 2.1: Computed Eigenvalues and Eigenvectors of Training Set Covariance Matrix

Eigenvector e1 e2 e3 e4
Eigenvalue 0.261 0.024 0.010 0.009
Contribution % 85.7 7.9 3.4 3.1
y1 -0.001 -0.053 0.596 -0.801
y2 0.007 -0.997 -0.074 0.010
y3 -0.999 -0.006 -0.009 -0.005
y4 -0.010 -0.054 0.799 0.599

the last two principal components may be discarded since they contribute

very little to the overall variation. Applying equation 2.31 to each of the

1000 data sets in the training set matrix using only the first two principal

components results in the transformed data in Figure 2.11.
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Figure 2.11: Principal Component Plot of Training Set Data

The principal component plot clearly shows a distinction between data

from the healthy set and data from the defective set. Thus, the PCA tech-

nique has reduced the number of components from four to two (indeed only

one component, PC1 is really needed) without loss of the relevant informa-

tion. Therefore, for a unit with unknown health status, the vector y can be

transformed to the principal component space using the weight matrix com-

puted from the first one or two eigenvectors. The data can then be used to

classify the true state of health of the unit depending on the location of the

data point in the transformed space.
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2.2 Classification

In classification the objective is to assign a class label ŵ to an object with

true class w. The assignment is based on the measurement or feature vector

z. The set of possible classes is defined by the set of K classes

Ω = {w1, · · · , wK} (2.35)

In this application, the object class relates to the health status of an EMA.

For instance, the health status may be defined by the set Ω = { ”Healthy -

Normal Operation”, ”Unhealthy - Defective Motor Bearing”, ”Unhealthy -

Screw Defect”, · · · , ”Unhealthy - Unknown” }. This research uses Bayesian

Classification as the health assessment technique. This type of Classifier

uses Bayes’ Theorem to select the class of an object from a set Ω which are

assumed to be mutually exclusive. The class with the minimum amount of

risk is the class selected by the Bayesian Classifier. According to Bayes’

Theorem, the conditional probability of the object belonging to class wk is

given by

p(wk|z1, · · · , zN) =
p(z1, · · · , zN|wk)P (wk)

p(z1, · · · , zN)
(2.36)

where z1, · · · , zN are the feature variables computed from the feature ex-

traction process. The prior probability that the object belongs to class wk
before any measurements are taken (unconditional) is P (wk). Since the

classes are assumed to be mutually exclusive, the probability of each class

must add up to 1:
K∑
k=1

P (wk) = 1 (2.37)
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The term p(z1, · · · , zN|wk) is the prior conditional probability density of

z1, · · · , zN given that the object belongs to class wk. Conversely, the prob-

ability p(z1, · · · , zN) represents the density of the feature variables with

unknown class. The unconditional density p(z1, · · · , zN) is related to the

conditional densities p(z1, · · · , zN|wk) and the prior probability P (wk), by

p(z1, · · · , zN) =
K∑
k=1

p(z1, · · · , zN|wk)P (wk) (2.38)

The conditional risk associated with selecting class wk given the feature

variables is

R(ŵi|z1, · · · , zN) =
K∑
k=1

C(ŵi|wk)p(wk|z1, · · · , zN) (2.39)

In this equation, the cost function C(ŵi|wk) is the penalty of assigning the

class ŵi coming from an object with true class wk. The decision function

which minimizes the risk is expressed by

ŵBAY ES(z1, · · · , zN) = argmin
wεΩ

{R(ŵi|z1, · · · , zN)} (2.40)

which selects the class wi that minimizes the argument in brackets from

the set of possible classes wεΩ. Substituting Equations 2.39 and 2.36 into

Equation 2.40, yields

ŵBAY ES(z1, · · · , zN) = argmin
wεΩ

{
K∑
k=1

C(w|wk)p(z1, · · · , zN|wk)P (wk)}

(2.41)
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2.2.1 Single Vector Bayesian Classification

In this research the feature variables are lumped into a single vector, z =

[z1, z2, · · · , zN ]. Thus Bayes’ Theorem can be re-written as

p(wk|z) =
p(z|wk)P (wk)

p(z)
(2.42)

and the classifier decision function becomes

ŵBAY ES(z) = argmin
wεΩ

{
K∑
k=1

C(w|wk)p(z|wk)P (wk)} (2.43)

Assuming the conditional density, p(z|wk) is normally distributed, it may

be expressed by the parametric equation

p(z|wk) =
1√

(2π)D|Sk|
exp

(
−1

2
(z− µk)TS−1

k (z− µk)
)

(2.44)

The parameters, µk and Sk represent the expectation vector (mean) and co-

variance matrix, respectively, of the random feature vector z coming from

an object with class wk. Assuming that the mean and covariance matrix are

unknown, they may be estimated from training set data by Equations 2.45

and 2.46, respectively.

µ̂k =
1

Nk

Nk∑
n=1

zn (2.45)

Ŝk =
1

Nk − 1

Nk∑
n=1

(zn − µ̂k)(zn − µ̂k)T (2.46)

The term Nk represents the number of training samples coming from class

wk.

Consider a two class problem, Ωε{w1, w2}, with a feature vector contain-

ing two elements, z = [z1, z2]
T . A training set of 1000 samples are obtained



31

from each of the two classes resulting in the data shown in Figure 2.12.

Note that the data from both classes form two regions in the space [z1, z2]

but have some overlap. The data is assumed to behave according to a normal

distribution described by the parameters µk and Sk (Equation (2.44)). The

mean and covariance parameters may be obtained from the training set data

according to Equation (2.45) and (2.46), respectively.
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Figure 2.12: Principal Component Plot of Training Set Data for Classification Example

For the example it is assumed that there is an equal probability of se-

lecting an object from either class resulting in equal prior probabilities:

P (w1) = P (w2) = 0.5. In addition the identity cost matrix is applied

which assigns a penalty of 1 for a misclassification and a penalty of zero for
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a correct classification

C =

[
0 1

1 0

]
(2.47)

Applying Equation 2.41 to each of the training samples results in the de-

cision boundaries shown in Figure 2.13. This results in 12 out of 1000

samples incorrectly classified as w1 and 11 out of 1000 samples incorrectly

classified as class w2. The mis-classifications are attributed to the overlap

of data in the two classes.
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Figure 2.13: Bayesian Classification with Uniform Cost Function

Suppose that the cost matrix is modified so that there is a higher penalty
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for selecting class w2 when the true class is w1:

C =

[
0 10

1 0

]
(2.48)

The new decision boundary is shown in Figure 2.14 which results in only 2

out of 1000 samples misclassified as w1, but 36 out of 1000 samples mis-

classified as w2.
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Figure 2.14: Bayesian Classification with Non-uniform Cost Function

Viewing the class w1 as coming from an object that is ”normal/healthy”

and w2 as ”abnormal”, these two examples demonstrate that (1) Overlap be-

tween classes will result in incorrect classifications and (2) The cost function
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allows a trade off between missed detections (classified as normal when was

truly abnormal) and false alarms (classified as abnormal when was normal).
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Chapter 3

Simulation

In this section, the feature extraction and fault classification approach is

demonstrated with simulated data. The data is generated for what will be

considered a normal/healthy data set and from two other data sets with dis-

tinct fault frequency components. The signals are constructed to be similar

to what would be expected from a motor current signal for a typical EMA

with a Brushless Permanent Magnet Synchonous Motor (PMSM).

Consider the following fabricated motor velocity signal, ωm, which is

sinusoidal with a frequency of 5 Hz and a range of 0 to 40π rad/sec (1200

RPM) and the associated motor angle, θm:

ωm(t) = 20π (1 + sin(2π5t)) (3.1)

θm(t) = 20πt− 2 cos(2π5t) (3.2)

Let a corresponding EMA current signal, x, be made up of three parts: (1)

a fundamental signal, xf which is characteristic of both a normal/healthy

system and one in the presence of a defect. (2) A defect signal, xd that is

periodic with motor velocity, and (3) a normally distributed noise signal, xn.

The signal is represented by Equation (3.3):

x = xf + xd + xn (3.3)
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where:

xf = 5 sin(6θm) + 0.1 sin(2π100t) (3.4)

xd =


0 Healthy

0.1 sin(3.125θm) Defect1

0.1 sin(10.5θm) Defect2

(3.5)

xn ∼ N(0, .25) (3.6)

The individual and composite signals for the healthy and defective signals

are simulated with a sampling frequency of 2 kHz and are shown in Figures

3.1, 3.2, and 3.3, respectively over a one second interval.
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Figure 3.1: Healthy Generated Data
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Figure 3.2: Defect 1 Generated Data
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Figure 3.3: Defect 2 Generated Data
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3.1 Feature Extraction

The PSD of the composite signal is computed prior to and after resampling

and is shown in Figure 3.4. The PSD prior to resampling was computed

using a single Hanning window of 4096 points, resulting in a frequency

resolution of 0.49 Hz. In this case, the PSD does not appear to be different

between the healthy and defective signals. This is due to the fundamental

frequency being a multiple of the motor speed which spreads the frequency

content of the signal over the frequency range. Since the fundamental signal

dominates, the defective frequency (which is also spread over the frequency

range) is not apparent.

The re-sampled signals were computed with a sampling interval of θs =

0.001 revolutions per sample (1000 samples per revolution). In this case the

PSD was computed using a single Hanning window of 214 points, resulting

in a frequency resolution of 0.06 orders. The fundamental signal appears at

6 orders for the healthy and defective signals as expected. In addition, the

defective components can also been seen for defect 1 (3.1 orders) and defect

2 (10.5 orders), from Equation 3.5.
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Figure 3.4: Simulated PSD Comparisons. Left - prior to resampling. Right - after resam-
pling

Since the signal contains a fundamental component of 6 orders, an ideal

bandpass filter is utilized with a stop band from 5.6 to 6.4 Orders to account

for leakage. Next the re-sampled PSD is grouped into bins of size δb = 1

orders over the range of 0 to 50 orders (Nb = 50), and the remaining orders

are discarded. The filtered PSD and the binned PSDs are shown in Figure

3.5.
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Figure 3.5: Simulated PSD Comparisons. Left - Resampled PSD. Right - Binned PSD

The binned data must be transformed to a lower dimensional space through

the transformation matrix W. The matrix is obtained by forming a training

set matrix, T consisting of multiple runs of data for each of the three data

sets and then performing the PCA on the training set matrix. For the sim-

ulation, a total of 40 sets of data is generated for each of the three signals

- Healthy, Defect 1, and Defect 2. This results in a training set matrix of

size 120 x Nb. The PCA results in 50 eigenvalues and 50 eigenvectors. The

contribution of each eigenvector to the total variance in the training set can

be determined by the size of the eigenvalues. The percent contribution of

each eigenvector to the total variance is shown in Figure 3.6.
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Figure 3.6: Principal Component Contributions to Total Training Set Variance

The first two principal components account for about 72% of the total

variance so the remaining 48 principal components are discarded. The mag-

nitude of the eigenvector components give an indication of the relative im-

portance of the bins to each principal component. The percent contribution

of each bin to the principal component for the first two principal components

are shown in Figure 3.7
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Figure 3.7: Eigenvector Magnitudes for the First Two Principal Components

The largest contributing bin to the first principal component is the 11th

bin (0.72). This bin has a range from 10 to 11 orders and contains defect 2

(10.5 orders). Bin number 4 is the largest contributor to the second principal

component (0.77), having a range of 3 to 4 orders, thus containing defect 1

(3.125 orders). This result is expected since the values in these bins will

be larger when the defect is present, creating a larger variance in the train-

ing set. Note that bins 6, 7, and 8 are also moderate contributors to each

principal component. This is likely due to the leakage of the fundamental

component into neighboring bins. The contribution of these bins may be re-

duced by using a different windowing function or increasing the stop band
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range of the filter. However, the filter stop band range must not be so wide

as to cancel out the orders containing the defects.

Since the first two principal components were selected, the transforma-

tion matrix W is 50 × 2. Multiplying the bin values by the transforma-

tion matrix for each of the training set runs reduces the feature vector from

N = 50 to D = 2 components and results in the scatter plot shown in Fig-

ure 3.8. The class of each data point is indicated in the figure and shows

that each class largely occupies a distinct region in the feature space. The

defect 1 training set population mainly occupies the upper left portion of

the space since the order of defect 1 was the main contributor to the second

principal component (y axis). Likewise, the defect 2 training set population

occupies the far right hand side of the plot since the main contributor for

this defect was the first principal component (x axis). The healthy samples

mainly populate the lower left region, but some samples do spread out be-

tween the defect 1 and 2 populations. The distinctive regions is a desired

result since it will enhance classifier accuracy.
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Figure 3.8: Feature Plot of Simulated Training Set Data

3.2 Classification

The feature data obtained in the previous section is used to determine whether

the data is healthy or contains defect 1 or defect 2. This is done using the

Bayesian Classification approach presented in Chapter 3. In order to per-

form the Bayesian algorithm, two probabilities must be determined: P (wk)

and P (z|wk). For the simulation there is equal probability of having a signal

that is healthy, or contains defect 1 or defect 2. As a consequence the prior

probabilities are set equal:

P (w1) = P (w2) = P (w3) = 1/3 (3.7)
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The subscripts 1, 2, and 3 denote Healthy, Defect 1, or Defect 2, respec-

tively. The conditional density, p(z|w) is determined using parametric learn-

ing where it is assumed that the distribution is gaussian with unknown pa-

rameters µk, and Sk. The parameters are determined from the training set

data using Equations 2.45 and 2.46. Two dimensional contour plots of the

prior probability densities for the training set data are shown in Figure 3.9.

The Bayesian Classifier predicts the class of an object by assigning the

class with the minimum risk according to Equation 2.41. Using a uniform

cost function results in the decision boundaries shown in Figure 3.10. The

feature extraction method combined with the Bayesian Classification results

in Bayes decision boundaries that appear to accurately classify the three

healthy class types for the training set data. 100% of the healthy and de-

fect 2 samples are correctly isolated, and 39/40 or 97.5% of the defect 1

samples are correctly classified. The one mis-classified defect 1 sample was

classified as healthy.
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Figure 3.9: Simulated Data Feature pdf Contour Plot of Training Set Data
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Figure 3.10: Simulated Data Bayes Classifier Boundaries
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Chapter 4

Test Demonstration

The approach presented in Chapter 2 and demonstrated in Chapter 3 will

now be applied using data from two Moog Industrial Max Force EMAs in

a laboratory environment. The first EMA is considered normal/healthy and

the other (which will be referred to as the degraded EMA) has an angular

contact bearing with an inner ring defect and 75% of the normal grease ap-

plied to it. The corresponding mechanical defect frequency for the inner

ring defect is fIR/fr = 6.123. The objective is to show whether the pro-

posed health monitoring architecture is capable of distinguishing between

the two EMAs when tested over a range of operating conditions.

This section is organized as follows: First, a description of the Max

Force EMA and the major sub-assemblies that are critical to its operation

are given. This is followed by a description of the test system and the envi-

ronment in which data is collected. This description includes the test fixture,

sensors, signal conditioners, and data collection equipment. Next, the test

profile used for the data collection on the EMAs is given along with plots

showing the sensor output data. Finally, the signal data is transformed using

the proposed health monitoring approach and the results are presented and

compared using two different training methods.
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4.1 EMA Description

Electro-Mechanical Actuators convert electromagnetic energy into mechan-

ical energy to provide a position output. In flight control applications, EMAs

may be used to position flight control surfaces for controlling the motion of

an aircraft. The Max Force EMA includes a three phase permanent magnet

synchronous motor that responds to voltage commands to provide rotational

output of a screw rigidly coupled to the rotor. A nut is coupled to the screw

by steel balls that circulate along the single race of the screw. Rotational

motion of the screw is converted to translational motion by constraining the

ball-nut so that it may only traverse along the screw. This translation of

the nut provides the output motion of the piston rod. A simplified cross

sectional view of the EMA is shown in Figure 4.1 and the EMA specifi-

cations are given in Table 4.1. Note that according to Equation (2.3), the

fundamental current frequency for this motor is, fe/fr = 6. The key sens-

ing element inherent to the EMA is a resolver for sensing motor angle for

feedback control.



49

 

Figure 4.1: Max Force EMA Cross Section

Table 4.1: Max Force EMA Technical Specifications

Stroke 6 inches
Force Capability 3700 lbf @ 15.6 Arms
Peak Motor Velocity 4572 RPM at 220 VAC
Number of Motor Poles 12

4.2 Laboratory Setup

The laboratory setup consists of the following elements:

• The EMA itself

• A hydraulic load actuator

• Position and load sensing devices
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• A test fixture

• A Moog T200 Motor Controller

• Signal Conditioning Equipment

• A windows based computer with dSpace software and hardware

The EMA is suspended vertically in the test fixture with the piston rod end

attached to a rotating clevis near the top of the fixture. The hydraulic load

actuator is also suspended vertically and attached at the opposite end of the

clevis. The hydraulic load actuator contains an Electrohydraulic Servovalve

(EHSV) which is commanded in a closed loop fashion to control the load

applied to the EMA. A load cell is included in the test fixture to measure the

actuator load. The test fixture with EMA installed is shown in Figure 4.2.

The dSpace computer with Matlab/Simulink is used for implementing

the EMA position and load actuator controller, and also provides the data

acquisition and signal scaling. Position feedback is provided by an exter-

nally mounted LVDT, and the load feedback is accomplished by a differ-

ential pressure transducer on the hydraulic load actuator which senses the

pressure at the actuator piston. An Accelerometer is mounted to the EMA

housing near the degraded motor bearing for vibration measurement. The

sampling rate of the data acquisition is set to 48kHz and signal condition-

ing filters set at 15kHz are used prior to analog to digital conversion for

preventing signal aliasing. The position controller outputs a velocity com-

mand which is used as the input to the T200 motor velocity controller. The

controller uses the resolver and motor phase current feedback signals to pro-

duce compensated voltage commands to the motor coil windings. A signal

diagram is shown in Figure 4.3 with sensor characteristics listed in Table

4.2.
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Table 4.2: Transducer Signal Scaling

Transducer Sensor Scale Peak
Accelerometer PCB 352A24 1 g/Volt 10 g’s full scale

Motor Phase Current LEM LA 25-P 5 Amps/Volt +/-50 Amps
Load Cell Model 75 Sensotec 1000 lbs/Volt +/-5500 lbs Max Test

Motor Velocity T200 Output 500 RPM/Volt +/- 4700 RPM
LVDT Penny Giles 0.5 in/Volt +/- 3 in
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4.3 Results

In order to demonstrate the performance of the health monitoring scheme,

data from the EMA is collected over the operating conditions shown in Ta-

ble 4.3, which are typical of conditions for an Aircraft Spoiler EMA duty

cycle scaled for the Max Force EMA. Data is collected from each condition

20 times for both the healthy and degraded EMAs. The first ten data sets

for each condition are used for training to obtain the transformation matrix

and estimating the parameters of the probability densities for the Bayesian
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Classification. The remaining ten data sets are used for validation and test-

ing. Two different training schemes are employed: In the first case training

is done on a per condition basis, i.e. training is done separately for each

condition so that Bayesian decision boundaries are tailored to the operating

condition. This type of training scheme is suitable when the operating con-

dition (e.g. position command and load) is known or when it is possible to

determine the operating condition so that the appropriate classifier parame-

ters can be applied. In the second case, training is done by combining the

training data for each of the conditions so that only one Bayesian classi-

fier can be used under any operating condition. This type of classification

scheme is more suitable when the operating condition is unknown. For each

of the test conditions, the parameter settings shown in Table 4.4 are used.

The angular sampling period was chosen so that the PSD would contain a

maximum of 100 orders and is also small enough to prevent signal aliasing.

The approach will be evaluated separately using the following input sig-

nals: motor phase A current, motor bearing housing vibration, motor veloc-

ity and EMA position as shown in Figure 4.4. This approach was chosen

to assess which signals give the best insight into EMA condition. The re-

sults will be displayed for each signal over each operating condition in the

following order:

1. Position and Load command and feedback plots

2. Time sampled signal data (LVDT position, motor velocity, motor cur-

rent, and vibration )

3. Resampled and filtered PSD plots of signal data

4. Binned PSD plots of signal data
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5. Feature data scatter plots with Bayesian decision boundaries for con-

dition based training scheme

6. Feature data scatter plots with Bayesian decision boundaries for con-

dition independent training scheme

In items 1-4, the healthy EMA data is plotted first followed by degraded

EMA data for one run in each condition. Items 5-6 summarize the final

feature data and classification results for both training and test/validation

data sets.

Table 4.3: Max Force EMA Test Profile

Actuator Command Load Command Data Set Uses
Condition Command Bias Amp. Freq. Spring Rate Bias

Training Test
No. Type [in] [in] Hz [lbf/in] [lbf]
1 Sine 1.90 0.10 0.70 0 116 1-10 11-20
2 Triangle 1.40 -0.90 1.00 0 278 1-10 11-20
3 Triangle 0.25 2.05 2.14 0 660 1-10 11-20
4 Sine 0.10 -2.20 0.70 -1210 -1867 1-10 11-20
5 Triangle 1.15 -1.55 0.41 -550 255 1-10 11-20

Table 4.4: Feature Extraction and Classification Parameters

Parameter Description Value
θs Spatial Sampling Period .02 π rad/Sample
δb Bin Size 1 order

C(w|wk) Cost Function Uniform
P (wk) Prior Probability 0.5 (Equal)
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Figure 4.5: Condition 1 Healthy Command Signals.
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Figure 4.6: Condition 1 Degraded Command Signals.



57

0 2 4 6
−2

−1

0

1

2

Time [sec]

P
os

iti
on

 [i
n]

LVDT Position

 

 
Command
Measured

0 2 4 6

−2000

−1000

0

1000

2000

Time [sec]

V
el

oc
ity

 [r
pm

]

Motor Velocity

0 2 4 6

−5

0

5

Time [sec]

C
ur

re
nt

 [A
]

Phase A Current

0 2 4 6

−5

0

5

Time [sec]

A
cc

el
er

at
io

n 
[g

]

Y Accelerometer

Figure 4.7: Condition 1 Healthy EMA Data.
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Figure 4.8: Condition 1 Degraded EMA Data.
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Figure 4.9: Condition 1 Healthy EMA Resampled PSD Data.
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Figure 4.10: Condition 1 Degraded EMA Resampled PSD Data.
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Figure 4.11: Condition 1 Healthy EMA Binned PSD Data.
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Figure 4.12: Condition 1 Degraded EMA Binned PSD Data.
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Figure 4.13: Condition 1 Training Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.14: Condition 1 Test Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.15: Condition 1 Training Set Data Feature Plots - Condition Independent Training Method
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Figure 4.16: Condition 1 Test Set Data Feature Plots - Condition Independent Training Method
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4.3.2 Condition 2
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Figure 4.17: Condition 2 Healthy Command Signals.
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Figure 4.18: Condition 2 Degraded Command Signals.
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Figure 4.19: Condition 2 Healthy EMA Data.
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Figure 4.20: Condition 2 Degraded EMA Data.
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Figure 4.21: Condition 2 Healthy EMA Resampled PSD Data.
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Figure 4.22: Condition 2 Degraded EMA Resampled PSD Data.
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Figure 4.23: Condition 2 Healthy EMA Binned PSD Data.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

x 10
−5

Bin #

B
in

ne
d 

P
S

D
 [i

n2 ]

LVDT Position

0 20 40 60 80 100
0

2

4

6

8

10

12

Bin #

B
in

ne
d 

P
S

D
 [r

ev
2 /m

in
2 ]

Motor Velocity

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

Bin #

B
in

ne
d 

P
S

D
 [A

2 ]

Phase A Current

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Bin #

B
in

ne
d 

P
S

D
 [g

2 ]

Y Accelerometer

Figure 4.24: Condition 2 Degraded EMA Binned PSD Data.
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Figure 4.25: Condition 2 Training Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.26: Condition 2 Test Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.27: Condition 2 Training Set Data Feature Plots - Condition Independent Training Method
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Figure 4.28: Condition 2 Test Set Data Feature Plots - Condition Independent Training Method
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4.3.3 Condition 3
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Figure 4.29: Condition 3 Healthy Command Signals.
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Figure 4.30: Condition 3 Degraded Command Signals.
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Figure 4.31: Condition 3 Healthy EMA Data.
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Figure 4.32: Condition 3 Degraded EMA Data.
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Figure 4.33: Condition 3 Healthy EMA Resampled PSD Data.
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Figure 4.34: Condition 3 Degraded EMA Resampled PSD Data.



71

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
x 10

−4

Bin #

B
in

ne
d 

P
S

D
 [i

n2 ]

LVDT Position

0 20 40 60 80 100
0

2

4

6

8

10

12

Bin #

B
in

ne
d 

P
S

D
 [r

ev
2 /m

in
2 ]

Motor Velocity

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Bin #

B
in

ne
d 

P
S

D
 [A

2 ]

Phase A Current

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Bin #

B
in

ne
d 

P
S

D
 [g

2 ]

Y Accelerometer

Figure 4.35: Condition 3 Healthy EMA Binned PSD Data.
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Figure 4.36: Condition 3 Degraded EMA Binned PSD Data.
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Figure 4.37: Condition 3 Training Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.38: Condition 3 Test Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.39: Condition 3 Training Set Data Feature Plots - Condition Independent Training Method
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Figure 4.40: Condition 3 Test Set Data Feature Plots - Condition Independent Training Method
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4.3.4 Condition 4
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Figure 4.41: Condition 4 Healthy Command Signals.
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Figure 4.42: Condition 4 Degraded Command Signals.



75

0 2 4 6

−2.6

−2.4

−2.2

−2

−1.8

Time [sec]

P
os

iti
on

 [i
n]

LVDT Position

 

 
Command
Measured

0 2 4 6

−200

−100

0

100

200

Time [sec]

V
el

oc
ity

 [r
pm

]

Motor Velocity

0 2 4 6
−10

−5

0

5

Time [sec]

C
ur

re
nt

 [A
]

Phase A Current

0 2 4 6

−0.2

−0.1

0

0.1

0.2

Time [sec]

A
cc

el
er

at
io

n 
[g

]

Y Accelerometer

Figure 4.43: Condition 4 Healthy EMA Data.
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Figure 4.44: Condition 4 Degraded EMA Data.
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Figure 4.45: Condition 4 Healthy EMA Resampled PSD Data.
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Figure 4.46: Condition 4 Degraded EMA Resampled PSD Data.
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Figure 4.47: Condition 4 Healthy EMA Binned PSD Data.
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Figure 4.48: Condition 4 Degraded EMA Binned PSD Data.
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Figure 4.49: Condition 4 Training Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.50: Condition 4 Test Set Data Feature Plots - Condition Dependent Training Method



79

−1 0 1 2 3 4

x 10
−4

−15

−10

−5

0

5
x 10

−5

z
1

z 2

LVDT Position

−50 0 50 100 150 200
−60

−40

−20

0

20

40

60

z
1

z 2

Motor Velocity

−1.5 −1 −0.5 0 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

z
1

z 2

Phase A Current

−4 −2 0 2 4 6

x 10
−3

−1

−0.5

0

0.5

1

1.5
x 10

−3

z
1

z 2

Y Accelerometer

 

 
Healthy
Degraded
Decision Bounds

Figure 4.51: Condition 4 Training Set Data Feature Plots - Condition Independent Training Method
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Figure 4.52: Condition 4 Test Set Data Feature Plots - Condition Independent Training Method
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4.3.5 Condition 5
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Figure 4.53: Condition 5 Healthy Command Signals.
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Figure 4.54: Condition 5 Degraded Command Signals.
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Figure 4.55: Condition 5 Healthy EMA Data.
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Figure 4.56: Condition 5 Degraded EMA Data.
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Figure 4.57: Condition 5 Healthy EMA Resampled PSD Data.

0 20 40 60 80 100
0

2

4

6

8

x 10
−4

Order [rev−1]

P
S

D
 [i

n2 −
re

v]

LVDT Position

0 20 40 60 80 100
0

10

20

30

40

50

60

Order [rev−1]

P
S

D
 [r

ev
3 /m

in
2 ]

Motor Velocity

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Order [rev−1]

P
S

D
 [A

2 −
re

v]

Phase A Current

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Order [rev−1]

P
S

D
 [g

2 −
re

v]

Y Accelerometer

Figure 4.58: Condition 5 Degraded EMA Resampled PSD Data.
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Figure 4.59: Condition 5 Healthy EMA Binned PSD Data.
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Figure 4.60: Condition 5 Degraded EMA Binned PSD Data.
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Figure 4.61: Condition 5 Training Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.62: Condition 5 Test Set Data Feature Plots - Condition Dependent Training Method
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Figure 4.63: Condition 5 Training Set Data Feature Plots - Condition Independent Training Method
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Figure 4.64: Condition 5 Test Set Data Feature Plots - Condition Independent Training Method
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4.4 Results Summary

The overall performance of the feature extraction and classification tech-

nique may be summarized by the number of correct, false positive, and

false negative classifications. A classification is counted as correct when

data from the healthy unit is classified as ”healthy” or when the data from

the degraded unit is classified as ”degraded”. A false positive is when data

from the healthy EMA is classified as ”degraded”, and a false negative is

when degraded EMA data is classified as ”healthy”. Figures 4.65 through

4.68 show the performance metrics for each signal over the five operating

conditions for the case where training was performed separately for each

condition. Table 4.5 summarizes the total number of correct classifications,

false negatives and false positives for each signal. For this training case, the

results show a high correct classification percentage with very few false pos-

itives and false negatives for each signal. The results with the LVDT, Motor

Velocity and Accelerometer signals all have correct classification percent-

ages of 99% or greater when summarized over all conditions. The Phase A

current had a slightly less correct classification rate with 5% false positions

and 10% false negatives.
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Figure 4.65: LVDT Performance Metrics - Condition Based Training
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Figure 4.66: Motor Velocity Performance Metrics - Condition Based Training
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Figure 4.67: Phase A Current Performance Metrics - Condition Based Training
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Figure 4.68: Y Axis Accelerometer Performance Metrics - Condition Based Training
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Table 4.5: Classification Statistics with a Classifier per Condition

Signal % Correct % False Positives % False Negatives
LVDT 100 0 0

Motor Velocity 99 1 0
Current 85 5 10

Y Accelerometer 99 1 0

Similarly, the classification results with the condition independent train-

ing method are plotted in Figures 4.69 through 4.72 and summarized in

Table 4.6. Although the results are less impressive compared to training

method 1, a decrease in classifier performance is expected since each oper-

ating condition will produce different signal characteristics and some condi-

tions are more likely to expose a defect than others. For instance, conditions

with higher speeds and loads will produce greater vibrations in the presence

of a defect than in conditions where speeds and/or loads are lower.
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Figure 4.69: LVDT Performance Metrics - Condition Independent Training
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Figure 4.70: Motor Velocity Performance Metrics - Condition Independent Training
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Figure 4.71: Phase A Current Performance Metrics - Condition Independent Training
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Figure 4.72: Y Axis Accelerometer Performance Metrics - Condition Independent Training
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Table 4.6: Classification Statistics with a Single Classifier

% Correct % False Positives % False Negatives
LVDT 76 20 4

Motor Velocity 60 38 2
Current 55 39 6

Y Accelerometer 69 11 20

4.5 Discussion

In order to explain and validate the results for both training cases, a closer

look at the raw and processed data for each signal must be done to determine

if the classifier is exposing features in the data due to the presence of the

bearing defect as desired or of some other phenomena.

The accelerometer signal was a good indicator of EMA condition, having

sharp peaks at harmonics of the bearing inner ring defect frequency for the

degraded EMA. The magnitude of the peaks was largest for conditions 1

and 2 where motor speeds were the highest (ref. Figure 4.10 and 4.22).

For the other conditions where motor speed was lower, the PSD magnitudes

were smaller but could still be distinguished from the healthy accelerometer

data. This resulted in a low number of false positives and false negatives,

especially for the case where training was performed separately on each

condition. In fact, no samples were misclassified for conditions 1 and 2 for

both training methods. For the conditions where motor speed was lower, the

number of incorrect classifications increased for the condition independent

training method.

The Phase Current signal was expected to be a good signal for EMA

condition monitoring, since it had been used in other research to detect faults
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in motor controlled systems. However, for the classifiers trained for each

condition, the correct classification percentage was the lowest of any signal

at 85%. This is mainly due to the fact that the separation between the healthy

and degraded EMA samples in the feature plots was very small compared

with the other signals and often overlapped making correct classification

difficult. However, the classifier seems to be most successful for conditions

1 and 2 where motor speed is the highest. The PSD plots for these cases

show large sidebands around the fundamental frequency (6 orders) which

may be due to the deficient lubrication (ref. Figure 4.10 and 4.22). At lower

speeds these sidebands are less pronounced and the healthy EMA samples

begin to show larger PSD magnitudes, much like they did for the LVDT and

motor velocity signals for conditions 3-5. It was also expected that the Phase

Current PSD would show bearing defects at harmonics of the motor current

defect frequency according to Equation (2.4). However since the defect

frequencies (fc/fr = |6 + 6.123m|) happened to line up almost directly

with the harmonics of the fundamental frequency (fe/fr = 6), exposure of

the defect in the PSD signal was not possible.

Surprisingly, the LVDT signal had the lowest number of false positives

and false negatives of any signal for both training cases. However, fur-

ther inspection of the resampled PSD data shows that the healthy EMA has

greater amplitudes compared with the degraded EMA, with noticeable peaks

at orders of 12 and 36. Since the motor electrical frequency is at 6 orders (6

times the motor frequency) it is possible that electrical noise from the motor

was corrupting the LVDT signal when data was collected for the healthy

EMA but not as much for the degraded EMA. Since the PCA technique

aims to exploit the largest variations in the training set data, this is enough
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to cause the weight matrix to be the most sensitive at these orders, result-

ing in the classification to be based on the noise rather than the defect. A

similar explanation follows for the motor velocity signal where the healthy

EMA data also had larger amplitudes in the PSD signal.
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Chapter 5

Conclusions

This research presented a data driven approach to EMA condition monitor-

ing based on frequency domain feature extraction. Simulation and labora-

tory results showed the technique was capable of classifying condition of

EMAs over non-steady loads and speeds when healthy and defective EMAs

contain distinct frequency domain characteristics. This is a significant im-

provement over past research which cited the non-steady EMA operation as

a reason for missed detections. For instance, accelerometer data collected

for the degraded EMA with inner ring bearing defect clearly showed the de-

fect in the re-sampled PSD signal at distinct frequencies even when motor

speed was not steady, which allowed the fault to be detected. The simula-

tion results also showed that multiple distinct defect signatures synchronous

with motor position present in data could be isolated with non-steady motor

velocities. As a data driven approach, no models or prior knowledge of the

EMA faults was needed. Instead training data collected from the degraded

and healthy EMAs was used to train the feature extraction and classification

algorithms. A trained feature transformation matrix was used to deal with

contending features and reduce the feature data prior to classification. In

this research, frequency domain features were reduced from a dimension of

100 to 2 while retaining the most important frequency information.

Although the simulation was important for validating the approach, there
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were some important conclusions that could be drawn from the laboratory

results that could not be gleaned from the simulated data. Accelerometer

data proved to be the best signal for EMA condition monitoring, clearly

showing the defect in the resampled PSD and resulted in a small percentage

of false negatives and positives. Although motor current was not a good sig-

nal for detecting the bearing fault, it is inconclusive whether or not motor

phase currents are good signals for condition monitoring of EMAs since the

defect frequencies overlapped with the fundamental current frequency. The

LVDT and motor velocity signals had a surprisingly high correct classifica-

tion rate. However, inspection of the data revealed higher noise content for

these signals when data was collected for the Healthy EMA so the feature

extraction and classification algorithms were trained to distinguish the noise

rather than the defect.

Two training methods were also explored in the laboratory demonstra-

tion. In the first method, training was done separately for each condition

so that Bayesian decision boundaries were tailored for each condition. This

resulted in a low amount of false positives and false negatives for each sig-

nal. Implementation of this scheme would require the operating condition

(load and motor speed) to be known or able to be determined. The sec-

ond training method was done once using data from all conditions. In this

method, only one trained algorithm is needed no matter what the operating

condition. This method worked best with accelerometer data in conditions

with higher motor velocities. This is expected since conditions with higher

speeds and loads will produce greater vibrations in the presence of a defect

than in conditions where speeds and/or loads are lower. This leads to the

conclusion that not all conditions are appropriate for making condition as-

sessments and that conditions with higher loads and speeds are better for
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fault detection and isolation with this approach.

There are several next steps that can be taken to further improve upon

the EMA condition monitoring approach and the results. First, this research

used motor velocity, position, current and vibration signals separately to

arrive at separate condition assessments. Several options can be explored

in order to form a single condition assessment. For instance, the separate

condition assessments can be fused together to form a single result, or the

feature data from each signal can be input to a single classifier. Secondly,

the feature extraction process may be improved by exploring the relation-

ships and correlations between sensors, instead of analyzing each signal

separately. For example, the cross power spectrum and frequency response

functions are other methods that can be used to explore the relationship be-

tween signals in the frequency domain which may give further insight into

the health of EMAs as they degrade.

Third, the results presented in this research utilized only one healthy and

one degraded EMA for training and testing the condition monitoring algo-

rithms. In order to get a better statistical distribution and characterize unit

to unit variances, data from several other healthy and degraded EMAs can

be incorporated. Fourth, simulation results showed that it was possible to

isolate more than one defect, but only a bearing defect was utilized in the

laboratory demonstration. Future EMA testing will also include other types

of critical faults to validate the isolation of faults in an EMA. Testing other

defects would also help to evaluate motor current as a viable signal for EMA

condition monitoring since the motor current bearing defect frequency co-

incided with the fundamental current frequency in the lab demonstration.

Finally, this research focused on the feature extraction and fault diagnosis

portions of Integrated Health Management for EMAs. To better facilitate
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maintenance operations and decision support in the field, prognostics capa-

bilities need to be added that provide advanced warning of failure.
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