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Integrated Cardiac Electromechanics: Modeling and Personalization

by

Hongda Mao

Abstract

Cardiac disease remains the leading cause of morbidity and mortality in the world.

A variety of heart diagnosis techniques have been developed during the last century,

and generally fall into two groups. The first group evaluates the electrical function of

the heart using electrophysiological data such as electrocardiogram (ECG), while the

second group aims to assess the mechanical function of the heart through medical

imaging data. Nevertheless, the heart is an integrated electromechanical organ,

where its cyclic pumping arises from the synergy of its electrical and mechanical

function which requires first to be electrically excited in order to contract. At

the same time, cardiac electrical function experiences feedback from mechanical

contraction. This inter-dependent relationship determines that neither electrical

function nor mechanical function alone can completely reflect the pathophysiological

conditions of the heart.

The aim of this thesis is working towards building an integrated framework for

heart diagnosis through evaluation of electrical and mechanical functions simultane-

ously. The basic rational is to obtain quantitative interpretation of a subject-specific

heart system by combining an electromechanical heart model and individual clini-

cal measurements of the heart. To this end, we first develop a biologically-inspired

mathematical model of the heart that provides a general, macroscopic description of
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cardiac electromechanics. The intrinsic electromechanical coupling arises from both

excitation-induced contraction and deformation-induced mechano-electrical feed-

back. Then, as a first step towards a fully electromechanically integrated framework,

we develop a model-based approach for investigating the effect of cardiac motion on

noninvasive transmural imaging of cardiac electrophysiology. Specifically, we utilize

the proposed heart model to obtain updated heart geometry through simulation,

and further recover the electrical activities of the heart from body surface potential

maps (BSPMs) by solving an optimization problem.

Various simulations of the heart have been performed under healthy and ab-

normal conditions, which demonstrate the physiological plausibility of the proposed

integrated electromechanical heart model. What’s more, this work presents the effect

of cardiac motion to the solution of noninvasive estimation of cardiac electrophys-

iology and shows the importance of integrating cardiac electrical and mechanical

functions for heart diagnosis. This thesis also paves the road for noninvasive evalu-

ation of cardiac electromechanics.
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Chapter 1

Introduction

Cardiac disease, with its complications, remains the leading cause of morbidity and

mortality in the world, contributing significantly to the global healthcare expendi-

ture [1]. For example, a snapshot of the population would reveal that half a million

people yearly die because of various cardiac diseases in the United States, such as

cardiac arrhythmias [2]. Although a large body of research has been devoted to

gaining insight into the mechanisms behind the healthy and aberrant behaviors of

the heart [3, 4, 5, 6, 7, 8], significant gaps in knowledge are still present due to the

complexity of heart structure and the sophisticated electromechnically integrated

behaviors of the heart.

In the clinical setting, a variety of heart diagnosis techniques have been developed

during the last century, which fall into two groups. One group typically evaluates the

electrical function of the heart. For example, a patient is commonly evaluated either

noninvasively by electrical potentials on the body surface, such as an electrocardio-

1
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gram (ECG) [9], or invasively by catheter-based mapping techniques [10]. All these

approaches used for heart diagnosis typically ignore cardiac mechanical function. On

the other hand, another group assesses the mechanical function of the heart. Car-

diac mechanical function is assessed by measuring the volume of heart chambers,

blood pressure or ejection fraction through advanced medical imaging techniques,

such as magnetic resonance imaging (MRI) [11], computed tomography (CT) [12],

and ultrasound imaging [13]. Because the acquisition of 3D medical images occurs

at a larger temporal scale compared to electrical signal collection, the information

of cardiac electrical activity occurs between two image frames is lost. As a result, to

the best of our knowledge, there does not exist any clinical heart diagnosis technique

that can evaluate electrical and mechanical functions simultaneously.

Nevertheless, the heart is an electromechanical organ, its cyclic pumping arises

from the synergy of its electrical and mechanical function, which requires first to

be electrically activated in order to contract. At the same time, cardiac electri-

cal function experiences the feedback from cardiac mechanical contraction [14, 15].

This inter-dependent relationship determines that neither electrical function nor

mechanical function alone can completely reflect the pathophysiological behaviors

of the heart. For example, for two thirds of patients, heart attack cannot be de-

tected by ECG[16], and patients with long or short QT syndrome presents normal

mechanical activity so would not be diagnosed if only mechanical activity were

measured [17]. Cardiac electromechanics, the integrated electrical and mechanical

function of the heart, becomes of great clinical interest because it allows concurrent

electromechanical imaging and could advance current clinical practice where the
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electrical and mechanical function is evaluated separately. However, cardiac elec-

trical and mechanical signals belong to two different modalities, and therefore, it is

not straightforward to obtain cardiac electromechanics by simply combining electri-

cal and mechanical measurements through conventional data fusion techniques [18].

What’s more, current clinical measurements, either used for evaluating electrical or

mechanical functions, are typically sparse and corrupted with noises from various

sources [19, 20]. A novel way to measure cardiac electromechanics is badly needed.

Thanks to the development of computational power and mathematical modeling,

computational modeling of the heart has been a powerful tool for understanding the

mechanisms behind cardiac electrical and mechanical activities [21, 22, 23]. Compu-

tational models allow, on one hand, reproducing some biological phenomena through

in-silico simulation, such as cardiac electrical wavefront propagation. On the other

hand, these models can serve as testing environments for predictive analysis of heart

activities that can help in understanding the complex relationship between causes

and effects. More importantly, computational models can serve as a central link for

connecting to clinical measurements of different modalities [18, 24, 20].

In view of this, the primary objectives of this research are to (1) develop a

biologically-inspired mathematical model for cardiac electromechanics simulation,

and (2) use this model to understand the effect of cardiac motion on noninvasive

reconstruction of transmural cardiac electrophysiology.
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1.1 The problems

1.1.1 Modeling of cardiac electromechanics

Modeling and simulation have long been intertwined with cardiac research. Ap-

propriate models and simulation can help interpret an array of experimental data

and dissect important mechanisms and interrelationships. Due to the electrome-

chanically integrated property of the heart, a complete mathematical heart model

should contain two interconnected components: cardiac electrophysiology and car-

diac mechanics [25]. Cardiac electrophysiology details the spatiotemporal dynamics

of electrical wave propagation within the heart domain as well as the effect of mecha-

noelectrical feedback. Cardiac mechanics describes attributes of the myocardium

and the deformation related to the active contraction stresses caused by electrical

activation.

However, most of the existing models do not contain both components. On one

hand, a variety of models composed of a cardiac electrophysiological model have

been widely used in personalized cardiac electrophysiology (EP) simulation and re-

covery [26, 27]. The major drawback of these models is the mechanical function of

the heart is ignored because of the assumption the the heart is static during the

cardiac cycle. On the other hand, a type of so-called ”one-way” electromechanical

coupling model was popularly used in heart activity modeling [22, 28] and model-

guided cardiac motion tracking [22, 11]. In these works, electrical activity was first

determined by the solution of a cardiac electrophysiological model and then was

treated as an input for mechanical activity. Although the effect of electromechani-
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cal coupling is considered, the effect of mechanoelectrical feedback was ignored. In

[29], the authors proposed an integrated heart model that included both electrical

and mechanical components. Based on the results of simulations, the authors found

that heart motion contributed significantly to the spatiotemporal dynamics of elec-

trical wave propagation. However, the assumption of isotropic and homogeneous

myocardium material properties limited its application in practice. Moreover, the

simulations were only conducted on two-dimensional synthetic data without test-

ing on any realistic three-dimensional heart geometry. More recently, some more

complex models coupled a cellular electrophysiology model and an active mechanics

model for cardiac electromechanics simulation were proposed [30, 31]. However, it

is not practical to measure ion concentrations in clinical environment, which limits

these models to the research laboratory. What’s more, these model typically have

a great number of parameters which makes it is infeasible to tackle inverse problem

which we are interested.

In view of the problems, we develop an electromechanical model for simulation

of cardiac electromechanics. The model includes both inter-connected components

which can provide a general, macroscopic description of the heart activity. To keep a

balance of computational feasibility and physiological plausibility, we have adopted

phenomenological models for each component.
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1.1.2 The effect of cardiac motion on noninvasive recon-

struction of transmural cardiac electrophysiology

Body surface potential (BSP) recordings, such as ECG, noninvasively reflects the

underlying cardiac electrical activity has been a standard tool for heart diagnosis

in clinic since last century. Nevertheless, the measurement is typically limited in

spatial resolution and only remotely reflects the electrical activity of the heart,

which limits its functionality for heart diagnosis. For example, for two thirds of

patients, heart attack cannot be detected by ECG [16]. To overcome this drawback,

noninvasive reconstruction of transmural cardiac electrophysiology by combining a

cardiac electrophysiological model and body surface potential maps (BSPMs) has

attracted a lot of attention over the last decade [7, 26, 24]. In these works, detailed

3D cardiac electrical activity is reconstructed by given BSPMs and heart geometry

from medical images. The results of these works are very encouraging because they

can not only provide transmural electrical propagation information but provide the

location and size of abnormal regions as well. Nevertheless, all the existing works

are based on the assumption that the heart is static during the cardiac cycle. In

other words, the effect of cardiac motion on electrical function has been ignored.

Some works have been proposed to investigate the effect of cardiac motion on

the inverse problem of cardiac electrophysiology [32, 33, 34]. However, all of them

focused on the electrical activity on the epicardium instead of the transmural infor-

mation. In this thesis, we will investigate the effect of cardiac motion on noninvasive

reconstruction of transmural cardiac electrophysiology by combining our proposed
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electromechanical heart model and BSPMs.

1.2 Thesis contributions

There are three major contributions in this thesis:

• Developed a mathematical model for simulation of cardiac electromechanics.

• Developed a regularization constraint approach for investigating the effect of

cardiac motion on noninvasive reconstruction of transmural cardiac electro-

physiology by combining the proposed heart model and BSPMs.

• Developed a convex optimization approach based image segmentation method

for understanding embryonic heart morphogenesis from confocal microscopy

imaging.

1.3 Thesis organization

The thesis is organized as follows: Chapter 2 reviews the background of cardiac

anatomy, physiology and modeling. Chapter 3 presents the development and ex-

perimental validations of modeling of cardiac electromechanics. Based on the elec-

tromechanical model, we investigate the effect of cardiac motion to noninvasive

reconstruction of transmural cardiac electrophysiology in Chapter 4. Chapter 5

presents the work of understanding of embryonic heart morphogenesis based on

confocal microscopy imaging and robust image segmentation. The thesis ends with

conclusion and future work in chapter 6.



Chapter 2

Background

In this chapter, we will review the background of heart anatomy, physiology and

diagnosis. Moreover, we also give an introduction of the state-of-the-art works on

computational modeling of the heart.

2.1 Cardiac anatomy

The heart is one of the most important organs in the human body, it has a mass of

between 250 and 350 grams and is about the size of a fist. It is located in the chest

between the two lungs and surrounded by a layer called the pericardium, which is

composed of fat and tissue as shown in Fig. 2.1. When a person is in the supine

position, the heart is a conical structure that lies relatively horizontally with the

atria at its base and the ventricles at its apex. During the cardiac cycle, the heart

rotates over its long axis, the right atrium and ventricle are more anterior than the

left chambers, and the right and left sides of the heart are not aligned with the

8
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Figure 2.1: Historical outline of human heart with vessels and lungs within the chest.
Image from http://pantip.com/topic/30566994

homonymous sides of the body [16]. The interventricular septum is almost parallel

with the frontal plane, and the left ventricular free wall includes nearly 300 degrees

of the left ventricular circumference and faces superiorly, posteriorly, and inferiorly.

The heart constitutes together with the blood vessels the cadiovascular system,

which has the task of transporting blood in the body through cyclically pump and

contraction. The anatomy is closely coupled with its physiology. Depending on the

stage of development, the species, the gender and pathologies differences can be

found in the anatomy [16].

From a macroscopic structural view, the heart is separated into two function-

ally and anatomically similar structures, left and right halves, which represents the

division of the blood circulation system in two different parts [35]. A detailed hu-

man heart anatomy with four chambers, related vessels, and walves are presented

in figure 2.2. The right part collects deoxygenated blood from the whole body and

send it to the lungs through pulmonary artery. The left part receives oxygenated

blood from the lungs and pumps it to the whole body through aorta. The left

http://pantip.com/topic/30566994
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Figure 2.2: Macroscopic structure of the heart. Image from http://www.surry.

edu/Portals/

part is larger than the right part for higher pressure in blood transportation. The

halves can be further divided into upper and lower chambers: atrium and ventricle.

The atria and ventricles are composed of a cavity filled by blood and a surrounded

three-layer structure wall. The outside layer of the wall is termed epicardium, and

the inner layer is referred to endocardium. The middle layer is a muscle structured

called myocardium. The blood goes from the atria to the ventricle. To prevent the

back flow of the blood from ventricle to atria, the mitral walve exists between left

atrium and left ventricle, and the tricuspid walve exists between right atrium and

right ventricle.

http://www.surry.edu/Portals/
http://www.surry.edu/Portals/
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2.2 Cardiac physiology

The heart is an electromechanical organ which exhibits multi-physics behaviors

which requires first to be electrically excited in order to contract. Besides its multi-

physics property, it also exhibits multi-scale behaviors. In cellular level, a cardiac

myocyte, heart cell, is initially excited by a large inward current of sodium, which

triggers the upstroke of the action potential. Next, calcium enters the cell through

L-type calcium channels and initiates release of calcium from intracellular stores,

which forms intracellular calcium concentration. Followed by binding of calcium to

troponin C and cross-bridge cycling [25]. The latter forms the basis for contractile

protein shortening and the generation of active tension in the myocyte, which is

called electromechanical coupling. Besides, intracellular calcium can also triggers

calcium-activated potassium channels and forms stretch-activated currents, which

is called the effect of mechanoelectrical feedback. Hence, calcium plays a key role in

the interaction between cardiac electrophysiology and mechanics.

In tissue level, a normal heart cycle starts from the depolarization of the sinoa-

trial (SA) node located in the right atrium. The depolarization wave propagates

through the atria and reaches to the atrio-ventriculer (AV) node, which located

near the septum between the atria and the ventricles. Distal to the AV node, the

depolarization wave travels fast through His bundle and reaches Purkinje fibers.

Leaving the Purkinje fibers, the depolarization wave enters to the ventricular my-

ocardium. The myocytes are excited following the sequence of the depolarization

wave, and the heart contracts accordingly.
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Figure 2.3: Cardiac events occurring in the cardiac cycle. Two complete cycles are
illustrated. Image from http://www.healthanalytics.us/2013/11/04

2.3 Cardiac diagnosis

Although the heart is an electromechanical organ, in clinical setting, cardiac elec-

trical and mechanical functions are typically evaluated separately. Mostly because

cardiac electrical and mechanical signals belong to two different modalities, it is not

straightforward to have fused signal which has both electrical and mechanical infor-

mation. To the best of our knowledge, there does not exist any clinical diagnosis

technique can measure cardiac electrical and mechanical activities simultaneously.

http://www.healthanalytics.us/2013/11/04
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Figure 2.3 shows typically coordinated electrical and mechanical signals measured

in clinic. In the following sections, we will introduce these measurements in details.

2.3.1 Cardiac electrical function

Cardiac electrical function is typically evaluated by the recordings of the potential

maps on the body surface, such as ECG. ECG recordings remotely reflect the spa-

tiotemporal dynamics of electrical activity within the heart [20]. A typical ECG

signal for one heart beat has a shape like figure 2.4. It usually includes P-wave,

QRS complex and T-wave, each of them represents different phases of a cardiac

cycle. P-wave corresponds to the depolarization of the atria, during which the heart

cells in the atria are excited by the electrical wave propagation from SA node to AV

node. QRS complex represents the phase of the depolarization of the ventricles, dur-

ing which the electrical signal leaves the AV node and quickly spreads through the

ventricles throughs the purkinje fibers. T-wave corresponds to the reporlarization

of the ventricles.

ECG has been a standard tool for assessing the heart function in clinic. Although

the number of leads for ECG recording could be different, 12-lead ECG is the most

widely used. Figure 2.5 depicts a normal 12-lead ECG, where each lead exhibits

regular P-QRS-T waves. We also present an abnormal ECG case with atrial fibril-

lation in figure 2.6. In the ECG signal with atrial fibrillation, an absent of P-wave

can be observed.
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Figure 2.4: chematic diagram of normal sinus rhythm for a human heart as seen on
ECG. Image from http://a-fib.com/

2.3.2 Cardiac mechanical function

In clinical, cardiac mechanical function is typically assessed by medical imaging such

as CT, MRI and ultrasound. In figure 2.7, we present several slices of images from a

3D MR image. These images were scanned at the same time but different location.

From (a) to (f), the images present the base to the apex of the ventricles. One

important metric for determining normal and abnormal heart is the ejection fraction,

which means the volumetric fraction of blood pumped out of the left and right

ventricle with each heartbeat or cardiac cycle. To obtain this value, we need to have

a volume curve as presented in figure 2.3. Thus, multiple frames of images are usually

scanned during one cardiac cycle. Figure 2.8 presents several frames of images which

were scanned at the approximately same location at different time. With advanced

http://a-fib.com/
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Figure 2.5: Clinical 12-lead ECG signals. Image from http://hqmeded-ecg.

blogspot.com/

image segmentation and registration approach [36, 37, 13], the ejection fraction can

be estimated, and therefore, help the doctors to make a clinical decision.

2.4 Computational modeling of the heart

Modern cardiac research has recognized that computational modeling can help inter-

pret experimental findings and dissect important mechanisms of the heart behaviors.

The heart is a highly integrated organ exhibits multi-scale (from cellular to organ

level) and multi-physics (cardiac electrophysiology, cardiac mechanics and their in-

teraction) behaviors. Because of this complexity of the heart system, most of the

previous works use reductionist modeling approach that is to model either cardiac

electrophysiology or cardiac mechanics by ignoring the interaction with the other

[38, 25, 30].

The earliest work for modeling electrophysiology of cells is proposed by Hodgkin

http://hqmeded-ecg.blogspot.com/
http://hqmeded-ecg.blogspot.com/
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Figure 2.6: Atrial fibrillation. Image from http://lifeinthefastlane.com/

ecg-library/atrial-fibrillation/

and Huxley half a century ago [39]. A lot of models are proposed later on to

extend the seminal work [40, 41, 3], to mention a few. To model the spatiotemporal

dynamics of the electrical wave propagation in cardiac tissue, these models are

extended to the reaction-diffusion formulation [42, 43, 44]. A common drawback of

these models is they are all based on the assumption that the heart is static during

cardiac cycle by ignoring the effect of mechanoelectrical feedback. A hybrid method

for studying the effect of heart motion on cardiac electrophysiology is proposed in

[32], which shows that the morphologies of T-wave are quite different between heart

model with and without considering heart motion.

Apart from the approaches to model pure cardiac electrophysiology, there is a

class of so-called ”one-way” electromechanical coupling models are widely used in

cardiac electromechanical modeling [22, 28] and motion tracking [22, 11]. In these

http://lifeinthefastlane.com/ecg-library/atrial-fibrillation/
http://lifeinthefastlane.com/ecg-library/atrial-fibrillation/
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models, electrical activity is first determined by the solution of a cardiac electrophys-

iological model and then be treated as an input for mechanical activity. Although

the effect of electromechanical coupling is considered, the effect of mechanoelectrical

feedback is ignored.

There also exist some attempts to use integrated system approach to model car-

diac electromechanics. Since the electromechanical coupling happens at the cellular

level through calcium ions exchange, the most common approach for modeling elec-

tromechanics is by coupling a cellular electrophysiological model and a tissue level

cardiac mechanical model [31, 45]. Although these models are able to describe very

detail heart behaviors, they are usually computational expensive. What’s more,

there is no direct relationship between these models to clinical measurements, which

makes them hard to be used in clinical environment. In [29], the authors propose an

integrated heart model that includes both electromechanical coupling and mechano-

electrical feedback. They find that the heart deformation has a significant effect on

the dynamics of electrical wave propagation. However, the assumption of isotropic

and homogeneous myocardium material properties limits its application. What’s

more, the simulations are performed only on synthetic data in two dimensional

space.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: (a) - (f) cardiac MR images acquired at same time while different posi-
tions along the short axis of the heart
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frame 1 frame 4

frame 7 frame 10

frame 13 frame 16

Figure 2.8: Cardiac MR images acquired at same position while different time frames



Chapter 3

Modeling of cardiac

electromechanics

3.1 Introduction

Understanding of the mechanisms behind cardiac electrical and mechanical func-

tions and their interaction has attracted great of interest in basic science and clin-

ical cardiology [26, 31]. Experimental studies have provided significant insight into

the electrical and mechanical activity of the heart from molecular up to the whole

body level; nevertheless, detailed information regarding the intricate processes at

each level can not capture the emergent phenomena, for example, the interaction

process between electrical and mechanical activities. Moreover, the existing clinical

techniques are limited by their inability to assess the 3D electrical and mechanical

activity in the heart simultaneously and with sufficient spatiotemporal resolution

20
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[31]. Thus a comprehensive approach that can integrate detailed information of

both electrophysiology and mechanics is needed to provide a better understanding

of the complex relationship between electrical and mechanical activity. Thanks to

the development of computational power and mathematical modeling techniques,

computational modeling of the heart represents such an approach [29, 30, 31, 25].

Due to the electromechanically integrated property of the heart, a complete

mathematical heart model should contain two interconnected components: cardiac

electrophysiology and cardiac mechanics [25]. Cardiac electrophysiology details the

spatiotemporal dynamics of electrical wave propagation within the heart domain as

well as the effect of mechanoelectrical feedback which . cardiac mechanics describes

attributions of the myocardium and the deformation related to the active contraction

stresses which is caused by electrical activation.

To keep a balance of computational feasibility and physiological meaningfulness,

we develop an electromechanical model which will be introduced in the following

sections.

3.2 Modeling of cardiac electromechanics

To build a mathematical model of the heart, each point within the computational

domain can be characterized by two primary field variables, nodal transmembrane

potential (TMP) v(x, t) and nodal displacement u(x, t). where x represents the lo-

cation of a point of interest and t stands for the time, as shown in figure 3.1. TMP

refers to the potential difference between intracellular domain and extracellular do-
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Reference geometry at time t0 Deformed geometry at time ts

Figure 3.1: The motion of a point x from time t0 to time ts

main within the context of mono-domain formulations of the cardiac electrophysiol-

ogy [30, 42, 43]. The evolution of the two field variables in a spatiotemporal manner

is governed by two differential equations describing cardiac electrophysiology and

cardiac mechanics, respectively.

3.2.1 Cardiac electrophysiology

The spread of electrical wavefront in the heart occurs due to the excitability of

individual heart cells and the propagation of electrical excitation from one cell to

neighboring cells by intercellular transport of ions via gap junctions [35]. Thus, a

general model for each heart cell can be represented as the following equation [46]

I = Cm
dV

dt
+ Iion + ISAC (3.1)
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where I represents total transmembrane current, Cm stands for membrane capaci-

tance per unit area, V represents TMP, Iion is the total ionic transmembrane cur-

rents, and ISAC stands for stretch-activated current related to the effect of mecha-

noelectrical feedback [15].

To describe the propagation of cardiac electrical wave in myocardium, the total

transmembrane current can be replaced by a reaction-diffusion term. Inherited from

equation 3.1, a reaction-diffusion model can be represented as follows

I = ∇ · (D0∇V ) =
dV

dt
+ Iion + ISAC (3.2)

Here Cm = 1 has been adopted as in most of the literature [29], ∇ stands for the

spatial derivatives, and D0 is the diffusion tensor where df and dcf are diffusion

parameters along the fiber and cross fiber directions, which reflects different propa-

gation speed along and cross fiber directions.

D0 =


df 0 0

0 dcf 0

0 0 dcf


To determine the formulation of equation 3.2, we need to know the explicit

expressions of Iion and ISAC . ISAC is the effect of mechanoelectrical feedback, which

will be discussed later. Based on the expression of the ionic current Iion , the

existing models can be roughly classified into two classes : biophysical models and

phenomenological models.
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Biophysical models

Biophysical models are based on direct experimental findings and detailed modeling

the currents caused by different ions at the cellular level[41]. Such models generally

can accurately reproduce various properties of active action potential, such as shape,

action potential duartion, and ionic currents. Nevertheless, it is impossible to get

the measurements of ion concentrations of a specific patient in clinical environment,

which limits their application in real world. Besides, models of this type typically

has lots of variables and partial differential equations to solve, and therefore, needs

a lot of computational resources.

Phenomenological models

Phenomenological models provide a macroscopic description of cardiac electrical

wave propagation in the myocardium, which does not explicitly compute the con-

centrations of ions, such as Calcium, and therefore, has fewer variables and equations

then biophysical models. They can usually be formulated in either a bidomain model

or monodomain model [42, 43].

To simplify our problem, we will ignore stretch-activated currents ISAC for now

and integrate it later. In this thesis, we have selected the monodomain two-variable

Aliev-Panfilov model [42] to keep a balance of computational feasibility and physi-

ological plausibility. This model has been widely used in cardiac electrophysiology

(EP) simulation [22] and cardiac EP imaging [26].
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
∂V
∂t

= ∇ · (D0∇V ) + sV (V − a)(1− V )− V C
∂C
∂t

= −e(C + sV (V − a− 1))
(3.3)

where V is a vector stands for normalized TMP, and C is a vector represents

a recovery current which controls the local depolarization behavior of the action

potential. Parameters a, e, and s are constants in time but not necessarily in space

to determine the shape of TMP. Except for the excitability a, other parameters

do not have physical meaning. In figure 3.2, we present heterogeneity of TMPs

shapes in different values of excitability a which equals to 0.14, 0.15, and 0.17 at

myocardium, endocardium and epicardium, respectively.

Mechanoelectrical feedback

So far, we have not considered the effect of mechanoelectrical feedback as the term

ISAC in equation 3.2. In practice, cardiac electrophysiology and cardiac mechanics

are depended on each other, and realistic cardiac simulation can only be achieved

when this inter-dependent relationship is considered [31]. Earlier experimental and

clinical research has demonstrated that mechanical activity of the heart affects car-

diac electrophysiology. Generally speaking, mechanical activity affects cardiac elec-

trophysiology mainly in three ways. First, due to the heart motion, the positions

of cardiac electrical sources are changing consistently during the cardiac cycle. Sec-

ond, the fiber orientation of a heart cell is changing due to the heart contraction,

and which directly leads to the change of conductivity tensor D0. At last, stretch-
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(a)

(b)

Figure 3.2: Heterogeneity of TMP shapes in endocardium, myocardium and epi-
cardium
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activated ion channels in the cell membrane will be activated during the heart mo-

tion, which will generate stretch-activated currents [31, 38].

While have realistic simulation results by including stretch-activated currents

into the model, the computational cost will increase exponentially. To keep a bal-

ance of computational feasibility and physiological meaningfulness of the model, we

integrate the first two effects of mechanoelectrical feedback into our model. In this

way, the electrophysiological model in equation 3.3 can be modified as follows


∂V
∂t

= 5 · (D(F)5 V ) + sV (V − a)(1− V )− V C
∂C
∂t

= −e(C + sV (V − a− 1))
(3.4)

Here F is the deformation gradient tensor obtained from cardiac mechanics.

According to the property of deformation gradient tensor, F can be further decom-

posed into a rotation matrix Rrot and a stretch matrix S. The relationship between

conductivity tensor D and F can be explicitly represented as the following equation

D(F) = Rrot
TD0Rrot (3.5)

Thus, the conductivity tensor is changing constantly within a cardiac cycle. In

this way, the effect of mechanoelectrical feedback caused by the change of fiber

orientation is introduced into cardiac electrophysiological model. What’s more, the

model will be solved in a time-variant computation domain.
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3.2.2 Cardiac mechanics

Cardiac mechanics describes the material property of the myocardium and the de-

formation caused under the loading of internal and external forces. The myocardium

is an active nonlinear anisotropic viscoelastic material. Its constitutive law is com-

plex and typically includes an electrical controlled active contractile element and

a passive element representing the passive material property [22]. Thus, a simpli-

fied mechanical model comprises a TMP controlled active contractile element and a

passive parallel element with anisotropic and linear elastic properties is adopted.

Active contractile element

As aforementioned, the processes of active stress generation and cardiac cell short-

ening occur at the cellular level and depend on the interaction of calcium. Thus,

various models on cellular level directly depending on the quantity of calcium have

been proposed during the last few decades[6, 47]. These models can reflect realistic

ion activities during the heart contraction. However, cellular level models generally

need heavy computational cost because of the number of variables and equations

need to be solved. To keep a balance of computational feasibility and physiological

plausibility, we have selected the ODE-based phenomenological model from [22]

σ̇c + σc = V σ0 (3.6)

where σc is a scalar related to active stress, and σ̇c is the time derivative of σc.



29

Figure 3.3: Time-vary active stress

σ0 controls the magnitude of active stress. V is the normalized TMP from 3.15.

Through equation 3.6, cardiac electrical activity is coupled to mechanical activity.

Because the TMP v is normalized between 0 and 1, and the changes of depolariza-

tion and depolarization are abrupt, the analytic solution can be approximated by

replacing v with the value of 0 and 1. This makes it possible to avoid the time-

stepping of the ordinary differential equation and to directly control the parameters

with the following model:
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 σc(t) = σ0(1− eαc(Td−t) if Td ≤ t ≤ Tr

σc(t) = σre
αr(Tr−t) if Tr ≤ t ≤ Td +HP

(3.7)

where Td and Tr are the depolarization and depolarization time, which is depicted

as phase 0 and phase 3 in (a) of figure 3.2. HP is the heart period, αr is the relaxation

rate and σr = σc(Tr), σr and σc are introduced for control the decrease and increase

of the contraction stress. The shape of the time depended σc(t) is shown in figure

3.3. In this way, cardiac electrical signal has been coupled with cardiac mechanics.

Based on active stress, we can further obtain the contraction Cauchy stress tensor

σ by:

σ = −σcf ⊗ f (3.8)

where f is the fiber orientation of a point within the computational domain, and

⊗ represents the tensor product. The minus sign is necessary because σc is always

positive while a contraction tensor is required.

Because the total-Lagrangian formulation of cardiac system dynamic will be

used in our framework as explained in the section of governing equation of cardiac

mechanics, we need further calculate active body and surface forces.

RB = Jdiv(σcf ⊗ f) (3.9)
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RS = Jσ(F−1)TN (3.10)

where RB and RS are body and surface forces, respectively. F is deformation

gradient tensor, J the determinant of F, and N is outward normal of the heart

surface. For more details on body and surface force calculation, please refer to [48].

Mechanical properties of passive tissue

Since the length of a single cardiac cell changes up to 20% during a heart beat [29],

the mechanical analysis should follow finite deformation elasticity theory. Under

the assumption that the myocardium is elastic, we can establish the stress-strain

relation by Hooke’s Law:

S = Cε (3.11)

Here S is the second Piola-Kirchhoff stress tensor and ε the Green-Lagrangian

strain tensor. C is the elasticity tensor which encodes the material properties of the

myocardium. Assume the myocardium material is linear and transversely isotropic,

we can obtain the elasticity tensor as follows:
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C =



1
Ef

−vf
Ecf

−vf
Ecf

0 0 0

−vf
Ecf

1
Ef

−vf
Ecf

0 0 0

−vf
Ecf

−vf
Ecf

1
Ef

0 0 0

0 0 0 1
G

0 0

0 0 0 0 1
G

0

0 0 0 0 0
2(1+vcf )

Ecf



−1

where Ef , Ecf , vf , and vcf are the Young’s moduli and Poisson’s rations along

and cross the fiber respectively, G ≈ Ef

2(1+vf )
describes the shear property. The

Young’s moduli describe stiffness, the larger the values, the larger force is needed to

make the tissue deform. The poisson’s rations control the incompressibility of the

myocardium, range between 0 to 0.5. Unlike isotropic materials, the incompressibil-

ity can not be achieved by setting both Poisson’s ratios close to 0.5, and numerical

tests are required fro a particular problem.

Governing equation of cardiac mechanics

The governing equation of cardiac mechanics describes the balance between external

loads from active forces, the kinematic quantities and their internal loads of defor-

mation at any time instant. Following the principle of virtual displacement [49], we

can put the active and passive components into the same framework :

∫
t+∆tV

(t+∆tρt+∆tüiδui + t+∆tτij δ t+∆teij) d
t+∆tV = t+∆tR (3.12)
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where

t+∆tρ = material density of the myocardium at time t+ ∆t

t+∆tüi = components of acceleration vector

t+∆tτij = Cartesian components of the Cauchy stress tensor (forces per unit areas

in the deformed geometry)

δ t+∆teij = 1
2
( ∂δui
∂t+∆txj

+
∂δuj

∂t+∆txi
) = strain tensor corresponding to virtual displace-

ments

δu = components of virtual displacement vector imposed on configuration at

time t+ ∆t, a function of t+∆txj, j =1,2,3

t+∆txi = Cartesian coordinates of material point at time t+ ∆t

t+∆tV = volume at time t+ ∆t

and

t+∆tR =
∫
t+∆tV

t+∆tfBi δuid
t+∆tV +

∫
t+∆tSf

t+∆tfSi δu
S
i d

t+∆tS is the external load

from active forces

where

t+∆tfBi = components of externally applied forces per unit volume at time t+∆t

t+∆tfSi = components of externally applied surface tractions per unit surface

area at time t+ ∆t

t+∆tSf = surface at time t+ ∆t on which external tractions are applied

δuSi = δui evaluated on the surface t+∆tSf (the δui components are zero at and

corresponding to the prescribed displacements on the surface t+∆tSu)

By using the total-Lagrangian formulation [49], the equation 3.12 can be repre-

sented as:
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∫
0V

(ρt+∆tüiδui + t+∆t
0 Sijδ

t+∆t
0 εij) d

0V = t+∆tR (3.13)

where 0V and ρ are the volume and material density in the reference configura-

tion. t+∆t
0 Sij are the second Piola-Kirchhoff stress tensor components, and δ t+∆t

0 εij

are the Green-Lagrange strain tensor components of the virtual displacements. By

using meshfree method [50], equation 3.13 can be converted into matrix formulation

as follows (please refer to the appendix for more details ):

tMt+∆tÜ + tC
t+∆t

U̇ + (tK + tKb)∆U = t+∆tR + tRb − tRI (3.14)

Variables with superscript t are measured at time t, and variables with super-

script t + ∆t are measured at time t + ∆t. With tM the mass matrix, tC is the

damping matrix, tK the stiffness matrix, tKb the stiffness matrix from boundary

conditions, and t+∆tÜ , t+∆tU̇ , ∆U are acceleration, velocity and incremental dis-

placement vectors. The vector t+∆tR is the summation of body and surface active

forces, and vector tRb is external forces from boundary conditions. tRI is an internal

term. By using Newmark method for time integration, the only unknown variable

in equation 3.14 is incremental displacement ∆U .
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3.2.3 Cardiac system dynamics

With the explicit formulation of cardiac electrophysiology and mechanics in equa-

tions 3.4 and 3.14, we can build the integrated model for cardiac electromechanics:


∂V
∂t

= −ME
−1(U)KE(U)V + f(V )

MM Ü + CU̇ + KM∆U = R(V )
(3.15)

where (V (x, t), U(x, t)) characterize the electrical and mechanical properties of

point x at time t. Here the variable C in equation 3.3 has been encoded in f(V ).

The matrices ME and KE are depended on the displacement vector U because of

the effect of mechanoelectrical feedback. The active force vector R is depended on

TMP V as in equation 3.9 and 3.10. Thus, cardiac electrophysiology and mechanics

are tightly coupled.

3.2.4 Heart representation

To obtain a realistic simulation of cardiac electromechanics, a subject-specific heart

geometry is needed. In figure 3.4, a 3D cardiac MRI image is shown in (a), which

includes a subject-specific heart geometry. To automatically segment the heart

geometry from the 3D image is not an easy task, because of the complex geometry

of the heart and thin walls between the epicardium and the endocardium of the right

ventricle. Thus, a lot of automatic image segmentation approaches are not suitable

for this specific purpose. In this work, we used a toolkit called CardioViz3D which
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(a) 3D cardiac MR image
(b) cardiac segmentation from 3D

image

(c) meshfree particle representation (d) meshfree particle with fiber
directions

Figure 3.4: Meshfree particle representation of the computational domain of the
heart

is developed by INRIA group for providing the researcher with a set of tools for pre-

processing data and to visualize results of cardiac simulations. The segmentation
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result is presented as (b) of figure 3.4.

To numerically implement cardiac system dynamics, equation 3.15, we have to

discretize the continuous computational domain. Finite element method is one of

the most popular methods for spatial discretization in computational cardiology

domain [49]. Nevertheless, its complicated meshing procedures and element-based

interpolation functions make the algorithms are either easy to implement but numer-

ically inaccurate or numerically accurate but computationally expensive. We have

selected meshfree particle representation approach as shown in (c) of figure 3.4.

Meshfree particle representation method is an alternative for finite element method,

by using which the computational domain is discretized by a set of unstructured

points. As no mesh is required, complicated meshing procedures are excluded, and

no re-meshing is needed to improve the spatial discretization accuracy. To consider

the anisotropic and inhomogeneous properties of the heart, each point is assigned a

fiber direction which was obtained by registrate the subject-specific geometry to a

mathematical heart model [51] through non-rigid registration [13].

3.3 Experimental results

3.3.1 Synthetic data

To understand the electromechanically integrated behavior of the model in equation

3.15, simulations on object with simple geometry will be very helpful. In view of this,

we conduct our first simulation on a regular cubic object. The object, with its size

60mm∗60mm∗60mm, has been utilized to emulate a piece of heart muscle, as shown
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Figure 3.5: Simulation of the proposed heart model on a cubic object. From
top row to bottom: electromechanics, strain maps along fiber, strain maps along
fiber cross and strain maps along fiber cross. From Left to right with time: 0ms,
13ms, 110ms, 140ms, and 148ms (white lines indicate fiber orientations, the colors
represent normalized TMP and strain values.)
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in figure 3.5. By using meshfree particle method [52], the cubic object is represented

by 729 meshfree particles which are uniformly distributed within the computational

domain. The initial fiber orientation of the meshfree particles are pointing towards

the right face of the object. To simulate the electromechanical wave propagation,

electrical excitation sites are first initiated from the left face which outward normal is

in the opposite direction of the fiber orientations. To mimic the physical connection

between the object and its surrounding muscle, we limit the movement of the right

face.

A cardiac cycle of 200ms has been simulated on the object as shown in figure 3.5.

To verify the physiological meaningfulness of our simulation, we have presented both

electrical and mechanical behaviors of the object in the top row of figure 3.5, which

shows the spatiotemporal dynamics of electromechanical wave propagation. After

the initial electrical excitation, the electrical wave propagates from the left face to

the right face and spreads to the whole object, which follows in a desired pattern.

Moreover, we validate the physiological plausibility of the simulation through its

mechanical behavior. After a heart cell is electrically excited, under the incompress-

ible material assumption [49], the cell would contract along the fiber direction and

extend in fiber cross direction because of the myocardial material property. Thus,

the size of the cubic object should be shortened along the fiber direction and ex-

tended in fiber cross directions. To show the mechanical behavior of the object, we

present the strain maps of the object from row 2 to 4 in figure 3.5. Row 2 lists the

strain maps along the fiber direction, the values are almost negative all over the time

which means the size of the object is shortening in this direction. This finding is the
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same as what we expected that the object contracts along the fiber direction. At the

same time, the stain values in both fiber cross directions are positive which means

the cube are extending in both two directions as shown in row 3 to 4. These results

on simple geometry indicate that our proposed model can provide physiologically

meaningful simulations.

3.3.2 Physiological simulation

To further verify the physiological plausibility of the model, we perform simula-

tions on a biventricular heart obtained from University of Auckland [29]. The heart

geometry was obtained through experiments on a number of hearts which provide

both geometry and their fiber orientations, which is shown as in figure 3.6. Again,

based on meshfree particle method, the heart is represented by 2244 meshfree par-

ticles with their fiber-sheet-normal directions obtained through interpolation from

original data set [51]. To simulate a cardiac cycle, the initial electrical excitation

sites need to be determined before setting the simulation. Nevertheless, the realistic

Purkinje network of the heart which determines the initial excitation sites is not

available, and therefore, we have selected the points on the endocardium and within

segments 1, 8, 9 and 15 of the left ventricle as the initial activation sites (according

to American Heart Association suggestion, we have divided the left-ventricular my-

ocardium into 17 segments [37] which as shown in figure 3.6) corresponding to the

experimental findings by [4], which is shown as in figure 3.7 at time 0ms. Moreover,

we have taken two boundary conditions into account for considering the two phe-

nomena during cardiac cycle: 1) the apex of the heart almost stays still throughout
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the cardiac cycle. 2)The base of the heart is constrained by the surrounding my-

ocardium and arteries, which makes it has limited movement along the short axis

direction.

Based on the above assumption and conditions, we simulated the electromechan-

ical activity of the heart with cardiac cycle of 500ms. The simulation results are

shown in figure 3.7, which depicts the spread of the electrical wave front from the ini-

tial excitation sites throughout the the whole heart along with the heart motion. In

this figure, we present four different phases of cardiac cycle. The top row shows the

electrical wave quickly propagates from initial excitation sites to the whole hearts

which represents the depolarization phase. In the second row, all the myocytes,

heart cells, are excited and have very little change in terms of TMP values, which

is called ”plateau” phase. In the third row, the TMP values quickly drop from the

maximum value to the minimum value, which is called repolarization phase. In the

bottom row, the electrical signal is almost gone, while the heart is still in relaxation

phase. All these phenomena are consistent with a normal heart’s behaviors [16], and

therefore, validate the physiological plausibility of our model.

Besides the electrical activity, we also validate our simulation through the me-

chanical behaviors. For a normal heart, the fiber directions in the myocardium are

typically perpendicular to the radial direction. As a result, the circumferential strain

values are typically negative during the systole phase, and positive during the dias-

tole phase, while the values of radial strain are opposite. In figure 3.8, we present

the radial strain maps at different time during the cardiac cycle. In the top row, we

can see the strain values are almost zeros which means there is no deformation. This
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is because the electrical propagation speed is much faster than mechanical signal,

the active forces generated by electrical excitation is still very small at this tine (see

figure 3.3 for the relationship between the value of active force and time). In the sec-

ond and third rows, the strain values are greater than zero which means the heart

contracts along the radial direction which follows physiological behaviors. In the

fourth row, the strain values gradually become smaller and eventually become zero.

Besides radial strain maps, we also validate the circumferential strain maps in figure

3.9. As we can see, the circumferential strain values are smaller than zeros through

the cardiac cycle, which means the heart muscle is extending in the circumferential

directions. All the above findings are consistent with physiological behaviors of the

heart [16], which further approve the physiological plausibility of our model.

In the above paragraphs, we have validated our simulation through electrical and

mechanical behaviors separately. We further validate its physiological plausibility by

checking its electromechanical behaviors. In figure 3.10, we present the simulation

results of the curve of volume change curve of the left ventricle and the simulated

ECG signal. By comparing with the curves from reference, our simulation can

capture the basic pattern of both ECG and ventricular volume change. Because

the P-wave is corresponding to the depolarization of the atria and our heart does

not include the atria, that is why our simulated ECG shows as flat line. Because

we assume the homogeneous property of the heart, the T-wave is simply inverse

of the QRS-complex. which can be easily solved by encode inhomogeneity of the

excitability on endocardium, myocardium and epicardium.

In cardiovascular physiology, ejection fraction (EF) represents the volumetric
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fraction of blood pumped out of the left and right ventricle with each heartbeat or

cardiac cycle, which is a very important metric to measure heart failure. The EF

value of a normal human being id around 50%. In figure 3.10, we present the volume

change curve of left ventricle and show the EF value is 52%. This is again show the

physiological meaningfulness of our simulation.

3.3.3 Pathological simulation

Apart from physiological simulations, our model can be used to simulate the heart

under pathological conditions. In this work, we present simulation result under two

conditions: left ventricular bundle block (LBBB) and cardiac infarction.

In normal condition, the electrical activation progresses from the endocardium to

the epicardium simultaneously in both left and right ventricle. LBBB is a condition

in which there is a delay or obstruction along the pathway that electrical impulses

travel to the left ventricle to make you heart beat. In that way, the electrical

activation progress on the right ventricle will be earlier than the left ventricle. To

simulate this condition, we removed the initial excitation sites on the endocardium

of the left ventricle as show in figure 3.11. As we can see, one significant difference

from simulation results under normal condition, as in figure 3.7, is the electrical wave

propagation is asynchronized in left and right ventricle, which propagates from the

right ventricle to the left ventricle. To further show the difference between the

simulations under normal condition and LBBB, we make a comparison between the

volume change curve of the two conditions as in figure 3.12. We find there is a delay

for the simulation of LBBB condition to reach the minimum volume. However, the
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pattern and range of volume change does not change.

We also simulate the cardiac cycle under myocardium infarction as in figure 3.13.

In this simulation, we assume segments 5 and 6 are not electrically excitable. As

we can see, the electrical wave propagates from the initial excitation sites through

the heart except the infracted regions. To compare the simulation with normal

condition, we plot the left ventricle volume change curve in 3.14. We found the

left ventricle gets to the minimum volume earlier than the normal condition, which

means its repolarization phase earlier than normal condition. We also find that the

the minimum volume of the left ventricle is greater than the normal condition, which

means the infarction affects the heart contraction ability. This can also found from

figure 3.3.3, the heart has very limited contraction in the infarcted area.
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(a)Bulleye view of 17 segments of the
left ventricle and along with right

ventricle

(b)Inside view of 17 segments of the
left ventricle and along with right

ventricle

(c) AHA 17 segments

Figure 3.6: The 17 segments and the nomenclature of the left-ventricular my-
ocardium recommended by the American Heart Association, shown on a circumfer-
ential polar plot [37]
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Figure 3.7: Simulation of cardiac electromechanics. the color indicates normalized
TMP. From left to right and top to bottom. The time for the snapshots are at 0ms,
5ms, 10ms, 20ms, 40ms, 55ms, 75ms, 95ms, 110ms, 125ms, 130ms, 135ms, 140ms,
145ms, 195ms, 430ms
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Figure 3.8: Radial strain maps. The time for the snapshots are at 0ms, 5ms,
10ms, 20ms, 40ms, 55ms, 75ms, 95ms, 110ms, 125ms, 130ms, 135ms, 140ms, 145ms,
195ms, 430ms
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Figure 3.9: Circumferetnial strain maps. The time for the snapshots are at 0ms,
5ms, 10ms, 20ms, 40ms, 55ms, 75ms, 95ms, 110ms, 125ms, 130ms, 135ms, 140ms,
145ms, 195ms, 430ms
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(a)Simulation results

(b) Reference curves from [53]

Figure 3.10: Comparison between simulation results of left ventricle volume change
curve and single-lead ECG
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Figure 3.11: Simulation of LBBB

Figure 3.12: Cardiac cycle simulation under LBBB condition. The time for the
snapshots are at 0ms, 5ms, 10ms, 20ms, 40ms, 55ms, 75ms, 95ms, 110ms, 125ms,
130ms, 135ms, 140ms, 145ms, 195ms, 430ms
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Figure 3.13: Simulation under myocardium infarction. The time for the snapshots
are at 0ms, 5ms, 10ms, 20ms, 40ms, 55ms, 75ms, 95ms, 110ms, 125ms, 130ms,
135ms, 140ms, 145ms, 195ms, 430ms

Figure 3.14: Cardiac cycle simulation under myocardium infarction condition



Chapter 4

The effect of cardiac motion on

noninvasive transmural imaging of

cardiac electrophysiology

4.1 Introduction

Noninvasive transmural imaging of cardiac electrophysiology aims to quantitative

interpretation of the 3D electrical activity of the heart based on noninvasive elec-

trophysiological data, such as ECG or body surface potential maps (BSPMs). In

the last decade, several studies have been demonstrated that noninvasive transmu-

ral imaging technique can be successfully applied to reconstruction of the healthy

and abnormal electrical activities of the heart [54, 55, 26, 7, 24], and which has the

potential for assisting the doctors with heart diagnosis. Although the results were

52
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promising, they were all based on the assumption that the heart geometry is fixed

during the cardiac cycle. In other words, the mechanical activity, such as the motion

and twist, of the heart were completely ignored. Nevertheless, the heart is an elec-

tromechanical organ that exhibits both electrical and mechanical activities. Thus,

this assumption has two shortcomings that limit their practical applications. First,

it introduces geometry errors during the computation because the heart is moving

constantly and thus the relative position between the torso and heart is changing

constantly. Second, it is not feasible to reveal the mechanisms behind some patho-

logical activities that need considering both electrical and mechanical activities, such

as heart failure and ventricular desynchronization. To overcome the first limitation,

some researchers have been investigating the potential numerical errors introduced

by ignoring the mechanical activity through shifting the global position or orienta-

tion of the heart [34, 33, 32]. However, the global position or orientation change

of the heart cannot reflect the realistic heart motion. Thus, a more efficient and

accurate approch for understanding the effect of cardiac motion on noninvasive es-

timation of cardiac electrophysiology is needed. What’s more, all the existing works

were focusing on studying the motion effect on reconstruction of the epicardial elec-

trical activity rather than transmural electrical activity. Compared to the electrical

activities on the epicardium, transmural electrical activity of the heart can directly

and precisely reflect the location and extent of abnormal regions in the heart which

can advance the methods with understanding the epicardial electrical activity only.

As a result, noninvasive transmural imaging of cardiac electrophysiology has been

great of interest among cardiac research communities [54, 55, 26, 7, 24]. However,
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to the best of our knowledge, this is the first work to study the effect of cardiac

motion on noninvasive transmural imaging of cardiac electrophysiology.

In the previous chapter, we proposed a biologically-inspired mathematical model

for simulation of cardiac electromechanics. Due to its electromechanically integrated

property, it can be naturally served as a central role for reconstruction of transmural

cardiac electrophysiology from BSPMs and taking into the effect of cardiac motion

at the same time. Based on this obeservation, we utilize the proposed heart model

to generate realistic heart simulation which includes electrical activity, mechanical

activity and their interactions. To this end, we first build a forward relationship be-

tween the spatiotemporal dynamics of volumetric cardiac electrophysiology (TMP)

and BSPMs. Then, we solve an inverse problem to estimate the volumetric TMP

based on the given BSPMs through an optimization approach. Nevertheless, the

inverse problem is typically an ill-posed problem, which means the solution may not

be unique and also a small change on the value of BSPMs may have a huge effect

to the TMP values. To tackle this problem, we solve the optimization approach by

adding a regularization term to narrow the solution space. More details on solving

the forward and inverse problems will be introduced in the following sections.

4.2 Forward problem

4.2.1 Coupled heart-torso representation

To build a relationship between volumetric TMP and BSPMs, we need to establish

a geometrical alignment between the heart and the torso. Thanks to the advanced
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medical imaging techniques, the torso can be extracted through segmenting of 3D

MR or CT images as shown in (a) of figure 4.1. In a similar way, the heart geometry

can also be extracted from medical images. Before conducting any computational

operations, we need to discretize the computational domain, which are the heart

and the torso in our problem. Due to the large volume and relative homogeneity

properties of the torso, we use boundary-element method to discretize the torso by

which the torso is represented by a graph of connected triangles as shown in (b) of

figure 4.1. As aforementioned, the computational domain of the heart is represented

by using meashfree particles method as shown in (c) of figure 4.1. The relative

position of the heart and torso can be determined through image registration based

on some landmarks, such as the apex and epicardium of the heart. After these steps,

a coupled heart-torso geometry can be built which is shown as (d) of figure 4.1.

4.2.2 TMPs-to-BSPMs mapping

Due to the relatively low frequencies in the ECG signals, the quasi-static approxi-

mation of Maxwell’s equations can be used to describe how cardiac electrical sources

generate the potential distributions on the body surface [56]. Following this idea, a

relationship between volumetric TMP distribution and BSPMs distribution can be

established as follows

∇ · (σ∇φ) = ∇ · (−Dh∇v) (4.1)
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(a) 3D CT image (b) boundary-element representation

(c) Meshfree particle representation
of the heart

(d) Heart-torso representation

Figure 4.1: Meshfree-BEM representation of the heart-torso structure

where φ and v stand for BSPMs and TMP respectively, and σ, Dh represent torso

and intercellular conductivities, respectively.

With meshfree-BEM representation of the heart-torso structure, equation 4.1
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can be further converted into a time-variant linear equation

Φ(t) = HE(t)V (t) (4.2)

where vector Φ(t) and vector V (t) represent the potential distribution on the body

surface and TMP within the myocardium at time t, respectively. Here HE(t) is a

transfer matrix reflects the linear relationship between TMP and BSPMs. Unlike

conventional approaches [56, 54, 55] where the transfer matrix is fixed during the

cardiac cycle, it is a time-variant variable here because of the incorporating of the

cardiac motion. what’s more, HE(t) also encodes all the structural and conductivity

information of the heart-torso structure.

4.3 Inverse problem

The reconstruction of transmural cardiac electrophysiology from BSPMs is equiva-

lent to finding an optimal V (t) given HE(t) and Φ(t) in equation 4.2. It is an inverse

problem and is unfortunately ill-posed. Small measurement errors in the BSPMs

Φ(t), or any geometrical errors encoded in the transfer matrix He(t) can lead to

large unbounded errors [34]. To tackle this issue, we reformat the problem into an

object function minimization problem

min
V (t)

||Φ(t)−HE(t)V (t)||2 + λC(V (t)) (4.3)
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where the first term is a data fidelity term that enforcing the relationship between

TMP and BSPMs in equation 4.2, and the second term is a regularization term

which enforces the smoothness of TMP distribution within the 3D myocardium. The

regularization term can be either L1 norm or L2 norm. λ is a constant, weighting

parameter that keeps a balance between the data fidelity term and data smoothness

term. In the recent studies, total variation method shows better performance than

other regularization methods in noninvasive cardiac electrophysiology estimation

[54]. Thus, to estimate transmural TMP from BSPMs, we select the total variation

regularization to tackle the ill-posed problem in equation 5.7. Thus, our problem

becomes to find an optimal solution for the following equation

min
V (t)

||Φ(t)−HE(t)V (t)||2 + λ||∇V (t)|| (4.4)

where ∇ is the spatial derivative along x, y and z axes. λ is determined by the

experiments. In this work, the value is 1e− 4 for all the experiments. To solve the

equation, we adopt an open source software CVX which was written in Matlab [?].

4.4 Experimental results

4.4.1 The effect of cardiac motion on the forward problem

Before we investigate the effect of cardiac motion on the inverse problem of cardiac

electrophysiology, it is critical for us to understand the effect of cardiac motion on the

forward problem, which we conduct experiments through two difference perspectives:
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cardiac cycle simulation and standard 12-lead ECG signal simulation.

Cardiac cycle simulation

In this study, mathematical simulation has been conducted on a biventricular heart

with realistic geometry. The geometry of the heart is extracted from MRI images as

in (c) of figure 4.1, which is publicly downloadable [57]. After image segmentation

slice by slice and 3D surface mesh generation, the heart can be represented by 2017

meshfree particles bounded by the surface mesh. Since the ventricular conduction

system is not available for the current heart, the initial activation sites are selected

according to the experimental study from [4]. These initial activation sites will be

considered as the initial condition for the forward simulation.

In figure 4.2, we make a comparison between simulation results of our model

and an electrophysiological model with fixed heart geometry. We find there are two

major differences between these two simulations: first, the simulation provided by

our model presents both electrical and mechanical activities, while the electrophys-

iological model with fixed geometry only can show the electrical activity. Thanks

to the electromechanical coupling property of the model. Second, the action poten-

tial duration (APD), which is the time period between ventricle depolarization and

ventricle repolarization, of our model is slightly shorter than the model with fixed

geometry. As we can see the results at time 255 ms, TMP values of some areas on

the endocardium are close to zero in the simulation by our model, while the values

in the simulation by using static heart model are greater than zero in the same ar-

eas. This indicates the repolarization time of our model is earlier than static heart
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static heart model

our heart model

Figure 4.2: Simulation results comparison between static heart model and our elec-
tromechanical model. left to right with time, 1 ms, 18 ms, 72 ms, 255 ms, and
288ms. The color indicates normalized TMP values

model. Considering the depolarization time of both models are almost the same,

thus the APD of our model is shorter than static heart model. The main reason of

APD shortening is the fiber shortening during heart contraction. This simulation

result is consistent with what found in the work [58], in which the authors used

a cellular level electromechanical coupled heart model to simulate ECG in two di-

mensional space and found that electromechanical coupled heart model can shorten

APD compared to a static heart model.

12-lead ECG simulation

We also investigate the effect of cardiac motion on the forward cardiac electrophysi-

ological problem through simulation of standard 12-lead ECG. For ECG simulation,

we obtain the heart geometry, fiber orientation and torso geometry from the publicly

available database [57]. By using meshfree-BEM method, the heart-torso structure

can be represented as in Figure 4.1 (d). The initial activation sites are some regions

on the endocardium according to the experimental study from [4].
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Figure 4.3 depicts normal 12-lead ECG simulation by both static heart model and

our electromechanical model. Compared to a real ECG, we can find that the waves

of our model (in red) have a correct orientation in each of the 12 leads. Because

we utilized normalized TMP value instead of values in the physiological range, our

simulation are not able to provide the quantitative ECG amplitude in physiological

range but it can describe the ECG patterns correctly. We also compare them with

the results of static heart model, and find the results of these two models are very

similar except the amplitude of T-wave. The T-wave amplitude of our model is

larger than a static heart model, because the heart has the maximum contraction

at the T-wave, and the relative distance between heart and torso is also maximized

at T-wave. This finding is also consistent with the existing works [58, 33, 28]
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Figure 4.3: Normal 12-lead ECG simulation, blue: static heart model; red: our
proposed heart model
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4.4.2 The effect of cardiac motion on the inverse problem

To study the effect of cardiac motion on the inverse problem, we conduct a set of

synthetic experiments on an image-derived heart-torso model. The heart is repre-

sented by 2244 points by using meshfree method, and the torso is represented by

3760 points with boundary element method. A coupled heart torso structure can

be found in figure 4.1.

We investigate the effect of cardiac motion to noninvasive transmural imag-

ing of cardiac electrophysiology under two different conditions: healthy and post-

myocardium infarction. For each condition, a simulation of cardiac cycle with du-

ration 500 ms was conducted (because the P-wave is absent, the cardiac cycle is

shorter than regular cardiac cycle). With the forward mapping, we can record the

BSPMs simultaneously, which will be utilized as the inputs for the inverse problem.

In figure 4.4, we present an example of volumetric TMP distribution and associated

BSPMs in figure 4.4.

Figure 4.4: left: TMP; right: BSPMs
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To mimic the noise in real signal, we add different levels of gaussian noise to

the simulated BSPMs and obtained four groups BSPMs with signal to noise ratio

(SNR) 20db, 30db, 40db and 50db. The noise-corrupted BSPMs will be used as the

measurements for TMP reconstruction.

(c) TMP reconstruction with fixed geometry

Figure 4.5: TMP reconstruction on a normal heart. From left to right, the first
three columns are at depolarization phase, the last tow columns are at repolarization
phase

In figure 4.5, we present the volume change of the left ventricle and lead I ECG

signal. As we can see, the heart barely has contraction at the beginning of the cycle,

and has the largest contraction at the time around 130ms. To understand the effect

of cardiac motion on cardiac electrophysiology, we select the heart geometry at two

different time stamp: the geometry at 10 ms and 130 ms after the onset of the

ventricular depolarization. Due to the ill-posedness property of the inverse problem,

the solution of equation 5.7 is not necessary in the same range as the original values.
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(a) Truth

(b) TMP reconstruction with dynamic geometry

(c) TMP reconstruction with fixed geometry

Figure 4.6: TMP reconstruction at different time. Left: 10ms after the onsite of
ventricular depolarization; Right: 130ms after the onsite of ventricular depolariza-
tion. The colors are manually tuned to have a good visual comparison, they only
reflect the pattern of the TMP distribution but not the true value

Thus, we use correlation coefficient (CC) to measure the similarity of estimated

TMP value and the ground truth:

CC =

∑n
i [(vt)i − v∗t ][(vg)i − v∗g ]
‖ vt − v∗t ‖2‖ vg − v∗g ‖2

(4.5)

Healthy heart

In figure 4.6, we listed the results of TMP reconstruction of a healthy heart with and

without integrating cardiac motion. The top row shows the simulation results of our
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Figure 4.7: Statistical analysis of noninvasive transmural imaging accuracy on
healthy heart based on correlation coefficient

heart model, which can be considered as ground truth. The middle and bottom row

list the reconstruction results with and without integrating cardiac motion. From

visual perspective, the TMP patterns are quite similar at the left column, and are

different at the right column. That’s because the heart is in depolarization phase at

the left column which has very limited deformation, and therefore there is very little

motion effect. However, the heart has large deformation at repolarization phase as

listed in the right column. The reconstruction results with dynamic geometry gets

more accurate results compared to the one with fixed geometry.

We further present the statistical analysis, CC value between estimated TMP

and simulated ground truth, for the heart under healthy condition in figure 4.7.

In the figure, we present the reconstructed results with different levels of noise in



67

Figure 4.8: The heart with post-myocardium infarction. Blue: infarcted region; red:
normal region

BSPMs. Overall, the CC values between the reconstruction with fixed geometry and

dynamic geometry are quite close at time 10ms. That’s because the heart has very

little deformation in the dynamic heart model. Nevertheless, the estimated TMP

with dynamic heart model are consistent accurate then the ones estimated with

static heart model. That’s because the heart has large deformation at that time.

Estimation of the TMP by using static heart geometry introduced large geometrical

errors. At last but not least, the CC values are decreasing when the SNR are

decreasing.

Post-myocardial infarction

Besides the healthy condition, we also investigate the effect of cardiac motion on

noninvasive transmural imaging of cardiac electrophysiology on the heart after my-

ocardial infarction. In figure 4.8, we present the heart with infarcted regions. The

areas with blue color are indicated as infarcted areas, and the ares with red color

are indicated as normal areas. In the heart cycle simulation, the cells within the

infarcted areas cannot be excited. Specifically, the parameter a in equation 3.4 was
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set with a big value. In figure 4.9, we present the ground truth and the estimated

TMP with and without considering cardiac motion. From visual perspective, the

two estimated TMPs at time 10ms have very similar patter. However, they are quite

different at time 130ms. Again, the pattern do not reflect the true values of the es-

timated TMP. As the estimated TMP could be in the different range, we, again,

use CC as a metric to measure their similarity with the ground truth. In figure

4.10, we present the reconstructed results with different levels of noise in BSPMs.

Overall, the CC values between the reconstruction with fixed geometry and dy-

namic geometry are quite close at time 10ms. That’s because the heart has very

little deformation in the dynamic heart model. Nevertheless, the estimated TMP

with dynamic heart model are consistent accurate then the ones estimated with

static heart model. That’s because the heart has large deformation at that time.

Estimation of the TMP by using static heart geometry introduced large geometrical

errors. Compared to the results of the healthy heart, we find another interesting

thing in the heart with myocardial infarction: the difference between CC values at

time 10ms and 130ms is much smaller than the difference in the healthy heart. That

reason could be that the heart has smaller deformation than the healthy heart, and

therefore, has less geometrical error.

4.5 Discussion and conclusion

We investigate the effect of cardiac motion on the forward and inverse problems

of cardiac electrophysiology. Through the forward problem, we find the APD of
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(a) Truth

(b) TMP reconstruction with dynamic geometry

(c) TMP reconstruction with fixed geometry

Figure 4.9: TMP reconstruction at different time. Left: 10ms after the onsite of
ventricular depolarization; Right: 130ms after the onsite of ventricular depolariza-
tion. The colors are manually tuned to have a good visual comparison, they only
reflect the pattern of the TMP distribution but not the true value

our electromechanical model is slightly shorter than the simulation by using a heart

model with fixed heart geometry. Through the comparison of the simulations of

the normal 12-lead ECG, we observed the amplitude of T-wave is increased by

using electromechanical model. The cause of these phenomena is the heart has the

maximum contraction at the T-wave, and thus the geometrical difference between

our model and a static model is maximized at that point.

We also studies the effect of cardiac motion on the inverse problem. We found

the estimated results are very similar at depolarization phase when the heart has

limited deformation. However, we obtained more accuracy estimation results by



70

Figure 4.10: Statistical analysis of noninvasive transmural imaging accuracy on the
heart with myocardium infarction based on correlation coefficient

considering cardiac motion into account at the repolarization phase. That’s because

the heart has large deformation at repolarization phase and a big effect of the ge-

ometrical error was introduced when the cardiac motion was ignored. As a result,

it is important to integrate cardiac electrical and mechanical activities for doing

noninvasive transmural imaging of cardiac electrophysiology.



Chapter 5

Understanding of embryonic heart

morphogenesis based on robust

image segmentation

5.1 Introduction

The heart is the first functioning organ in the embryo. Although the morphology

of the heart changes dramatically during development where it transforms from a

single tube into a four-chambered pump, the heart functions without interruption to

serve as the metabolic needs of the rapidly growing embryo [59]. Embryonic heart

morphogenesis (EHM) is critically important for long-time survival, and any defects

in the developmental mechanism during embryogenesis may result in congenital

cardiac anomalies. In fact, congenital heart disease is relatively frequent which

71
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affects from 19 to 75 per 1000 births in the worldwide, and has been an important

cause of childhood morbidity and mortality [60]. Understanding EHM in normal

and mal-formed hearts, therefore, has been of considerably clinical and biological

interest.

Despite a large body of research in the last decades [61, 62, 63, 64, 65, 66], EHM

is still poorly understood mainly because of the complexity of the growing geometry

and extremely small size of the developing heart. Thanks to the rapid develop-

ment of imaging techniques, 3D reconstruction of embryonic hearts from biomedical

images has dramatically improved our ability to visualize EHM. Several imaging

modalities have been proposed for the study of EHM, however, each of them has its

own limitations. Histological sectioning was one of the most widely used approaches

for rendering 3D structure of the developing heart [64]. Nevertheless, it needed

sophisticated manual alignment of all the sections which was difficult and labor-

intensive, and therefore left it only for lab researchers. Optical scanning techniques

were also used for rendering 3D/4D volumes of embryonic hearts [67, 65], but low

penetration depth limits their application in imaging late stages of embryonic heart

development [66]. There were also other imaging modalities used for understanding

EHM which, unfortunately, provided very limited spatial resolution[68]. Recently,

micro-CT technique was used to image the chambers of embryonic hearts [66]. How-

ever, the sophisticated polymerization process ignored the structure of the peripheral

luminal space which is actually very important for EHM understanding. Last but

not least, all the aforementioned works adopted manual segmentation for 3D heart

segmentation due to the lack of appropriate automatic segmentation approaches.
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Nevertheless, manual segmentation is tedious, subjective and time-consuming con-

sidering the complexity of the developing heart and high resolution images. Thus,

an automatic image segmentation method is in badly needed.

In view of the problems, we propose a new imaging approach for studying EHM,

utilizing tissue optical immersion clearing and 3D confocal microscopy imaging,

which can produce high spatial resolution images and achieve large penetration

depth at the same time. Furthermore, considering the intensity fall-off in depth na-

ture of confocal microscopy images, we propose a convex active contour model with

image depth information for automatic image segmentation. A recently proposed

Split-Bregman method was used to minimize the objective function of the model

[69, 36]. Embryonic quail hearts at different stages of development were scanned

and segmented. Initial heart growth pattern was found through comparison of the

structure of hearts at different stages of development. We also quantified the volume

change of the whole heart and luminal space from day 6 to day 14 of incubation

to provide an insight view of embryonic heart development. Furthermore, realistic

continuous growth modeling of the living organs from data sparsely distributed in

time has been an emerging field in biomedical field [70, 71], with potential appli-

cations to the analysis and prediction of evolving pathologic structures. Thus, this

work can be also considered as the first step for data-driven heart growth modeling.
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Figure 5.1: 3D view of embryonic quail hearts. From left to right: day 6, day 8 and day 14

5.2 Methodology

The human heart becomes a four-chambered organ by approximately week 8, which

is almost the same time the embryo can be visualized through ultrasound, a point

that is too late to visualize EHM [72]. We chose quail embryos as our model to study

EHM because of their rapid development and short embryonic gestation period (a

hatch time of 16.5 days incubation). Except for the time scale, the development of

the quail heart parallels that of the human heart.

5.2.1 Image acquisition

Optical imaging method has been widely used as a tool for clinical functional imaging

owing to its unique informative features, simplicity, safety and low cost compared

to conventional X-ray, MRI and ultrasound imaging. However, the main limitations

of optical imaging techniques, including confocal microscopy, are low contrast and

spatial resolution, as well as a small probing depth due to strong light scattering in

tissue layers [73]. To utilize its strengths and overcome its weaknesses, we combined
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confocal microscopy imaging with tissue optical immersion clearing. Optical clearing

technique has been used in many areas [73]. However, to the best of our knowledge,

this is the first time to use optical clearing with confocal microscopy imaging for

EHM study.

In this paper, all the experiments conformed to the Guide for the Care and

Use of Laboratory Animals (NIH publication No. 85-23, revised 1996). Embryonic

hearts were obtained after incubation of Coturnix Japonica (GQF Manufacturing

Co., Savannah, GA) or japanese quail eggs to different stages of development. The

hearts were stained with di-4-ANBDQBS which was voltage sensitive fluorescent

dyes, and then were dehydrated by a graded ethanol series. After dehydration,

the hearts were cleared using a 1:2 benzyl alcohol to benzyl benzoate mixture.

The cleared heart, which appeared virtually transparent, was stored in the clearing

solution until imaging. For image acquisition, the cleared hearts were mounted in

a special cuvette and scanned by a Zeiss LSM 510 confocal microscope, with its

numerical aperture equals to 0.5 and the radius of back-projected pinhole equals to

2.53nm. The dye was excited at wave length of 543nm and fluorescence recorded

the wave length above 560nm using a long-pass filter. For more details of heart

preparation and imaging, we refer the readers to [74].

High spatial resolution images were obtained after heart scanning, which had an

intra-slice pixel size of 1.75µm x 1.75µm and inter-slice pixel size 12.9000µm. In

Fig.5.1, we present 3D view of three hearts at day 6, 8, and 14 respectively. From

the images, the evolution of the luminal space of the heart from spongy structure

to well-separated chamber structure can be clearly observed.
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5.2.2 Image formation

In a confocal microscope, a pinhole is used to reject most out-of focus light. Thus,

the amount of light reaching the detector is low, and the noise statistics can be

well described by a Poisson process [75]. A general image formation model can be

represented as the following equation

I0(x) = n([h ∗ I](x)) (5.1)

where x ∈ Ω is a point in the image domain. I0 is an observed image. I is an ideal

image. h is a point spread function (PSH). ∗ means convolution operation. n models

the noise distribution. Based on our imaging setting, the PSF of the microscope is

very small compared to our voxel size, and therefore the effect of convolution by

PSF can be ignored. In the work, we used median filter to smooth the observed

image, and assume the noise in the smoothed image can be considered as additive

zero mean Gaussian distribution. Thus the final image formation can represented

as the following equation

Ĩ0 ≈ I + n (5.2)

where Ĩ0 and n represent smoothed image and image noise respectively.
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5.2.3 Image Segmentation

The purpose of image segmentation is to find a partition ψ(Ω) of the image domain

Ω and recover the ideal image I as well. Under the assumption that the intensity dis-

tribution of the ideal image is piecewise constant, Chan-Vese (CV) model with level

set implementation was proposed and has been widely used for image segmentation

[76]. Later on, this model was further extended to global CV (G-CV) model by

transforming it into a global convex optimization problem [77]. However, confocal

microscopy images is characterized by intensity fall-off in depth, which makes G-CV

model unsuitable for this purpose. To solve this problem, we further assume the

ideal image can be described as the multiplication of an intensity piecewise constant

image c and a depth-related bias field b

I =
N∑
i=1

(ci · ui) · bi (5.3)

where N is number of regions in the image, and ui is an image partition function.

Under this assumption, we developed a new convex active contour model for auto-

matic segmentation of confocal microscopy images. The model can be represented

as the following equation

min
u∈[0,1]

E(c1, c2, u) =

∫
Ω

|∇u(x)|+ λ

∫
Ω

(Ĩ0(x)− I1(x))2u(x)dx

+ λ

∫
Ω

(Ĩ0(x)− I2(x))2 (1− u(x)) dx (5.4)
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The first term on the right side of equation (5.4) is a L1 total variation (TV)

norm which is used for smoothing the variable u. The second and third terms are

data fidelity terms which keep the intensity distribution of the ideal images close to

the original image. Here, u is a partition variable, and λ is a weighting constant

to keep the balance among the three terms on the right side of equation (5.4).

I1(x) = c1 · γz(x) and I2(x) = c2 · γz(x) are two ideal images represent the intensity

on two different subregions. γz(x) is a depth-dependent bias field to characterize the

intensity fall-off in depth property of the images, where z is the position of the point

x in z-direction and γ is an experimentally determined decreasing constant.

There are total three unknown variables in our model: c1, c2, and u. By using

first variation with respect to c1 and c2, we can obtain

c1 =

∫
x∈Ω

u(x)Ĩ0 (x) γz(x)dx∫
x∈Ω

u (x) γ2z(x)dx
(5.5)

c2 =

∫
x∈Ω

(1− u(x))Ĩ0 (x) γz(x)dx∫
x∈Ω

(1− u(x))γ2z(x)dx
(5.6)

To minimize the equation (5.4) with respect to u, we adopt the fast and efficient

Split Bregman method proposed in [69, 36]. Split Bregman method does not require

regularization, continuation or the enforcement of inequality constraints, and it is

very efficient for solving L1-regularized optimization problems like equation (5.4).

For easier description of Split Bregman method, we rewrite the form of equation
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(5.4)

min
u∈[0,1]

E =

∫
Ω

|∇u(x)|+ λer(x)u(x) dx (5.7)

where er(x) = (Ĩ0(x)− I1(x))2 − (Ĩ0(x)− I2(x))2.

Here, the term λ
∫

Ω
(Ĩ0(x)− I2(x))2dx has been ignored because it does not

include the variable u.

To minimize equation (5.7) with respect to u, we introduce an auxiliary variable

d, such that d = ∇u. Thus, the problem of minimization the energy function of

equation (5.7) becomes to minimize the following energy function

min
u∈[0,1],d

∫
Ω

|d|+ λer(x)u(x) dx, with d = ∇u (5.8)

To solve the constrained problem in equation (5.8), we use Split Bregman method.

The problem becomes to solve the following sequence of optimization problems

(uk+1, dk+1) = arg min
u∈[0,1],d

∫
Ω

|d|+ λer(x)u(x) +
µ

2
|d−∇u− bk|2 dx (5.9)

bk+1 = bk +∇uk+1 − dk+1 (5.10)

Here, k = 0, 1, 2, ..., the third term on the right side of equation (5.9) is used to

enforcing the constraint d = ∇u. bk is the Bregman vector. µ and λ are two constant
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weighting parameters to keep a balance of two terms. To solve equation (5.9), we

adopt the alternating minimization scheme. First, we consider the minimization of

equation (5.9) with respect to u. The minimizing solution uk+1 is characterized by

the optimality condition:

λ∇u = λer + µdiv(bk − dk), u ∈ [0, 1] (5.11)

By using Gauss-Seidel iterative scheme, we can get an approximate solution for a

3D variable uk+1. (i = 0, 1, 2, ...)

ζl,m,n = dx,kl−1,m,n − d
x,k
l,m,n − b

x,k
l−1,m,n + bx,kl,m,n + dy,kl−1,m,n − d

y,k
l,m,n − b

y,k
l−1,m,n + by,kl,m,n

+ dz,kl−1,m,n − d
z,k
l,m,n − b

z,k
l−1,m,n + bz,kl,m,n (5.12)

φl,m,n =
1

6
(uk+1,i

l−1,m,n + uk+1,i
l+1,m,n + uk+1,i

l,m−1,n + uk+1,i
l,m+1,n + uk+1,i

l,m,n−1

+ uk+1,i
l,m,n+1 + ζl,m,n −

λ

µ
er(l,m,n)) (5.13)

uk+1,i+1
l,m,n = max{min{φl,m,n, 1}, 0} (5.14)

where i is the iteration index for Gauss-Seidel iterative method, l, m, n are the

indices of the voxel in axis x,y, and z respectively. uk+1,0
l,m,n = ukl,m,n.
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After calculating an approximate uk+1, we can obtain dk+1 by minimizing the

equation (5.9) with respect to d

dk+1 =
5uk+1 + bk

| 5 uk+1 + bk|
max(| 5 uk+1 + bk| − 1

λ
, 0) (5.15)

Once uk+1 and dk+1 are available, the Bregman vector bk can be updated according

to the equation (5.10). For more details of 2D Split Bregman method, we refer the

readers to [69].

As a summary, the procedures of using Split Bregman method to solve equation

(5.8) contains the following steps:

(1) Initialization: initial b0, d0 and u0.

(2) Fix u, calculate c1 and c2 according to equation (5) and (6), and further calculate

er.

(3) Update uk+1 by solving equations (5.12), (5.13), and (5.14).

(4) Update dk+1 by solving equation (5.15).

(5) Update bk+1 by solving equation (5.10).

(6) Convergence test: test whether a stable solution u has reached. if not, go to

step (2).

(7) The objects are detected by thresholding Σ = {x : u(x) > α}, where α ∈ [0, 1].

In this paper, we choose α = 0.5.
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Table 5.1: DSC values that measure the overlap between the two manual segmentation, the
first manual segmentation against automatic segmentation, and the second manual segmentation
against automatic segmentation

day 6 day 7 day 8 day 9 day 14

biologist 1 vs biologist 2 0.75 0.79 0.85 0.87 0.93

automatic vs biologist 1 0.65 0.72 0.78 0.85 0.88

automatic vs biologist 2 0.68 0.75 0.79 0.81 0.91

5.3 Experimental results

5.3.1 Data

In this study, we selected three groups of quail hearts. Each group had five embryonic

quail hearts at the development stage of day 6, 7, 8, 9 and 14 respectively. All the

hearts were processed and imaged according to section 2.1. The image size varied

from 768 x 768 x 112 (day 6) to 3075 x 2560 x 478 (day 14). To build a database

of manual segmentation for reference, we invited two biologists to independently

segment the hearts manually with the software ITK-SNAP [78]. Due to the large

size of the image and the complexity of the heart geometry, it typically took a

biologist more than one week to finish one heart segmentation. For this reason, we

currently only selected one group for manual segmentation.

5.3.2 Evaluation of automatic segmentation

Fig.5.2 shows one 3D and three 2D slice views of the quail heart at day 14 with

two manual segmentations and one automatic segmentation. Although the image
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exhibits severe intensity inhomogeneity, visual inspection of the results shows that

automatic segmentation can correctly capture most of the structures of the heart as

manual segmentation. The most difference between manual and automatic segmen-

tation occurs at the regions above the atrioventricular valve which can be observed

in both 3D and 2D views. That’s mainly because the contrast is very low at this re-

gion, automatic segmentation algorithm only uses image information can not detect

the boundary precisely, while biologists using their knowledge can manually locate

the boundary. What’s more, we have also observed the presence of small objects

within the heart chambers only detected by automatic segmentation. These small

objects could be papillary muscle that can be considered as either a part of the

myocardium or a part of the blood pool. As a result, both manual and automatic

segmentation for these small objects are acceptable.

We also quantitatively evaluate our algorithm by measuring the the overlap of

automatic segmentation and manual segmentation by using Dice’s similarity co-

efficient (DSC). For two segmentations S1 and S2, the DSC value is defined as

2|S1 ∩ S2|/(|S1| + |S2|). The DSC value is normalized, where 0 indicates complete

dissimilarity and 1 indicates complete agreement. The overlap values reflecting the

variability between the manual segmentation by two biologists are listed in the sec-

ond row of Table 5.1. Except for day 6 and 7, all the DSC values are greater than

0.85, which means there is sufficient level of reliability for the two manual segmen-

tations. The reason of low DSC values at day 6 and 7 is that the geometry of the

hearts at these days are very complex as shown in Fig.5.3, and thus it is difficult

for the biologists to achieve high agreement. The overlap comparison between auto-
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matic and manual segmentation are listed in the third and fourth row of Table 5.1.

Similarly, we can find the DSC values are low at day 6 and 7 and high at the rest.

Overall, the overlap measures show that the automatic segmentation method has

similar level of variability to the manual segmentation, which means our automatic

segmentation method is applicable for EHM study.

5.3.3 EHM study

Fig.5.3 shows automatic segmentation results of one group of hearts. As we can see,

an obvious phenomenon of early heart development is the morphology evolution

of the ventricles. The left and right ventricles are merged together and exhibit

sponge network structure at day 6 and 7 as the result of cardiac looping [62]. The

interventricular septum starts to grow between day 7 and day 8, as the ventricles

are partially separated at day 8. At day 9, the interventricular septum eventually

forms and divide the ventricles into the left and right ventricle. However, the two

ventricles still present some sponge structure at day 9. The shape of the ventricles

eventually become mature at day 14.

We also quantify the average volume of the whole heart and the luminal space

at different stages of development based on the segmentation results. We use the

open source VTK library (www.vtk.org) to calculate the average volume, and list

the average volume values in Table5.2. We find that the average volume of the

whole heart and the luminal space increased from 2.6 mm3 to 77.5 mm3 and 0.41

mm3 to 20.2 mm3 respectively, which is nearly two order of magnitude increase in

an incubation period of approximate 10 days. This finding is the similar in range
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Table 5.2: Average volume of the whole heart and the luminal space at different stages of
development. (mm3)

day 6 day 7 day 8 day 9 day 14
Total heart 2.6 3.4 6.0 10.2 77.5

Luminal space 0.41 0.62 0.75 1.74 20.2

as the findings in [66]. Furthermore, we also find the average volume of the whole

heart grows faster than the luminal space, which means that the myocardium grows

towards both inside and outside.

5.4 Conclusion

We proposed an imaging approach and a novel automatic segmentation method for

EHM study. We demonstrated the applicability of our imaging method to capture

the 3D structure of embryonic quail hearts, and also proved the efficiency of our

segmentation algorithm for EHM study in both visual inspection and quantitative

analysis. Based on the findings from EHM study, we believe this work could help us

to further understand the fundamental mechanisms of embryonic heart development.
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(a) (b) (c) (d)

Figure 5.2: Visual comparison between manual segmentation and automatic segmentation. (a)
original 3D image and three slices in different views. (b) manual segmentation done by the first
biologist. (c) manual segmentation done by the second biologist. (d) automatic segmentation.

Figure 5.3: 3D segmentation of one group of the hearts. Columns from left to right are the heart
at day 6, 7, 8, 9 and 14. For visualization purpose, the outer boundary is rendered as transparent.
(L: left ventricle. R: right ventricle)



Chapter 6

Summary and future work

The contributions of this thesis are in threefold: first, we developed a biologically-

inspired mathematical model for simulation of cardiac electromechanics. The model

can be used to simulate the heart under physiological and pathological conditions

that can be used as a testing environment in research and clinical studies. Second,

we investigated the effect of cardiac motion on noninvasive transmural imaging of

cardiac electrophysiology, and found that cardiac motion did has an effect to the

noninvasive estimation of cardiac electrophysiology when the heart has large de-

formation. Thus, it is important to use can electromechanically integrated way to

estimate cardiac electrophysiology from BSPMs. Besides understanding the inter-

connnetion relationship between electrical and mechanical functions, we also investi-

gate the longitudinal morphogenesis of embryonic heart, which could pave the road

for growth heart modeling in our future work.

87
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6.1 Modeling of cardiac electromechanics

Cardiac electromechanical model is critical for understanding the mechanisms be-

hind heart activities and consistently improve heart diagnosis techniques. The pro-

posed model has been validated as a useful platform for simulation of the heart ac-

tivities under physiological and pathological conditions. We believe this model will

be very useful to help us understand the mechanisms behind various heart behaviors,

such as cardiac desynchronization. Because we have adopted phenomenological mod-

els for both electrical and mechanical components, its physiological meaningfulness

and computational feasibility could pave the road for simultaneous reconstruction

of cardiac electromechanics from multi-modality clinical measurements.

Although the model is very promising, there are still some perspectives need to

be improved in the future. First, our model is a generic model, the parameters of

the model are adopted from literature [42, 22], thus it can only be used to simulate

some general conditions. The simulation results are not personalized. In fact, model

personalization has been a hot topic in cardiac research recently [20, 19, 79]. To over-

come this shortcoming, one possible solution is to estimate personalized parameters

from clinical measurements by solving inverse problems [20, 19].

Second, each component of our proposed model may not be the best ones for

mathematically descriping the heart behaviors. For example, the cardiac electro-

physiology component used in our model can not simulate realistic ST segment in

the ECG signals. What’s more, some nonlinear material properties are said to be

better for describing the heart behavior [11].

Third, we have simplified the effect of mechanoelectrical feedback by only con-
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sidering the effect of heart deformation on the position of electrical source. The

realistic mechanoelectrical feedback simulation can be achieved through including

stretch-activated channels (SACs) into the model[31, 38]. However, this type of

models usually contain a lot of parameters and are much more complex than phe-

nomenalogical models. For clinical usage, computational heart models need to have

fewer parameters and low computational cost.

Fourth, computational cost is always an issue for cardiac research on modeling

and simulation. In current work, we have adopted PETSc for CPU parallel program-

ming [81]. A possible way to speed up the simulation is to implement the algorithms

on GPU, which has been adopted by some groups for cardiac modeling [82].

6.2 The effect of cardiac motion on noninvasive

transmural imaging of cardiac electrophysiol-

ogy

The experimental results demonstrated that the effect of cardiac motion on noninva-

sive transmural imaging of cardiac electrophysiology is limited during depolarization

phase, because the heart has limited deformation at that time. However, it does have

an effect during the repolarization phase, because the heart has large deformation

in this period. Our current conclusions are based on synthetic experiments, further

validation on real data will be our future work. What’s more, this step could pave

the road to building an electromechanically integrated framework for simultaneous
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cardiac electrical and mechanical activities estimation.

6.3 Understanding of embryoinc heart morpho-

genesis from segmentation of microscopy con-

focal images

Besides cardiac electromechanics, we also investigated longitudinal cardiac anatomy

in embryonic heart. By combining confocal microscopy imaging with optical clear-

ing, our method was able to achieve penetration depth over 6mm that enabled us

to acquire volumetric images of the developing heart through the whole incubation

period. We believe this imaging data can help biologists to understand more de-

tails of early heart development and investigate events that lead to congenital heart

defects.

Image segmentation is always a headache for researchers in this field because

of the complexity of the developing geometry. The convex active contour model

proposed in this paper was a first step towards automatic segmentation in EHM

study, and showed promising results. One significant challenge in developing heart

segmentation is the lack of a gold standard. Due to the expensive labor cost to

label the images, we provided limited validation in the paper. In the future, we will

build a larger manually segmented database for segmentation algorithm validation.

What’s more, this database could also be used for training and testing parameter-

free machine learning algorithms.
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The ultimate goal of this work will be heart growth modeling. Due to the

complexity of developing heart, current heart growth modeling mainly focus on very

early stages of EHM [83]. To the best of our knowledge, there does not exist any

works on modeling the whole EHM process from the single tube shape to four-

chambered shape. With EHM knowledge from EHM study, we will work towards

data-driven heart growth modeling.
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