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ABSTRACT 
As developers face ever-increasing pressure to engineer secure software, 

researchers are building an understanding of security-sensitive bugs (i.e. 

vulnerabilities). Research into mining software repositories has greatly increased 

our understanding of software quality via empirical study of bugs. However, 

conceptually vulnerabilities are different from bugs: they represent abusive 

functionality as opposed to wrong or insufficient functionality commonly 

associated with traditional, non-security bugs. In this study, we performed an in-

depth analysis of the Chromium project to empirically examine the relationship 

between bugs and vulnerabilities. We mined 374,686 bugs and 703 post-release 

vulnerabilities over five Chromium releases that span six years of development. 

Using logistic regression analysis, we examined how various categories of pre-

release bugs and review experiences (e.g. stability, compatibility, etc.) are 

associated with post-release vulnerabilities. While we found statistically significant 

correlations between our metrics and post-release vulnerabilities, we also found the 

association to be weak. Number of features, SLOC, and number of pre-release 

security bugs are, in general, more closely associated with post-release 

vulnerabilities than any of our non-security bug categories. In a separate analysis, 

we found that the files with highest defect density did not intersect with the files of 

highest vulnerability density. These results indicate that bugs and vulnerabilities 

are empirically dissimilar groups, warranting the need for more research targeting 

vulnerabilities specifically. 
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Abstract—As developers face ever-increasing pressure to engi-
neer secure software, researchers are building an understanding
of security-sensitive bugs (i.e. vulnerabilities). Research into
mining software repositories has greatly increased our un-
derstanding of software quality via empirical study of bugs.
However, conceptually vulnerabilities are different from bugs:
they represent abusive functionality as opposed to wrong or
insufficient functionality commonly associated with traditional,
non-security bugs. In this study, we performed an in-depth
analysis of the Chromium project to empirically examine the
relationship between bugs and vulnerabilities. We mined 374,686
bugs and 703 post-release vulnerabilities over five Chromium
releases that span six years of development. Using logistic
regression analysis, we examined how various categories of pre-
release bugs and review experiences (e.g. stability, compatibility,
etc.) are associated with post-release vulnerabilities. While we
found statistically significant correlations between our metrics
and post-release vulnerabilities, we also found the association
to be weak. Number of features, SLOC, and number of pre-
release security bugs are, in general, more closely associated
with post-release vulnerabilities than any of our non-security
bug categories. In a separate analysis, we found that the files
with highest defect density did not intersect with the files of
highest vulnerability density. These results indicate that bugs
and vulnerabilities are empirically dissimilar groups, warranting
the need for more research targeting vulnerabilities specifically.

I. INTRODUCTION

Developers are facing an ever-increasing pressure to en-
gineer secure software. A simple coding mistake or design
flaw can lead to an exploitable vulnerability if discovered by
the wrong people. These vulnerabilities, while rare, can have
catastrophic and irreversible impact on our increasingly digital
lives. Vulnerabilities as recent as Shellshock and Heartbleed
are reminders that small mistakes can lead to widespread
problems. To engineer secure software, developers need a
scientifically rigorous understanding of how to detect and
prevent vulnerabilities.

We can build an understanding of vulnerabilities by viewing
them as security-sensitive bugs. That is, a vulnerability can
be defined as a “software defect that violates an [implicit or
explicit] security policy” [1]. Research into mining software
repositories has greatly increased our understanding of soft-
ware quality via empirical study of bugs. Researchers have
provided a myriad of metrics, prediction models, hypothesis

tests, and other actionable empirical insight that speak to the
nature of bugs [2]–[4]. At first glance, research on software
quality should translate to software security.

However, vulnerabilities are conceptually different than tra-
ditional bugs. Vulnerabilities represent an abuse of functiona-
lity as opposed to wrong or insufficient functionality com-
monly associated with non-security bugs. Vulnerabilities are
about allowing “too much” functionality so as to be open to
attack. For example, an open permissions policy may function
perfectly well for most users, but would be quickly exploited
by attackers. Or, a simple memory leak can be coerced into
denial-of-service attack. As a result, vulnerabilities are about
what the system is supposed to prevent from happening beyond
the functionality that the customer requires.

Thus, the relationship between bugs and vulnerabilities
deserves empirical examination. In particular, can software
quality problems foreshadow security problems? If the corre-
lation between bugs and vulnerabilities is strong, then empiri-
cal analyses should focus primarily the super-group of bugs.
If not, perhaps some subgroups of bugs (e.g. stability bugs)
may foreshadow vulnerability problems in the future.

Furthermore we examine the association of bugs and
vulnerabilities in terms of the social aspects present in the
development environment, evaluating code review effective-
ness and participant experience, in particular how experience
in reviewing bug issues translates to increased vulnerability
awareness. If the difference between bugs and vulnerabilities
is strong, a person experienced reviewing bugs might not be
prepared to identify security problems.

The objective of this research is improve our fundamental
understanding of vulnerabilities by empirically evaluating the
connections between bugs and vulnerabilities. We conducted
an in-depth analysis of the Chromium open source project
(a.k.a Google Chrome). We collected code reviews, post-
release vulnerabilities, version control data, and bug data over
six years of the project. We conducted regression analysis
to evaluate the strength of association, along with examining
subgroups and various rankings of the files. We repeated our
analysis across five annual releases to gauge the sensitivity of
the results. We focused on the following research questions
(and had the following results):



RQ1. Are source code files fixed for bugs likely to be fixed
for future vulnerabilities? (We found that files with more pre-
release bugs are slightly more likely to present post-release
vulnerabilities.)
RQ2. Are some types of bugs more closely related to vulnera-
bilities than others? (Here we discovered that while of some
types of pre-release bugs present a stronger association than
others to post-release vulnerabilities, this relation is overall
weak.)
RQ3. Do the source code files with the most bugs also
have the most vulnerabilities? (We found that files with the
top count of pre-release bugs have only some post-release
vulnerabilities.)
RQ4. Does experience in reviewing bugs boost vulnerabilities
awareness? (Our results indicate that bug experience is
slightly a better metric than number of bugs, but stills has a
small influence on the amount of vulnerabilities that make it
pass the review stage.)
The rest of the paper is organized as follows. Sections II

and III cover the terminology and related work introducing the
concepts to understand of the paper. Section IV we present
our research questions. In Section V we introduce and explain
the Chromium browser. Section VI explains our analysis
methodology approach, answers the research questions and
discusses the results. Section VII we discuss the threats to
validity and we finally conclude in Section VIII with a brief
summary.

II. TERMINOLOGY

We use various technical and statistical terms with respect
to processing and analyzing the data. We define these terms
first ensuring that the essence of the paper can be understood
by a broader audience.

A. Data terms

When we refer to a release, we are referring to a milestone
in the software development life cycle for our case study
project. Releases represent a snapshot of all source code files
at a specific point in time. The project evolves from release to
release through small changes called commits. The commits
represent unique changes to the source code of the project,
and are recorded by a version control system (e.g. Git). We
also make the special distinction between non-security related
software flaws (bugs), that manifest as the lack of expected
functionality. Security related software flaws (vulnerabilities)
manifest as violation of the system’s security policies [1]. We
categorize files of a release as vulnerable if they were fixed
as a result of a vulnerability post-release, and other files are
neutral (i.e. no vulnerabilities were known to be associated
with them).

We also use the metric Source lines of code (SLOC) as a
measurement of file size. In this study source comments or
whitespace are not considered SLOC. SLOC forms part of a
group called traditional software metrics [5] (Other metrics in
this group are Code Churn and ciclomatic complexity).

We also employ term experience to measure the number
of reviewers that had previously participate in a review on a
specific bug type.

B. Statistics terms

Spearman correlation coefficient: This is a statistical test for
measuring the association between two or more variables. This
metric has the ability to rank the strength of the correlation
between variables. The following scale is used to measure and
interpret the result values [6]: a) ± 0.00 - 0.30 “Negligible”
b) ± 0.30 - 0.50 “Low correlation” c) ± 0.50 - 0.70 “Moderate
correlation” d) ± 0.70 - 0.90 “High correlation” e) and ± 0.90
- 1.00 “very High correlation”.

Mann-Whitney-Wilcoxon test (MWW): This test evaluates
the difference in values of two populations, and reveals if the
two populations are statistically equal when compared against
a null hypothesis. Previous software metrics studies [4], [7]
have suggested this as suitable test for validating software
metrics.

Cohen’s D Statistic: The Cohen’s D is an effect size
measure that evaluates the strength of a phenomenon [8],
[9]. While MWW measures statistical significance, it does not
measures the strength of the association. In this study we make
use of the Cohen’s D to support the results of the MWW test
and measure how closely related the vulnerable population is
to neutral population. Cohen’s D is defined as:

δ =
mean difference

standard deviation
The original paper measures in terms of non-overlap percen-
tage, We use the inverse of that measure [10] in this paper ,
where a lower Cohen’s D indicates that a larger overlap exists.
The following scale was proposed originally by the authors
[11] to interpret the results in terms of non-overlap: a) 0.20
“Small” b) 0.50 “Medium” c) or 0.80 “Large”.

Logistic Regression: Logistic regression analysis predicts
the possibility of a binary outcome based on a set of indicator
variables. The goal of a logistic regression is to find the
equation (the right combination of indicator variables) that
best predicts the probability of a true or false outcome [2],
[12].

Akaike information criterion (AIC): This is a measure of
relative model fitness calculated on generalized models. This
metric can be used to rate a group of models and find the best
one among them. By itself the AIC is not a measure of how
fitted the model is, but instead it is relative rank, suitable for
comparing with other models that were trained using the same
data set. A lower the AIC value, means a better fit model [2],
[13], [14].

Percent of deviance explained (D2): This measure indicates
how well the data fits a statistical model. D-squared is the
equivalent measure of R-squared for linear models [2], [15],
except that this metric is employed to evaluate the amount of
deviance that the model accounts for. This measure can also be
used to evaluate the goodness of fit of a group of generalized
linear models. A higher D2 means a better fit model.



Precision and recall: When we use logistic regression to
predict the outcome of a binary variable, the model can
make two types of mistakes: False Positives (FP ) and False
Negatives (FN ). False positives are when the model identified
neutral file as vulnerable, and false negatives are when the
model identifies a vulnerable file as neutral. The relevant
values are defined as True Positives (TP ) and True Negatives
(FN ), when the model accurately identifies a vulnerable or
neutral file.

Precision is defined as the fraction of all the predictions that
are relevant , that is precision = TP

(TP+FP ) . Recall is defined
as the fraction of all relevant instances that are retrieved, that
is recall = TP

(TP+FN) . To serve as example and to explain the
application of this metric in our study we present the following
scenario: Imagine a data set of 50 files, from which 30 files are
known to be “vulnerable”. Then we use a model to retrieve
30 files, if the model is able to identify 10 vulnerable files
correctly but misidentifies on 20 files, here precision = 10

20
and recall = 10

30 .
F-measure: This is a metric that can be interpreted the as

a weighted average of precision and recall. It is considered a
more complete metric that using only precision and recall [16]
because it takes into account both values. The F-measure is
defined as:

F1 = 2 · precision · recall
precision + recall

Area Under the ROC Curve (AUC): Receiver operating
characteristic curves can be used to graphically represent the
performance of a logistic model by plotting the precision and
recall. The area under the ROC curve measures the ability
of the model to correctly classify the binary outcome. To
understand this concept, consider the following example: We
have separated the files in vulnerable and neutral; after that we
randomly select two files one from the vulnerable group and
one from the neutral group and then use a model to predict
the outcome (Vulnerable or Neutral); the AUC represents the
percentage of observations in which the model will be able to
discriminate correctly between two files.

III. RELATED WORK

Other researchers have studied the relationship between
bugs and vulnerabilities, and this work extends those questions
with further analysis and a larger data set. Gegick, M. et al.
[3], [17] studied the prediction of attack prone components,
by identifying and ranking components that are more likely
to present vulnerabilities. These rankings were proposed to
prioritize the security risk management efforts. In their study
they used automated static analysis tools to calculate different
metrics and show how these metrics relate with a higher
vulnerability risk. This study directly relates with our research,
as it tries to evaluate vulnerability-proneness in files based
on non-security factors (i.e. code churn, SLOC, and previous
manual inspections), we go a step further by taking account
multiple releases as factor.

In a prior study by Meneely, A. et al. [4], the authors evalua-
ted code review effectiveness and the Linus laws applying in

terms of vulnerabilities. Investigating if “many eyes make all
the bugs shallow”, also apply to vulnerabilities. The results
from this previous study show that contrasted with traditional
bugs, vulnerabilities are still missed by many reviewers, indi-
cating an intrinsic difference in the two groups, that we aim to
clarify. We have expanded the data set from this previous study
and have included four additional releases, introduced the bug
report data and recollected the commit logs, code reviews and
vulnerability entries. Additionally we have included five new
types of developer experience metrics.

On another study Bosu A. [18] studied specifically how ex-
perience affects the effectiveness of the code reviews in terms
of vulnerabilities. Their results show that the contribution of
inexperienced developers were 1.8 to 24 times more likely to
be vulnerable. This work focuses more on the commits that
contributed the security failures, in contrast here we examine
the history of the files, and account for specific types of bug
related experience.

Studies have shown the potential use of logistic regression
analysis as a way to predict future software flaws, based on
traditional software metrics [5] and defects. A previous study
by T.-H Chen et al. [2] shows the use of logistic regression
analysis using various static and historical defects metrics to
explain future software defects. This study takes into account
the defect history of each topic and evaluate the probability
of future defects. We borrow the historical analysis from their
approach by apply it to the evaluation of future vulnerability.
Also Shihab et al. [19] evaluated different software metrics
in look for patterns that lead to high impact defects. These
defects break the functionality of production software systems
and cause a negative impact on customer satisfaction. This
study also makes use of logistic regression as the means of
predicting a binary outcome. Their findings indicate that while
logistic regression analysis can be used to predict high impact
defects, there is a need of further development to bring these
predictions techniques closer to an industry adoption.

Other studies have evaluated the occurrence security-related
bugs through the analysis of source control repositories and
static analysis tools. Mitropoulos, D. et al. [20] studied the
relation of software bugs compared to other bugs categories,
using maven repositories. Their results indicate security bugs
do not have a recognizable pattern in the projects they
studied, and encourage the further investigation on this topic.
Mitropoulos, D. et al. [21] also studied the evolution of
security related bugs by tracking down their introduction.
Their results show that the number of security-related software
bugs increases as the system evolves and it is influenced
by external software dependencies. These two studies use
static analysis tools to identify bugs, in contrast We use data
from a bug tracking system and bug labels, eliminating bias
introduced by the tool.

A recent study by Tantithamthavorn, C. et al. [22] evaluates
the impact of mislabeling in the interpretation and performance
of prediction models. Their results show that bug labeling
mechanisms are a reliable source of bug classification and
model training. Their findings increase the relevance of our



research as we make use of Google Code labels to classify
the pre-release bugs.

IV. RESEARCH QUESTIONS

We approach our analysis by first conducting an overall
analysis with a single variable, then we conducted our analy-
sis by using the categorizations provided by the Chromium
project. Then we examined how vulnerabilities are spread
across files when ranked by defect density. Finally we ex-
plored how specific experience in reviewing bug related issues
associates with vulnerability discovery. Thus, our four research
questions are:

• RQ1. Are source code files fixed for bugs likely to be
fixed for future vulnerabilities?

• RQ2. Are some types of bugs more closely related to
vulnerabilities than others?

• RQ3. Do the source code files with the most bugs also
have the most vulnerabilities?

• RQ4. Does experience in reviewing bugs boost vulnera-
bilities awareness?

V. DATA: THE CHROMIUM PROJECT

The Chromium Browser is the open source project behind
Googles Chrome Browser. The Chromium project is a large
project consisting of more than 4 million Source Lines of Code
(SLOC). We selected this project because its high visibility and
popularity in the open source developer community and more
significantly because it offers different analysis opportunities
and perspectives that can be explored using software repository
mining techniques [23]. Our in-depth analysis to produce this
data involved analyzing code reviews, investigating vulnerabi-
lity claims, and maintaining traceability between the artifacts.

A. Chromium Vulnerabilities (NVD, Public Disclosures)

The Chromium team regularly acknowledges vulnerabilities
that have been fixed in each new release. These post-release
vulnerabilities are recorded in the National Vulnerability
Database (NVD) and given a Common Vulnerabilities and
Exposures (CVE) identifier. However, not every CVE entry
is accurate. Thus, we conducted manual analysis to ensure
the credibility of each vulnerability verifying that it was
acknowledged by Chromium, fixed, and the fix was released.
These vulnerabilities are post-release vulnerabilities that are
reported to the Chromium Team, and present potential threats
users. In this study, we have traceability from 703 CVE
entries to the code review and the commit that fixed the
vulnerabilities.

A key part of mining the vulnerability data was tracing
them to code reviews and git logs. We mined 242,635 Git
[24] commits, spanning across six years of development of the
Chromium project. These commits contain information about
the source files that were change. Additionally the commits
contain the ID of the bug report that this change contributes
to fix and the ID of the code review that inspected the change
before adding it to the main code base. This IDs are used to
link the records in a relational database. The commit data is

the central point of our data set, combining together the bugs
and the vulnerabilities through code reviews. The code reviews
also provide us with participation information, we track each
participant throughout the different Releases, increasing one
experience point each time they review a specific bug issue
type.

B. Chromium Bug Tracking System (Google Code)

Chromium uses Google Code as bug tracking system [25],
[26]. We have collected 374,686 bug entries with 5,825
different labels, and 3,801,444 bug comments. A bug entry
does not necessarily mean an actual flaw in the system: system
features, and other tasks are in this database as well. To be
considered in the analysis the bugs need to have at least one
commit referencing to the specific bug id, this means the bug
is relevant and have been addressed at least by one fix attempt.

The Google Code labels function as a taxonomy system,
and they allow the developers to label specific keywords to the
bugs reports, including the “bug” label. The system then uses
these labels to categorize, filter and search the bug repository.
Special labels are used to attach additional critical information
like priority (Pri), product category (Cr), operating system
where the bug occurs (OS), possible milestone to release a
fix (M-value) and type of bug. Additionally Google Code
users can manually add arbitrary labels to the bug reports.
To mitigate misspellings of labels, we manually inspected the
label choices throughout the 5,825 labels that were used.

We aggregated these labels and examined how often they
were used. Among the 5,825 labels, only a few were labeled
consistently. For our RQ2 question about categories, we exa-
mined labels that were used over 1,000 times and identified
categories that were not specific to Chromium (e.g. “stability”
is specific to Chromium, but “Milestone18 Migration” is not).

C. Processing By Releases

To account for the evolution of the project, we separated the
data into releases. Chromium utilizes a rapid release cycle,
with a major release coming out approximately every two
months. In prior work [27] we found that vulnerabilities on
average have remained in the system for approximately two
years prior to their fix. Using those results as a guide, a
vulnerability fixed within one year of a release may have
reasonably existed in the system for up to one year prior
a release. Additionally, we conducted our analysis in time
segments that are non-overlapping to avoid double counting
and ultimately auto-correlation. Thus, we chose five major
releases that were approximately one year apart: versions 5.0,
11.0, 19.0, 27.0, and 35.0.

Throughout this paper, we use the phrase “pre-release bugs”.
In the context of Chromium’s rapid release cycles, this is not
an entirely apt name. Many bugs are exposed to users by some
major release since the product is constantly being release. In
Chromium, we did not see any consistent labeling referring
to pre-release vs. post-release bugs. Our concept of “pre-
release bugs” comes from our own selection of five releases,



not necessarily from bugs that were never part of production
release.

We used this pre-release bug data and post-release
vulnerability data so that no overlap exists between the groups.
As shown in Figure 1, bugs between 5.0 and 11.0 are used
exactly once: in the Release 11.0 analysis. The only overlap is
in our analysis of pre-release “security bugs” and post-release
vulnerabilities: these groups are not entirely the same as some
vulnerabilities are not recorded in the bug-tracking system and
some security-labeled bug entries were never part of a release
to users.

The Git repository contained specific release information
via the tag feature. We performed a manual investigation for
each specific release dates to corroborate the dates, comparing
the actual release of the product to the public and the date of
the final version commit.

D. Computing Metrics
We used Ruby and the Ruby on Rails ActiveRecord libraries

to parse, model, verify and query the data. We used R to
conduct our analysis. We made use of a nightly build process
to integrate and verify long running queries. The conceptual
data diagram can be found in Figure 2.

We set up a process to calculate different file-level metrics in
a release per release basis. We present the bug file-level metrics
in Table I. For each file we count the number of pre-release
bugs and the number of post-release vulnerabilities reported in
a one year. We only use source code files, which are primarily
C/C++ file extensions.

To measure the pre-release bug count we evaluated if the
specific file was modified in a commit that linked to a bug
report, if a match is found we add one to the bug count. Only
bug reports opened from a year prior to the specific release
date are taken into account. Additionally in this step we make
use of the Chromium bug labels to categorize the bug count in
different types of bugs. We created 7 bug categories based on
the 7 most vulnerability relevant labels. These 7 labels were
selected from the top most used labels.

To measure the post-release vulnerabilities we evaluated if
the specific file was modified in a commit that linked to a
code review that fixed a vulnerability. In comparison to the
criteria for bugs this is a forward search, only selecting the
vulnerabilities that were reported from the release date to a
year after the release date, this information is selected as num-
post-vulnerabilities. The boolean becomes-vulnerable is set
to true if any vulnerabilities are found in that future date range.

A graphical representation of both selection processes can
be found in Figure 1.

Finally, we removed files that were never fixed for any bugs
nor vulnerabilities. Since no quality nor security data data exist
for these files, no inference can be made about their quality
or security. Table II shows the a summary of the state of the
releases.

VI. ANALYSIS APPROACH & RESULTS

We began an in-depth exploratory statistical analysis using
the metrics calculated at the file level. We used the pre-release

Fig. 2. Conceptual diagram of data set

TABLE I
FILE-LEVEL METRICS COMPUTED PER RELEASE

Metric Description

num-pre-bugs Number of bugs discovered from a year
before the selected release.

num-pre-features Number of bugs labeled as ”type-
feature” discovered from a year before
the selected release.

num-pre-compatibility-bugs Number of bugs labeled as ”type-
compat” discovered from a year before
the selected release.

num-pre-regression-bugs Number of bugs labeled as ”type-bug-
regression” discovered from a year be-
fore the selected release.

num-pre-security-bugs Number of bugs labeled as ”type-bug-
security” discovered from a year before
the selected release.

num-pre-tests-fails-bugs Number of bugs labeled as ”cr-tests-
fails” discovered from a year before the
selected release.

num-pre-stability-bug Number of bugs labeled as ”stability-
crash” discovered from a year before
the selected release.

num-pre-build-bugs Number of bugs labeled as ”build”
discovered from a year before the se-
lected release.

num-post-vulnerabilities Number of vulnerabilities discovered
from a year after the selected release.

becomes-vulnerable Denotes if a module will become vul-
nerable in the future year.

TABLE II
SELECTED RELEASES BEFORE AND POST PROCESS. NUMBER OF FILES

(VULNERABILITY PERCENTAGE)

Release Date Pre-Process Post-Process

Chromium 5.0 Jan 2010 9,142 (2.55%) 2,276 (11.08%)

Chromium 11.0 Jan 2011 17,005 (3.35%) 4,760 (12.80%)

Chromium 19.0 Feb 2012 21,818 (1.40%) 6,826 (4.61%)

Chromium 27.0 Feb 2013 30,087 (0.98%) 8,451 (3.58%)

Chromium 35.0 Feb 2014 35,871 (0.28%) 8,125 (1.23%)



Fig. 1. Release time line explaining bug and vulnerability selection criteria. For Release 11: the population of possible pre-release bugs is equal to the bugs
reports opened in (roughly) 2010. The population of possible post-release vulnerabilities is equal to the vulnerabilities reported in the next year.

bugs as independent variables and future vulnerabilities as
dependent variable. In this section we explain in detail the
analysis methodology and show the experimental results.

Our first goal was to evaluate the quality of our independent
variables. The validity of our future results depends on our
ability to distinguish between these the pre-release bug types.
Thus, having two or more variables with heavy correlation will
increase the comparison difficulty of the next analysis steps.

We applied the Spearman correlation coefficient analysis on
our 7 pre-release bug variables looking to remove variables
that present high co-linearity. The results from the Spearman
correlation coefficient indicate that the pre-release bug varia-
bles show a negligible to low correlation with each other.
In Table III we present the maximum Spearman correlation
coefficient of each variable when we run the test against all
other pre-release variables. Even the highest values indicate
low correlations, so we did not see strong co-linearity that
would interfere with multiple regression.

RQ1. Are source code files fixed for bugs likely to be fixed for
future vulnerabilities?

Motivation. Our goal here is to evaluate, in a broad sense,
if files that have been frequently fixed for bugs also have
a higher probability of being fixed for a vulnerability. This
research question serves as an overall measure of quality and
security, but does not delve into comparing other factors such
as features and security-related bugs (as RQ2 does).

Analysis. To examine how the pre-release bugs are re-
lated to an increased chance of future vulnerability, we used
the two tailed non-parametric Mann-Whitney-Wilcoxon test

(MWW) to examine if a statistically significant correlation
exists. We tested the number of pre-release bugs, separating
the population in vulnerable and neutral files, and evaluated
the becomes vulnerable hypothesis. To examine the amount
of overlap between neutral and vulnerable files with respect
to number of bugs, We used the Cohen’s D [8] statistic.

The MWW results in Table IV show that in comparison
vulnerable files have a larger median pre-release bug count
than neutral files; this difference is small but constant for all
of our releases. All of our MWW test results were statistically
significant (p < 0.05). We also included in this analysis the
SLOC population to reconfirm finding from related and prior
work that vulnerable files tend to be larger in size than neutral
files.

The Cohen’s D statistic is useful for gauging the strength
of our MWW results by evaluating the amount of overlap
between the vulnerable and neutral populations. This statistic
is computed by comparing the two population means and
factoring in how many of each population are above the other
population’s mean. Our results for Cohen’s D, presented in
Table V, show that the lowest amount of overlap between
vulnerable and the neutral populations with respect to bugs
is 71.28% on Release 5.0. As the project matures, the overall
overlap stays above 75%. The Cohen’s D literature indicates
that this overlap is considered to be medium-to-large, indi-
cating that the association is relatively weak. That is, many
neutral files have many bugs and many vulnerable files have
few bugs.

These results indicate that, broadly speaking, files with a
history of bugs are likely to be fixed for vulnerabilities in the



TABLE III
SPEARMAN RANK CORRELATION COEFFICIENT BETWEEN PRE-RELEASE BUG VARIABLES PER RELEASE

Release 5.0
Metric (a) (b) (c) (d) (e) (f) (g)
(a) num-pre-features 1.00 0.02 -0.03 -0.12 -0.03 0.03 -0.12

(b) num-pre-compatibility-bugs 0.02 1.00 0.12 0.15 0.01 0.07 0.01

(c) num-pre-regression-bugs -0.03 0.12 1.00 0.03 0.03 0.19 -0.03

(d) num-pre-security-bugs -0.12 0.15 0.03 1.00 -0.03 0.05 0.02

(e) num-pre-tests-fails-bugs -0.03 0.01 0.03 -0.03 1.00 -0.02 0.05

(f) num-pre-stability-crash-bugs 0.03 0.07 0.19 0.05 -0.02 1.00 -0.05

(g) num-pre-build-bugs -0.12 0.01 -0.03 0.02 0.05 -0.05 1.00

Release 11.0
Metric (a) (b) (c) (d) (e) (f) (g)
(a) num-pre-features 1.00 0.01 0.04 -0.02 -0.08 0.06 -0.18

(b) num-pre-compatibility-bugs 0.01 1.00 0.07 0.08 0.02 0.04 0.04

(c) num-pre-regression-bugs 0.04 0.07 1.00 0.13 0.03 0.29 0.01

(d) num-pre-security-bugs -0.02 0.08 0.13 1.00 0.02 0.18 -0.03

(e) num-pre-tests-fails-bugs -0.08 0.02 0.03 0.02 1.00 0.01 0.09

(f) num-pre-stability-crash-bugs 0.06 0.04 0.29 0.18 0.01 1.00 0.00

(g) num-pre-build-bugs -0.18 0.04 0.01 -0.03 0.09 0.00 1.00

Release 19.0
Metric (a) (b) (c) (d) (e) (f) (g)
(a) num-pre-features 1.00 0.07 0.05 0.04 -0.04 -0.07 -0.23

(b) num-pre-compatibility-bugs 0.07 1.00 0.07 0.08 0.02 0.06 -0.03

(c) num-pre-regression-bugs 0.05 0.07 1.00 0.07 0.06 0.19 -0.12

(d) num-pre-security-bugs 0.04 0.08 0.07 1.00 0.04 0.15 -0.06

(e) num-pre-tests-fails-bugs -0.04 0.02 0.06 0.04 1.00 0.02 0.00

(f) num-pre-stability-crash-bugs -0.07 0.06 0.19 0.15 0.02 1.00 -0.14

(g) num-pre-build-bugs -0.23 -0.03 -0.12 -0.06 0.00 -0.14 1.00

Release 27.0
Metric (a) (b) (c) (d) (e) (f) (g)
(a) num-pre-features 1.00 0.04 0.00 -0.07 0.00 -0.05 -0.29

(b) num-pre-compatibility-bugs 0.04 1.00 0.02 0.05 0.00 0.02 -0.01

(c) num-pre-regression-bugs 0.00 0.02 1.00 0.04 0.02 0.13 -0.06

(d) num-pre-security-bugs -0.07 0.05 0.04 1.00 0.01 0.11 -0.05

(e) num-pre-tests-fails-bugs 0.00 0.00 0.02 0.01 1.00 0.01 0.04

(f) num-pre-stability-crash-bugs -0.05 0.02 0.13 0.11 0.01 1.00 -0.03

(g) num-pre-build-bugs -0.29 -0.01 -0.06 -0.05 0.04 -0.03 1.00

Release 35.0
Metric (a) (b) (c) (d) (e) (f) (g)
(a) num-pre-features 1.00 -0.01 -0.32 -0.12 -0.02 -0.10 -0.13

(b) num-pre-compatibility-bugs -0.01 1.00 0.01 0.03 -0.01 0.01 0.00

(c) num-pre-regression-bugs -0.32 0.01 1.00 -0.04 0.03 0.13 -0.06

(d) num-pre-security-bugs -0.12 0.03 -0.04 1.00 0.00 0.02 -0.02

(e) num-pre-tests-fails-bugs -0.02 -0.01 0.03 0.00 1.00 0.01 0.00

(f) num-pre-stability-crash-bugs -0.10 0.01 0.13 0.02 0.01 1.00 -0.02

(g) num-pre-build-bugs -0.13 0.00 -0.06 -0.02 0.00 -0.02 1.00



TABLE IV
MWW TEST RESULTS FOR SLOC AND NUM-PRE-BUGS PER RELEASE.
ALL RESULT WERE STATISTICALLY SIGNIFICANT (p− value < 0.05).

Metric Median Vuln. Median Neutral

Release 5.0
SLOC 5.30 4.63

num-pre-bugs 1.95 1.39

Release 11.0
SLOC 5.27 4.26

num-pre-bugs 1.61 1.10

Release 19.0
SLOC 5.31 4.42

num-pre-bugs 1.61 1.39

Release 27.0
SLOC 5.43 4.67

num-pre-bugs 1.79 1.39

Release 35.0
SLOC 5.73 4.76

num-pre-bugs 1.94 1.61

TABLE V
COHEN’S D EFFECT SIZE STATISTIC FOR NUM-PRE-BUGS IN
VULNERABLE AND NEUTRAL POPULATIONS PER RELEASE.

Cohen’s D Cohen’s U3 % Overlap

Release 5.0 0.74 76.92% 71.28%

Release 11.0 0.57 71.55% 77.58%

Release 19.0 0.29 61.23% 88.66%

Release 27.0 0.36 64.24% 85.52%

Release 35.0 0.39 65.02% 84.70%

future. However, this association has many counterexamples,
leading to a weak association overall.

RQ2. Are some types of bugs more closely related to vulnera-
bilities than others?

Motivation. From RQ1, we learned that, in aggregate,
a connection between bugs and vulnerabilities exists in
Chromium across multiple releases. However, bugs come in
many different forms. Some bugs can be related to maintaining
compatibility across operating systems, other might be related
to stability problems that could foreshadow future vulnera-
bilities. For example, code with a history bugs related to 32-bit
and 64-bit builds might have integer overflow problems that
become exploitable.

Furthermore, we use this sub-category analysis to gauge the
strength of the connection between bugs and vulnerabilities. In
particular, we use SLOC, features, and security-related bugs
as bases of comparison against non-security bugs.

Thus, our objective in this question is twofold: (a) identify
trends between specific types of bugs and the occurrence of
future vulnerabilities, and (b) compare those types to baselines
of SLOC, security-related bugs, and features.

Analysis. We performed logistic regression analysis to eva-
luate these patterns by comparing the model quality. We based
the model quality in two statistical tests: model goodness
of fit (how well the created model fits the data) and model
performance (how well model is able explain the data). We

TABLE VI
CATEGORY MODELS BASED ON BUG TYPES

Metric Description

fit-base Our base model based only on SLOC.

fit-num-pre-bugs Based on SLOC + num-pre-bugs.

fit-features Bug category based on SLOC + num-pre-
features.

fit-security Bug category based on SLOC + num-pre-
security-bugs.

fit-stability Bug category based on SLOC + num-pre-
stability-bugs + num-pre-compatibility-bugs +
num-pre-regression-bugs.

fit-build Bug category based on SLOC + num-pre-build-
bugs + num-pre-tests-fails-bugs.

must point out, however, that these analyses for to comparing
categories of bugs, not to create an overall vulnerability
prediction model as has been done in other literature [2]–[4],
[19].

To implement this approach first we built a base model
based on SLOC, to serve as the baseline for evaluating
the improvement in model quality that each pre-bug-metrics
produces. Our RQ1 results, as well as other studies [28] have
shown that files with higher SLOC are more likely to be
vulnerable.

We continued this process by performing a forward selection
of the variables, building models adding one pre-release bug
type at a time, we managed to identify 4 groups of pre-release
bug variables that can be represented in logical bug categories
and show model quality improvement over the individual pre-
release bug types. The description of each of these category
groups can be found on Table VI.

Finally we compared the variance on the overall quality of
the output that each category group introduces.

Goodness of fit: These metrics present a way to evaluate
how well a model fits the data when compared to other models,
in our case the base model. In this step we measured: a) The
AIC of each model b) and the D2.

Our results show that adding the pre-release bug metrics
have a positive effect overall on the quality of the models, but
we found this relation to be weak and not constant.

On Release 5.0 and 11.0, the model fit-num-pre-bugs, show
the strongest correlation with improvement of model goodness
of fit.

We also found that fit-security and fit-features present
the stronger positive association when compared to the other
category models on almost all releases, averaging -2.78% and
-0.84% of AIC reduction respectively. One exception to this
trend is Release 27, where the model fit-features is associated
with a lower quality model (increased AIC). While other
category models are also associated with lower AIC, we found
that the improvement is not as significant when compared to
the baseline SLOC model.

In terms of D2 again the category fit-security and cate-
gory fit-features show the strongest correlation averaging



TABLE VII
GOODNESS OF FIT METRICS FOR PRE-RELEASE OF BUG BASED

CATEGORY MODELS PER RELEASE

Release 5.0
Model AIC AIC DEC D2 D2 INC
fit-base 1424.40 - 0.04 -

fit-num-pre-bugs 1377.40 -3.30% 0.07 86.39%

fit-security 1402.20 -1.56% 0.05 42.68%

fit-features 1423.90 -0.04% 0.04 4.34%

fit-stability 1419.50 -0.34% 0.05 19.25%

fit-build 1423.80 -0.04% 0.04 8.09%

Release 11.0
Model AIC AIC DEC D2 D2 INC
fit-base 3098.40 - 0.08 -

fit-num-pre-bugs 3093.00 -0.17% 0.08 2.69%

fit-security 3095.90 -0.08% 0.08 1.65%

fit-features 3071.10 -0.88% 0.09 10.73%

fit-stability 3090.50 -0.25% 0.09 5.08%

fit-build 3099.20 0.03% 0.08 1.15%

Release 19.0
Model AIC AIC DEC D2 D2 INC
fit-base 2365.60 - 0.04 -

fit-num-pre-bugs 2367.00 0.06% 0.04 0.60%

fit-security 2358.60 -0.30% 0.05 8.50%

fit-features 2337.90 -1.17% 0.05 28.06%

fit-stability 2361.30 -0.18% 0.05 9.75%

fit-build 2350.10 -0.66% 0.05 18.41%

Release 27.0
Model AIC AIC DEC D2 D2 INC
fit-base 2432.50 - 0.04 -

fit-num-pre-bugs 2434.40 0.08% 0.04 0.02%

fit-security 2286.10 -6.02% 0.10 134.10%

fit-features 2434.10 0.07% 0.04 0.34%

fit-stability 2427.50 -0.21% 0.05 9.88%

fit-build 2421.90 -0.44% 0.05 13.11%

Release 35.0
Model AIC AIC DEC D2 D2 INC
fit-base 1038.20 - 0.03 -

fit-num-pre-bugs 1040 0.17% 0.03 0.47%

fit-security 976.42 -5.95% 0.09 180.41%

fit-features 1015.50 -2.19% 0.06 69.82%

fit-stability 1038.70 0.05% 0.04 15.50%

fit-build 1038.70 0.05% 0.04 25.01%

TABLE VIII
PERFORMANCE METRICS FOR PRE-RELEASE BUG BASED CATEGORY

MODEL PER RELEASE

Release 11.0

Model Precision Recall F-measure AUC

fit-base 0.29 0.35 0.32 70.89%

fit-num-pre-bugs 0.24 0.49 0.32 66.63%

fit-security 0.28 0.34 0.31 70.41%

fit-features 0.25 0.50 0.33 71.97%

fit-stability 0.26 0.41 0.32 69.92%

fit-build 0.25 0.48 0.33 70.86%

Release 19.0

Model Precision Recall F-measure AUC

fit-base 0.11 0.31 0.16 66.84%

fit-num-pre-bugs 0.09 0.48 0.15 66.12%

fit-security 0.11 0.34 0.17 67.06%

fit-features 0.10 0.46 0.16 68.77%

fit-stability 0.09 0.41 0.15 66.40%

fit-build 0.09 0.44 0.16 67.61%

Release 27.0

Model Precision Recall F-measure AUC

fit-base 0.11 0.32 0.16 66.48%

fit-num-pre-bugs 0.07 0.51 0.13 66.57%

fit-security 0.15 0.40 0.21 70.03%

fit-features 0.07 0.50 0.11 65.54%

fit-stability 0.08 0.46 0.13 66.35%

fit-build 0.08 0.48 0.14 68.42%

Release 35.0

Model Precision Recall F-measure AUC

fit-base 0.04 0.35 0.07 66.50%

fit-num-pre-bugs 0.03 0.54 0.05 66.48%

fit-security 0.06 0.51 0.10 75.34%

fit-features 0.03 0.47 0.06 67.31%

fit-stability 0.03 0.45 0.06 65.90%

fit-build 0.03 0.45 0.06 67.41%



73.47% and 22.66% improvement respectively over the base
model. Reconfirming the trend that among the evaluated bug
categories fit-security and fit-features present the strongest
correlation with chances of vulnerabilities.

The complete result set for the goodness of fit metrics is
shown in Table VII. The models with the best fit are shown in
bold, and represent the strongest association with post-release
vulnerabilities.

Model Performance: In this step we evaluate the variance
in explanatory power that each bug category produces, when
the category models are used to predict the probability of
vulnerabilities and compared against next release data. We
used next-release validation on four releases, meaning that we
used the data from one release to train a model, then apply
that model to the subsequent release. Next-release validation
is particularly helpful because it simulates the data that the
team could have feasibly collected at that time in history.

In our validation, we examining the following statistics:
a) Precision and recall, b) F-measure, c) Area under the ROC
(AUC).

We compare these statistics to the output of the base model.
We present our findings in Table VIII showing the performance
improvement of each model.

In these results we notice that the category model fit-
security is associated with improvement of the precision in 3
out of 4 evaluated releases. The category model fit-num-pre-
bugs is associated with an increase in the recall measurement
in in 3 out of 4 evaluated releases. The results show that again
fit-security is associated with an improvement in F-measure.
In terms of AUC we found that the models fit-security and
fit-features have a stronger positive relation than the other
models.

Results Interpretation: Summarizing the results from both
aspects “model goodness fit” and “model performance” we
notice that, when compared to baselines of features, SLOC,
and security bugs, traditional non-security bugs have a positive
but weak association with vulnerabilities. Among the results,
the strongest positive correlation with overall model quality
was found in the variables pre-release feature bugs and pre-
release security bugs. But even with this existing association,
the improvement over our baseline model is very small and
the overall predictive power is relatively small compared to
the literature [3], [12], [28], [29].

This result is particularly interesting given that several sub-
categories of bugs are related to security properties. System
stability is key to providing availability (i.e. preventing denial-
of-service attacks), so one might assume that stability prob-
lems in a file’s past may lead to vulnerability problems in the
future, but this effect was small.

This weak association presents no evidence that bugs and
vulnerabilities are empirically similar groups. And it shows
that it can be tough call to identify future vulnerabilities based
solely on the pre-release bug history. We advice to include
other vulnerability identification patterns where needed [29].

RQ3. Do the source code files with the most bugs also have
the most vulnerabilities?

Motivation. In this question, we want to simulate how
bugs could be used in practice. In industry due to constant
schedule pressures, last-minute security audits are common
and reviewers have limited resources to perform a thorough
code inspection.

Because bugs represent missing or wrong intended
functionality, most review efforts focus on fixing these type of
bugs, this it will represent profit for the business and the team
will get closer to shipping the product or feature. Additionally
as we have stated before, bugs are more common and visible
problem, when contrasted to vulnerabilities.

Thus, a software team might be tempted to use the concept
“bugginess” (defect density) as their only guide to prioritize
code inspections inspections, here we want to explore how
well will that guide work to point out the files that would
later need to be fixed for vulnerabilities?

Analysis. To explore this question, we present a lift curve
for each release demonstrating how many vulnerabilities exist
in the top-ranked files by defect density. Figure 3 shows these
results by release. As an interpretation example of the charts,
in Release 11.0, 60% of the post-release vulnerabilities can be
found in the top 30% of the buggiest files. While this ranking is
better than random (i.e. roughly a diagonal line), the prediction
capabilities of defect density is significantly worse than what
is found in the vulnerability prediction literature [28], [29].

Consider this results in a common industry code review sce-
nario, where we are reviewers focusing on important features
and were only able to inspect 20 files, lest say of about 25 lines
of code or more. If we used defect density and size (SLOC) to
rank and prioritize the files for review at each release, based
on our results those files would, at best, contain 1.4% of the
vulnerabilities. An optimal top-20 file ranking would account
for an average of 12% of vulnerabilities, so ranking by defect
density is far from optimal.

The situation gets worse, however, if we went the other
way round examining the question from the direction of
vulnerabilities: ranking by files with the most vulnerabilities
per SLOC. In this case, across the five releases, none of the
Top 20 files with the most vulnerabilities per SLOC appear in
the Top 20 of the buggiest files.

Our results show that top buggy files contain only some
of the vulnerabilities, accentuating even more the differences
between bugs and vulnerabilities.

RQ4. Does experience in reviewing bugs boost vulnerabilities
awareness?

Motivation. In this study the point of connection between
commits and vulnerabilities are code reviews. In these reviews,
a group of developers must analyze potential commits for
various types of coding mistakes, such as traditional bugs,
maintainability issues, design flaws, and security problems.
Our previous results have shown evidence that buggy files and
vulnerable files are dissimilar populations, and that overlap



Fig. 3. Lift curves of % vulnerabilities found when ranked by num-pre-bugs
shows a weak association

only exists to some degree. But even in within overlap, re-
viewers might be still be missing vulnerabilities if they are not
practiced at recognizing them. Thus, developer experience can
be a factor in whether or not a vulnerabilities are prevented.

In a given project, developers can have many different
types of experience that can shape the type of feedback they
provide. For example a reviewer that has solved many stability
problems becomes familiar with the patterns that lead to this

TABLE IX
FILE-LEVEL REVIEW EXPERIENCE METRICS COMPUTED PER RELEASE

Metric Description

security experience Average number of reviewers that had
previously worked on a fix referencing
a bug labeled as ”type-bug-security”.

stability experience Average number of reviewers that had
previously worked on a fix referencing
a bug labeled as ”stability-crash”.

build experience Average number of reviewers that had
previously worked on a fix referencing
a bug labeled as ”build”.

test fail experience Average number of reviewers that had
previously worked on a fix referencing
a bug labeled as ”cr-tests-fails”.

compatibility experience Average number of reviewers that had
previously worked on a fix referencing
a bug labeled as ”type-compat”.

types of failures, making him a good asset in stability code
review. Our previous study [4] showed that vulnerable files
have less security-experienced reviewers than neutral files.
Borrowing this concept we have expanded the experience data
set with new types of bug-related experience metrics.

We calculated the experience metrics at the file level using
the following procedure: If a reviewer participates in a code
review for a commit labeled with a specific bug type, we say
this reviewer earned experience with this type of bug. Then
when we separate the data into releases, we evaluate each
file and aggregate and average the number of specific bug
experienced reviewers that it had during that release time span.
The experience metrics are presented in Table IX.

In this area we do not take into account bugs feature nor
regression as they are more common traditional changes, and
every reviewer will have some experience in this areas. We
encourage future research to evaluate the effects of these two
types of experience.

Approach. For this question we employed a similar
methodology as in RQ1 and R2. We performed a Mann-
Whitney-Wilcoxon test (MWW) and employed logistic re-
gression analysis to evaluate the goodness of fit when com-
pared against our base model SLOC. Finally we compare these
results against the bug results of RQ2 and look for trends in
the types of bugs.

Analysis. We start by performing a Spearman corre-
lation coefficient analysis on the experience metrics to iden-
tify and remove possible variable duplication, these re-
sults are presented in Table X. We noticed that the met-
rics stability experience and build experience present simi-
lar correlation. From this result have decided to only se-
lect build experience to represent both metrics. We will
also like to point out that for Release 5.0 there were no
test fail experience reviews, likely because the system was
in its early stages and lacked a large test suite. Overall we
notice that the experience variables present a low to moderate
correlation.



TABLE X
SPEARMAN RANK CORRELATION COEFFICIENT BETWEEN EXPERIENCE VARIABLES PER RELEASE

Release 5.0

Metric security experience stability experience build experience test fail experience compatibility experience

bug security experience 1.00 0.45 0.50 NA 0.34

stability experience 0.45 1.00 0.43 NA 0.29

build experience 0.50 0.43 1.00 NA 0.32

test fail experience NA NA NA NA NA

compatibility experience 0.34 0.29 0.32 NA 1.00

Release 11.0

Metric security experience stability experience build experience test fail experience compatibility experience

bug security experience 1.00 0.38 0.38 0.25 0.31

stability experience 0.38 1.00 0.54 0.17 0.24

build experience 0.38 0.54 1.00 0.16 0.25

test fail experience 0.25 0.17 0.16 1.00 0.28

compatibility experience 0.31 0.24 0.25 0.28 1.00

Release 19.0

Metric security experience stability experience build experience test fail experience compatibility experience

bug security experience 1.00 0.52 0.50 0.41 0.42

stability experience 0.52 1.00 0.64 0.30 0.30

build experience 0.50 0.64 1.00 0.34 0.33

test fail experience 0.41 0.30 0.34 1.00 0.11

compatibility experience 0.42 0.30 0.33 0.11 1.00

Release 27.0

Metric security experience stability experience build experience test fail experience compatibility experience

bug security experience 1.00 0.39 0.34 0.31 0.30

stability experience 0.39 1.00 0.59 0.28 0.21

build experience 0.34 0.59 1.00 0.30 0.23

test fail experience 0.31 0.28 0.30 1.00 0.16

compatibility experience 0.30 0.21 0.23 0.16 1.00

Release 35.0

Metric security experience stability experience build experience test fail experience compatibility experience

bug security experience 1.00 0.43 0.41 0.25 0.29

stability experience 0.43 1.00 0.65 0.32 0.23

build experience 0.41 0.65 1.00 0.33 0.24

test fail experience 0.25 0.32 0.33 1.00 0.23

compatibility experience 0.29 0.23 0.24 0.23 1.00



TABLE XI
MWW TEST RESULTS FOR EXPERIENCE METRICS PER RELEASE. HERE
WE PRESENT THE MEAN, AS THE MEDIAN WAS ZERO IN MANY CASES.

Release 5.0
Metric Vulnerable Neutral P - Value

security experience 0.044 0.116 1.07E-09

stability experience 0.053 0.142 5.24E-12

build experience 0.025 0.111 5.81E-14

test fail experience 0.000 0.000 6.30E-01

compatibility experience 0.003 0.016 4.01E-03

Release 11.0
Metric Vulnerable Neutral P - Value

security experience 0.050 0.181 5.43E-31

stability experience 0.104 0.263 9.87E-34

build experience 0.080 0.254 2.10E-41

test fail experience 0.003 0.013 1.58E-03

compatibility experience 0.010 0.023 2.82E-03

Release 19.0
Metric Vulnerable Neutral P - Value

security experience 0.014 0.046 8.86E-08

stability experience 0.047 0.133 1.96E-19

build experience 0.026 0.107 5.67E-21

test fail experience 0.000 0.013 4.56E-05

compatibility experience 0.005 0.019 4.46E-04

Release 27.0
Metric Vulnerable Neutral P - Value

security experience 0.013 0.072 1.27E-16

stability experience 0.063 0.215 7.91E-41

build experience 0.040 0.198 8.53E-47

test fail experience 0.002 0.022 8.37E-07

compatibility experience 0.003 0.021 6.48E-06

Release 37.0
Metric Vulnerable Neutral P - Value

security experience 0.013 0.126 1.21E-29

stability experience 0.041 0.257 1.03E-60

build experience 0.029 0.247 1.82E-63

test fail experience 0.000 0.036 8.93E-11

compatibility experience 0.002 0.027 1.95E-07

Following the Spearman analysis we separated the files into
vulnerable and neutral and employed a MWW test to evaluate
the difference of means in terms of experience. In this step we
used the mean value because we found many medians values
to be zero.

The MWW results displayed in Table XI show in all
the cases that neutral files have more experienced reviewers
than vulnerable files, this indicates that having more bug
experienced reviewers, decreases the probability of future
vulnerabilities. The results were statistically significant also in
all occurrences, here we borrow from our previous work [4]
the Bonferoni correction by dividing the alpha threshold by
the number of hypotheses, in this case we have five variables,
thus we check for p < 0.01 instead of the standard p < 0.05.

We gather an interesting insight when we weight the impact
of the different experience metrics, noticing that among the
results build experience, test fail experience and compat-
ibility experience have a larger impact in the reduction of
the vulnerability probability, than security experience in all
the releases. For example on Release 5, the metric compatibil-
ity experience has an impact of 433.33% on the vulnerability
outcome, while security experience has only a 163.64%
impact. We can see this as a sound outcome as a person
that has experience in different environments, gains awareness
of all the different variables that come into play in these
systems (file systems, interfaces, etc.), and with this expanded
awareness comes a better understanding of vulnerability attack
points.

To continue our analysis we created four new logistic
models, and calculated the AIC and the D2 for each one of
them, these results are presented in Table XII. The results we
got from this analysis vary greatly from release to release.
For example on Release 5.0 the model build experienced
presents a 2.23% decrement in AIC, when compared to the
base model. On almost all releases the results on AIC scores
are very close, with the model security experienced being
the most effective, except for Release 35.0. The D2 results
show that the experience metrics do not significantly increase
the amount of deviance explained by the base model.

From this models we found that bug based experience has
little to no influence in improving the quality of the base
model. These results show that while in most of our cases the
added experience slightly increases model quality, we found no
evidence of a strong positive association between experience
reviewing for bugs and increased model quality.

Finally we contrasted the Bug based models from RQ2 with
the Experience based models, evaluating which set of metrics
has a better fit in our data set when we use future vulnera-
bilities as our dependent variable. The comparison presented
in Table XIII shows that experience based variables produce
a better fitted model in 3 of our 5 evaluated releases. We also
notice the models based security and build present the best
fit almost all of the cases across bug and experience, but the
improvement keeps being small when compared to the base
model.

Our overall interpretation is that while bug experience has
an effect in the occurrence of future vulnerabilities, these
results present evidence that other more broadly available
metrics like file size (SLOC), still present a similar influence
in occurrence of future vulnerabilities.



TABLE XII
MODEL GOODNESS OF FIT RESULTS FOR EXPERIENCE METRICS PER

RELEASE

Release 5.0

Model AIC AIC DEC D2 D2 INC

fit-base 1424.40 - 0.04 -

security experienced 1398.20 -1.84% 0.04 0.64%

build experienced 1392.60 -2.23% 0.04 10.76%

test fail experienced 1396.20 -1.98% 0.04 0.64%

compatibility experienced 1395.60 -2.02% 0.04 5.37%

Release 11.0

Model AIC AIC DEC D2 D2 INC

fit-base 3098.40 - 0.08 -

security experienced 3079.60 -0.61% 0.08 -1.51%

build experienced 3080.50 -0.58% 0.08 -1.83%

test fail experienced 3081.60 -0.54% 0.08 -2.27%

compatibility experienced 3080.40 -0.58% 0.08 -1.79%

Release 19.0

Model AIC AIC DEC D2 D2 INC

fit-base 2365.60 - 0.04 -

security experienced 2362.80 -0.12% 0.04 4.13%

build experienced 2366.10 0.02% 0.04 1.06%

test fail experienced 2363.30 -0.10% 0.04 3.66%

compatibility experienced 2366.00 0.02% 0.04 1.17%

Release 27.0

Model AIC AIC DEC D2 D2 INC

fit-base 2432.50 - 0.04 -

security experienced 2434.10 0.07% 0.04 -0.09%

build experienced 2433.70 0.05% 0.04 0.23%

test fail experienced 2433.30 0.03% 0.04 0.66%

compatibility experienced 2434.00 0.06% 0.04 -0.03%

Release 35.0

Model AIC AIC DEC D2 D2 INC

fit-base 1038.20 - 0.03 -

security experienced 1038.20 0.00% 0.03 1.81%

build experienced 1037.70 -0.05% 0.03 3.39%

test fail experienced 1037.40 -0.08% 0.03 4.00%

compatibility experienced 1037.60 -0.06% 0.03 3.54%

TABLE XIII
MODEL GOODNESS OF FIT COMPARISON BETWEEN BUGS AND

EXPERIENCE METRICS PER RELEASE

Release 5.0

Model Bug AIC Experience AIC Variation

fit-base 1424.40

security 1402.20 (-1.56%) 1398.20 (-1.84%) 0.29%

build 1423.80 (-0.04%) 1392.60 (-2.23%) 2.24%

compatibility 1419.50 (-0.34%) 1395.60 (-2.02%) 1.61%

Release 11.0

Model Bug AIC Experience AIC Variation

fit-base 3098.40

security 3095.90 (-0.08%) 3079.60 (-0.61%) 0.53%

build 3099.20 (0.03%) 3080.50 (-0.58%) 0.61%

compatibility 3090.50 (-0.25%) 3080.40 (-0.58%) 0.29%

Release 19.0

Model Bug AIC Experience AIC Variation

fit-base 2365.60

security 2358.60 (-0.3%) 2362.80 (-0.12%) -0.18%

build 2350.10 (-0.66%) 2366.10 (0.02%) -0.68%

compatibility 2361.30 (-0.18%) 2366.00 (0.02%) -0.16%

Release 27.0

Model Bug AIC Experience AIC Variation

fit-base 2432.50

security 2286.10 (-6.02%) 2434.10 (0.07%) -6.08%

build 2421.90 (-0.44%) 2433.70 (0.05%) -0.48%

compatibility 2427.50 (-0.21%) 2434.00 (0.06%) -0.28%

Release 35.0

Model Bug AIC Experience AIC Variation

fit-base 1038.20

security 976.42 (-5.95%) 1038.20 (0.00%) -5.95%

build 1038.70 (0.05%) 1037.60 (-0.06%) 0.10%

compatibility 1038.70 (0.05%) 1035.40 (-0.27%) 0.32%



VII. THREATS TO VALIDITY

We chose the Chromium project as a large, open source
project to be representative of many large software projects.
But, as with any empirical study, these results may be specific
to the Chromium project. Labels such as the ones we used
were based on our own investigation of Chromium, and may
not generalize to other project (e.g. different development
teams may define “stability bugs” differently).

In this study we depend on the recorded information of bugs
and vulnerabilities. We do not have the knowledge of issues
that were fixed, but never reported to the bug tracking system
or to the National Vulnerability Database.

By presenting the variance in the model fitness and per-
formance metrics, we caution the reader about the overall
predictability of vulnerabilities. Other studies (even our own
[28]) have shown prediction models of vulnerabilities that
outperform the models here. The multiple regression models
are formed as a comparison of multiple groups of metrics.

Because we are using the code reviews as our key point
of relation between bugs and vulnerabilities, the utilization of
the same code reviews to study for experience trends might
introduce an auto-correlation bias, and even when taking this
into account we did not found a positive association. We
encourage further analysis on this topic to strengthen our
findings.

We compared the quality of the models from one release
with data of the next release. It is also possible to combine
models from multiple releases to identify bug patterns that take
more time to reveal its effects on vulnerabilities. We could for
example average the prediction results of Release 5.0, 11.0,
19.0 and 27.0 to evaluate the probability of vulnerabilities
in Release 35.0. However we postpone this investigation for
future work.

VIII. SUMMARY

In this study we evaluated the correlation between pre-
release bugs, reviewer experience and post-release vulnera-
bilities on the Chromium project. The results show that, while
an empirical connection between bugs and vulnerabilities
exist, the connection is considerably weak. The strongest indi-
cators of vulnerability are past security-related bugs and new
features - neither of which are non-security bugs. Furthermore,
the buggiest files do not intersect with the files with many
vulnerabilities. Additionally we looked into how experience in
reviewing bug issues can help increase vulnerabilities aware-
ness, finding that while experience based metrics preform
better than bug based metrics, the influence of experience
still weak. This evidence underscores the conceptual difference
between bugs and vulnerabilities, and indicates that additional
empirical research must be directed at vulnerability data
specifically.
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