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DATA-INK AND TASK COMPLEXITY 1

Data-ink Ratio and Task Complexity in Graph Comprehension

The job of graph designers is to present information in a way which viewers can

understand and use meaningfully (Katz, 2012). Achieving this goal requires not only good

intentions on the part of designers, but scientifically-derived models which identify the

processes that characterize “understanding.” Ultimately, the utility of research on graphical

comprehension lies in its ability to inform design decisions and aid in the creation of design

guidelines.

Graphs are defined as typically static paper or electronic representations of numeric

analog data with multiple data points (Wickens & Holland, 2000). They provide a means

of communicating quantitative information in an easily-comprehensible format and can

make complex information visually salient (Shah, Freedman, & Vekiri, 2005). Graphs allow

people to perform tasks that would be more difficult using other formats by shifting some

of the cognitive demands to the visual system (Lohse, 1997). Graphs have also been said to

reduce demands on memory, to group related information for easy search, and to reduce

the complexity of tasks by imposing structure on data (Tory & Moller, 2004). However,

poorly designed graphs can lead to difficulty in understanding information and ultimately

to negative consequences (Freedman & Shah, 2002).

One widely-cited graph design guideline is the data-ink ratio, proposed by Edward

Tufte, statistician and information design pioneer. Tufte argues that because the purpose

of a graph is to help people reason about data, graphs should draw viewers’ attention to

the data, and not to something else; his fundamental principle for the design of good

graphs is to “above all else show the data.” (Tufte, 2001, p. 92). The data-ink ratio concept

suggests that graph designers should remove elements which do not depict statistical

information, resulting in minimalist-style graph designs (Tufte, 2001). Despite widespread

acceptance of this design principle, it lacks empirical validation, a persistent problem in the

field of information visualization (Zhu, 2007).
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Models of Graphical Comprehension

Generally speaking, graph comprehension is a type of human information processing

(Wickens & Holland, 2000). Models of human information processing provide a framework

for understanding the psychological processes involved in a given task, as well as a means

of understanding why performance in a task might change under differing conditions. One

such model of information processing is presented in Figure 1 below.

Figure 1 . A model of human information processing, adapted from Wickens & Holland

(2000).

The model begins with sensory processing, the stage in which environmental

information is gathered by sensory organs. This stage of processing is affected by the

quality of information from the environment and the short-term memory stores associated

with each sensory system. Next comes perception, where raw sensory information is

interpreted for use by the brain. This is impacted by both bottom-up processing, or

features of the sensory information itself, and top-down processing, in which

experience-based information from long-term memory affects interpretation. Next are

cognitive process, which are slower and less automatic than perceptual processes. These

include reasoning, rehearsal and mental transformation, and, because they also require
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working memory, are resource-limited. Material that is sufficiently rehearsed during this

stage can be entered into the more permanent long-term memory. Once the

previously-described stages of information processing contribute to an overall

understanding of a situation or stimuli, response selection occurs. This frequently, though

not necessarily, results in the execution of said response. Finally, feedback for an executed

response is received from the environment. Feedback is often, though not always, received

continuously during the course of a task. It is important to note that the limited

availability of attentional resources affects nearly all of the stages of processing (Wickens &

Holland, 2000).

Based on the human information processing framework, models specific to the

processes of graphical comprehension have also been developed. An early model, which

focused primarily on perceptual processes, was developed by Cleveland and McGill (1985).

They identified ten tasks, described as “elementary graphical-perception tasks” (Cleveland

& McGill, 1985, p. 828), and ranked them according to the accuracy with which they can

be judged. They include angle, length, position along a common scale, and positions on

identical but nonaligned scales, among others. These are distinct from cognitive tasks, they

argue, in that our preattentive visual system can detect geometric patterns and assess

magnitudes. According to the model, selecting design options higher in ranking should

increase the accuracy of perceptions of patterns in graphical data. So, for example, graphs

which rely on positioning items along a common scale to display data will be more

accurately perceived than graphs which rely on differences in area (Cleveland & McGill,

1985).

Although Cleveland and McGill’s (1985) model emphasizes early perceptual

processing, it does not speak to other factors important to human information processing

(Carswell, 1992). To address this concern, Carswell (1992) conducted a meta-analysis of 39

experiments involving graphical perception tasks in which graphical format was a primary

independent variable and dependent variables included at least one measure of
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performance, such as response time or accuracy. Task variables ranged from identifying a

single data point to integrating most or all of the data points in a given graph. Overall, the

elementary tasks model was found to predict performance better than Tufte’s data-ink

ratio. However, when broken down by task type, it was shown that the predictions of the

elementary task model actually contradicted results of studies which involved information

synthesis (those that involved comparing most/all of the data points). Carswell (1992)

concluded that this model is most successful in predicting performance in local comparison

and point-reading tasks, and less successful in global comparison, or synthesis, tasks. This

suggests that although the elementary tasks model is a good predictor of performance in

certain graphical comprehension tasks, task demands are also an important feature of

graph comprehension.

Simkin and Hastie (1987) developed a model of graphical comprehension which also

accounted for other stages of information processing. Their research focused on the idea

that the utility of a given graph depends on the interaction between the particular design

elements of that graph and the tasks being performed by the graph viewer, and identified

processes of graph comprehension. For example, anchoring is described as isolating a

component of the graph to determine an initial value that serves as a standard for an

estimate. Scanning is described as “sweeping across” the distance between graph elements

to make a value estimation; the duration of the scan may inform the estimation. Projection

is described as “sending out a ray” (Simkin & Hastie, 1987, p. 460) from one point in a

graph to another to facilitate comparisons. Superimposition is the mental movement of an

element so as to overlap with another element and allow for comparison. Finally, detection

operators detect size differences in graph elements, and result in dichotomous “larger vs.

smaller” judgments.

One of the earliest attempts at a comprehensive model of graphical comprehension

was made by Pinker (1990). Like Cleveland and McGill (1985), he argued that graph

viewers first process the raw sensory data of a graph, which he refers to as a visual array.
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Using visual encoding processes, a visual description of relevant features, such as the

shapes used in a graph, is formed. Visual descriptions, he argued, are constrained by

features of our vision system, such as processing capacity. Graph viewers recognize the

type of graph they are seeing through instantiated graph schema, or prior knowledge about

specific graph types. He also argues that people create instantiated schemas for specific

types of graphs based on a general graph schema, which includes knowledge about what

graphs are typically used for and how they are typically interpreted. Graph schemas can be

enriched through multiple means, including formal instruction, practice at reading graphs,

as well as experience with graph creation (Pinker, 1990).

Pinker emphasizes the importance of the gestalt laws of perception, which describe the

preattentive grouping of visual elements by the perceptual system (Levitin, 2011). Gestalt

psychologists asserted that psychological phenomenon need to be understood as organized,

structured wholes. These laws act as a constraint on graph comprehension (Shah, 1995), as

our visual system automatically groups visual input into distinct psychological units based

on visual properties (Kosslyn, 2006). For example, the law of proximity states that objects

that are close to each other will tend to be seen as a group. A graph designer may vary the

distance between graphical elements to imply relationships between subsets of those

elements – elements that are close together tend to be perceived as belonging to the same

group or object. The principle of similarity states that objects with similar properties, such

as color or shape, will be grouped together. Graph designers frequently use color to

associate and/or differentiate graphical elements, and effective use of color can lead to

grouping of elements, even when they are spatially separated (Wickens & Holland, 2000).

The principle of closure refers to the tendency of the perceptual system to “close” or “fill

in” missing parts of objects. For example, a graph designer might include gridlines which

fall behind the bars in a graph. Although the bars break the continuity of the gridlines,

they are perceived as continuous nonetheless. In general, gestalt psychologists argued that

all of the gestalt laws are examples of the law of pragnanz (“good figure”), which states
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that we perceive the simplest organization which fits the stimulus (Levitin, 2011).

It has been suggested that leveraging the gestalt laws in graph design can lead to

faster and more accurate graph comprehension because they exploit the fast-working visual

system as opposed to slower, more deliberative cognitive systems (Kirk, 2012). Grouping is

automatic and preattentive, and will occur regardless of the designer’s intent (Robertson,

Czerwinski, Fisher, & Lee, 2009). Shah, Mayer and Hegarty (1999) found that effective use

of gestalt grouping in graph design can influence viewers’ ability to recognize trends in

data. Displays designed with effective grouping are said to be highly redundant, meaning

that knowledge of the location of one element of the display will facilitate accurate

inferences regarding the location of other display elements (Wickens & Holland, 2000).

This suggests that effective design requires appropriate use of gestalt grouping principles,

provided that it supports the particular task of the viewer.

Lohse (1997) worked towards a better understanding of the role of working memory

in graphical comprehension, a bottleneck in information processing with important

implications for graph comprehension. He found that participants with high working

memory capacity who used a single-color graph were able to make decisions as accurately

as participants who used color-enhanced graphs, and concluded that different participants

were able to make the same judgments with different levels of efficiency, but that the effect

is mediated by task complexity. In other words, individual cognitive limitations exist,

regardless of graph design, and different designs cannot result in inherent improvements in

complex tasks. However, design features which improve peoples’ ability to process

information in parallel can result in the distribution of some of the cognitive burden to

perceptual systems. That frees working memory resources for other aspects of the

comprehension process, requiring less overall effort on the part of the graph viewer.

Furthermore, Lohse concludes that quantifying the amount of effort required to extract

information from graphs is important in designing information which matches users’ goals

and is a promising direction for future studies.
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Freedman and Shah (2002) developed what they refer to as an “interactive” model of

graphical comprehension. This model proposes that graphical comprehension is a

sequential constraint-satisfaction process in which characteristics of the viewer, such as

prior knowledge, expectations, and graphical literacy skills can impact interpretation.

Expertise plays an important role in this model, as experts can automatically relate the

visual features of a graph to subject matter knowledge and theoretical interpretations.

They also propose that graph information is sequentially encoded in visual chunks. The

manner in which chunks are perceptually grouped can be affected by visual characteristics

– namely gestalt grouping principles, such as the use of varying distances between bars in a

bar graph – and effective grouping has been shown to improve viewers’ ability to identify

trends (Shah et al., 1999). However, deficits in graph skills or domain knowledge can make

comprehension more effortful (Freedman & Shah, 2002).

In a review of models of graphical comprehension, Freedman and Shah (2002)

identified five factors that interact to influence graphical comprehension: display

characteristics of the graph; level of complexity of the data; the specific task of the viewer;

the viewer’s prior knowledge about the content of the graph; and the viewer’s knowledge

about graphs in general. They do not, however, identify the relative importance of these

five factors with regard to graph comprehension or describe the specific interactions which

can occur between them.

The Data-Ink Ratio

Tufte proposes that there are two types of information in a graph – data-ink and

non-data-ink. Data-ink is “the non-erasable core of a graphic” and “the non-redundant ink

arranged in response to variation in the numbers represented” (Tufte, 2001, p. 93).

According to Tufte, all ink that does not depict statistical information, or “chartjunk,”

should be removed, and the reason to include additional ink in a graph should almost

always be that it depicts new information. In other words, most of the ink in a graph

“should vary in response to data variation” (Tufte, 2001, p. 136) and data-ink ratios should
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be maximized. Tufte notes that chartjunk should only be removed “within reason” (Tufte,

2001, p. 96), though it is unclear what he considers to be reasonable. He also states that

data-ink maximization makes sense for roughly two-thirds of graphs, but specific guidelines

for determining whether a graph qualifies are absent (Tufte, 2001).

Data-ink ratios range between zero and one and can be calculated by dividing

data-ink by the total amount of ink in a graphic (Tufte, 2001). However, it is unclear how

a data-ink ratio can be accurately calculated in practice, and Tufte himself seems to make

estimations rather than numerical calculations. Figures 2 and 3 provide examples of graphs

with varying data-ink ratios. Tufte argues that his redesigned boxplot is particularly suited

for exploratory data analysis by researchers because it would take less time to create,

though this point may be less relevant and even counter-intuitive given the ubiquity of

modern graph-making software today.

Figure 2 . An illustration of erasable non-data-ink adapted from Tufte (2001). On the left

is the original design, in the middle is what he recommends erasing, and on the right is the

final design, which Tufte argues is an immense improvement over the original.

Tufte goes on to argue that he doesn’t believe his unconventional designs would

confuse new viewers and that it would be a mistake to underestimate the abilities of

audiences of graphical information. He believes that his designs could look strange at first,

but would be accepted over time (Tufte, 2001). Tufte seems to make the assumption that

graph readers will be able to apply their instantiated graph schema to his graph designs.

Whether or not this is the case is unclear; for example, it is possible that a graph reader’s

instantiated boxplot schema may not help them to recognize Tufte’s redesigned boxplot, as
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Figure 3 . Standard boxplots (left) and Tufte’s proposed high data-ink redesign (right)

it lacks the “box” portion of the plot which is usually included. At the same time, graph

comprehension theories suggest that it is possible that instruction or extended exposure to

high data-ink graph designs could cause them become incorporated into graph readers’

existing schemas.

With regard to the graph comprehension processes described by Simkin and Hastie

(1987), one could argue that high data-ink designs will make comprehension tasks more

difficult by removing the elements that viewers use to complete them. For example, by

replacing the box in a boxplot with negative space, viewers may have trouble

superimposing the negative space of an individual boxplot on top of another to compare

the size of those features. Similarly, it could be argued that the inclusion of gridlines

facilitates projection, or “sending out a ray,” from one element to another – rather than

requiring viewers to imagine horizontal lines, they are provided in the design of the graph.

Generally speaking, the data-ink ratio is an influential concept in the field of design

(Zhu, 2007; Fry, 2008), and it is believed that higher data-ink ratios will result in faster

judgments and increased accuracy in graph reading tasks (Wickens & Holland, 2000).

However, others have characterized the data-ink ratio as having its basis in Tufte’s design

intuitions and lacking experimental validation with behavioral data (Carswell, 1992).
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Responses to the Data-ink Ratio

Scholars have published mixed opinions regarding the data-ink ratio concept. Wainer

(1984) argues that it is a convenient way to measure the extent to which “chartjunk” is

used, and that the closer to zero the ratio gets, the worse the graph. He also argues against

the use of additional dimensions and “worthless metaphors,” such as showing dollar bills of

varying size to indicate changes in purchasing power with time.

On the other hand, Tukey (1990) describes the data-ink ratio as a “dangerous idea”

and argues that overreliance on it can be destructive and result in graphs that are both

busy and distracting, such as the box plot on the right in Figure 4. Tukey argues that,

although the “open” boxplot in Figure 4 has a lower data-ink ratio, the removal of ink

draws unnecessary attention to its incompleteness, causing the viewer to wonder why a line

is missing. This criticism seems to make more sense in the context of a boxplot with

multiple elements, such as those in Figure 2. It could be argued that the removal of the

box portion of graph elements results in three distinct perceptual groupings – the upper set

of lines, the median dots, and the lower set of lines. Tufte’s redesigned boxplot is

“destructive” in the sense that visually similar elements of the set of boxplots are grouped

with each other, rather than as a part of an individual boxplot element. Kosslyn advocates

for additional ink in graphs when it “completes a form, resulting in fewer perceptual units”

(Kosslyn, 2006, p. 13.), an argument which seems to draw upon the gestalt grouping

principles, and which would recommend against high data-ink designs that result in

fragmentary graph elements.

Additionally, Tukey describes the process of graph comprehension as requiring

attention shifts between the various elements of a graph and argues that individual graph

elements should have equal visual impacts. He describes “well-tuned” graph design as a

balance between the inclusion of helpful elements and the elimination of features which

contribute to busyness. Tukey notes that the purpose of a boxplot’s “box” is to emphasize

the central clumping of a data distribution, and questions whether the replacement of the
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“boxes” in a boxplot with white space, as Tufte recommends, is “strong enough” to

facilitate these attention shifts. Tukey’s idea of “attention shifts” could be seen as a

general way of describing Simkin and Hastie’s (1987) comprehension processes. In that

case, Tukey would seem to agree that removing elements from a graph would increase the

effort required to read that graph, as it would be more difficult to shift attention between

two or more graph elements when those elements are small or removed altogether. Tukey

concludes that the underlying idea behind data-ink ratio might be to avoid busyness and

distraction in graph design, and agrees with both of those principles, but points out that

those recommendations alone would not produce the type of graphs which Tufte advocates

(Tukey, 1990).

Figure 4 . Adapted from Tukey (1990). He argues that although the open symbol on the

right has a lower data-ink ratio, it is distracting and directs attention to the right for no

purpose.

Others have taken a more nuanced view of the data-ink ratio concept. Kosslyn (1985)

found that maximizing data-ink ratio produces the desirable outcome of eliminating

potentially distracting decorations, but argues that it is not clear how to select nondata-ink

and finds Tufte’s recommendations to be too extreme overall. Carswell also agrees that

“distinguishing data-ink from erasable ink is a subjective endeavor” (Carswell, 1992,

p. 540).
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Specifically, Kosslyn disagrees with Tufte’s recommendation to eliminate horizontal

gridlines on bar graphs and to instead use horizontal “lines” created by negative space

across the bars (Figure 5) because the perceptual system fills in the “virtual lines,” which

is just as distracting as standard grid lines (Kosslyn, 1985). This is slightly different from

Tukey’s criticism of the data-ink ratio on the grounds that it is destructive – Kosslyn

argues that, from a perceptual standpoint, negative space lines are the same as standard

gridlines, and that both gridline styles can be distracting. Kosslyn does not offer much of

an argument as to why or in what circumstances gridlines are distracting, but in later

publications argued that gridlines can in fact be useful, provided they are not too heavy

and do not obscure graph content (Kosslyn, 2006). It could be argued, however, that

Tufte’s virtual lines do in fact require more work on the part of viewers, as the perceptual

system completes the virtual lines rather than the lines being completed via ink. From a

practical standpoint, the negative space lines in Figure 5 could also cause problems when

values fall in the small region of the each bar where the white lines fall. This type of design

could feasibly lead to inaccurate graphs.

Figure 5 . An adapted version of Tufte’s proposed bar graph redesign, which Kosslyn

argues is no better than a “standard” bar graph.

Stephen Few (2009), data visualization expert, also disagrees with aspects of data-ink

ratio. Though he agrees that decorative elements and non-data ink which serve no

meaningful purpose should be removed, he believes that some non-data ink, such as axis
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lines, should be kept, but with a reduced salience as to not compete with the data itself for

viewers’ attention. He also argues that some redundancy in graphs is useful and takes issue

with the style of many of Tufte’s high data-ink graphs on the grounds that reducing the

size or visual weight of graph features forces viewers’ eyes to “work too hard” and slows

them down (Few, 2009, p. 3). Though it is not clear precisely what Few means in

psychological terms, the idea that less salient visual objects are more difficult to see is

uncontroversial, and it can be assumed that Few would predict that graphs with less

salient features would require more effort. This idea has been referred to as the

discriminability principle – graph features must be large enough that they can easily be

distinguished from the background (Kosslyn, 2006). It is certainly plausible that by

reducing the salience of graph features, high data-ink designs shift less of the cognitive

demand of graph comprehension to the visual system, resulting in increase comprehension

effort. As previously discussed, Tufte’s “virtual lines” could add to this increase in effort.

Few concludes that data-ink should not be increased beyond “the minimum that’s

required,” but should be increased when it reduces effort for viewers (Few, 2009, p. 8).

Some have gone as far as to suggest that “chartjunk” or “visual difficulties” may

actually benefit viewers, and that graphs should not be designed to maximize the data-ink

ratio, but instead to engage viewers to actively process graphical information. In other

words, low data-ink ratios may be useful if the extra ink is used to “personalize,

aestheticize, or otherwise make the visualization more enticing to end-users so as to drive

more intrinsic desires to engage” (Hullman, Adar, & Shah, 2011, p. 2217). In this view,

effectiveness of visualizations is seen as a tradeoff between efficiency and desirable visual

difficulties which encourage learning (Hullman et al., 2011).

Empirical tests of the Data-ink Ratio

Empirical tests of the efficacy of maximizing data-ink ratio have also yielded mixed

results. Using graphs taken from Tufte (1983), Inbar, Tractinsky and Meyer (2007)

attempted to evaluate opinions toward high data-ink ratio graphs among 87 undergraduate



DATA-INK AND TASK COMPLEXITY 14

students. In one condition, participants were shown either a “standard” bar graph or a

minimalist, high data-ink bar graph. The standard bar graph was overwhelmingly

preferred. In another condition, participants were asked to perform several undisclosed

data extraction tasks using the Tufte-style graph in attempt to familiarize them with high

data-ink design. Still, participants overwhelmingly preferred the standard bar graph

design. In a third condition, participants were shown two additional graphs, resulting in a

four-graph continuum from low to high data-ink. It was thought that these additional

graphs may help participants become more familiar with the idea of Tufte’s minimalist

designs. Preferences were largely split between the standard bar graph and the

second-most minimal graph, suggesting that people can be receptive to minimalist designs.

However, no participants preferred the most minimalist graph and it was rated as

significantly less clear than the other three. This suggested that there may be a “sweet

spot” for data-ink levels which lies between standard bar graphs and Tufte’s

recommendations (Inbar et al., 2007, p. 188), though it is unclear whether the study’s

“familiarization” methods were sufficient, and no objective behavioral data were collected.

It is also unclear that simply measuring viewers’ graph preferences relates to performance

in extracting useful interpretations from graphs with different designs.

Gillan and Sorensen (2009) explored the idea that chartjunk may improve

performance in certain circumstances using graphs with background images which differed

from a graph’s “indicator features” (i.e., circular background images with rectangular bar

graph elements) leading to a “pop out” effect. Participants were shown graphs with

matching backgrounds/indicator features, opposing backgrounds/indicator features

(rectangular indicators with circular background elements or vice versa), or no background.

Finally, participants were asked two types of questions – difference (“What is the difference

between the number of loans for undergraduate students between 1950 and 1990?”) and

comparison (“in which year do undergraduate students have more loans, 1950 or

1990?”)(Gillan & Sorensen, 2009, p. 1097). Comparison questions were universally
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answered with nearly perfect accuracy, regardless of graph type. For difference questions, it

was found that the presence of a background did reduce accuracy, but only when the

features of the background were similar to indicator features. They argue that these results

suggest that reducing chartjunk doesn’t necessarily improve comprehension, and conclude

that Tufte’s data-ink ratio theory is too simplistic. It should be noted that the study used

simple tasks, asking participants to compute the difference between two data points or

determine which value is higher or lower. Participants were not required to identify overall

trends in the graph or make predictions using the graphs. There were only 18 participants

(Gillan & Sorensen, 2009).

Other findings have suggested that accuracy in recalling descriptive elements of

visually embellished graphs is no worse than for plain graphs, both immediately after

viewing and after a two to three week delay. Bateman et al. (2010) selected 14 graphs from

Holmes’ book, all of which contained chartjunk and had low data-ink ratios. For example,

one graph (titled “Monstrous Costs”) showed House and Senate campaign expenditures

over time. The graph itself is a bar graph in in the mouth of a monster, with the monster’s

teeth acting as bars. Corresponding plain versions of the Holmes graphs were designed

with the idea of Inbar’s (2007) “sweet spot” in mind. Although the plain versions certainly

have a higher data-ink ratio than Holmes-style graphs, they do not closely resemble the

examples that Tufte (2001) himself created; the high data-ink ratio graphs used in the

study are in fact closer to Tufte’s starting point than his suggested re-designs (Figure 6).

Twenty participants were shown one of each of the 14 graph pairs – either

Holmes-style or plain) and asked four questions per graph requiring them to read and

describe the contents, such as “What is the graph about?” or “What is the basic trend of

the graph?”. No differences in the quality of description, based on a scoring which

accounted for accuracy, were found. Next, participants were placed into one of two recall

conditions – immediate or long-term. No difference was found for recall between

Holmes-style and plain graphs in the immediate recall condition, which began five minutes
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Figure 6 . Adapted version of the plain graphs used by Bateman et al. (2010), which did

not resemble Tufte’s recommended high data-ink ratio bar graph design.

after initial questioning. However, in the long-term recall group, participants remembered

significantly more about the Holmes-style graphs than plain graphs. This included

information regarding the subject of the graph, the categories displayed in the graph, the

trend of the graph, and the “value message” of the graph. Additionally, participants in the

long-term recall group required more prompting to recall graph subject matter, categories,

and trends in graphs that did not contain embellishments. Participants were also asked to

provide preference ratings for the graph styles across a number of factors, and rated

Holmes-style graphs significantly higher for more enjoyable, easiest to remember, easiest to

remember details, fastest to describe and fastest to remember. The authors note that these

findings may be task-dependent, and tasks that require more detailed analysis may be

hindered by visual embellishments. They conclude that certain embellishments may

improve memory for graph content, and that minimalist design recommendations may not

capture the whole picture of graph usability (Bateman et al., 2010). It should also be

noted that although their plain graphs certainly have a higher data-ink ratio than the

Holmes graphs, they did not evaluate graphs which followed Tufte’s recommendations more

strictly, and cannot provide further evidence for the “sweet spot” theory. Although this
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study did use more complex questions (asking participants to describe the basic trend of a

graph), simple and complex questions were not compared directly.

Similarly, Kelly (1989) found no difference in immediate recall of information from

high and low data-ink charts in a newspaper format. Using ten bar graphs taken from USA

Today and ten alternate versions with much of the non-data ink removed, accuracy in

making comparisons and in recalling numbers from the graphs was recorded. After a

15-second examination period, participants answered six questions, including “How many

bars were displayed in the graph?”, “What numerical value was given to the longest bar in

the graph?” and “Was the longest bar twice as long or longer than the shortest bar?” For

120 participants, the number of errors made was nearly the same, regardless of graph type.

The author concludes that these results provide limited evidence against data-ink

maximaization. In the case of both Bateman et al. (2010) and Kelly (1989), it is unclear

that recall of descriptive features is an appropriate measure of a graph’s effectiveness.

However, these results suggest that high data-ink ratios do not result in memorable graphs.

On the other hand, Gillan and Richman (1994) did find empirical support for the

principle of data-ink maximization. They presented low, medium and high data-ink graphs

to 17 undergraduate students, who were asked to answer three types of questions –

comparison, difference and mean – using bar and line graphs depicting two data points per

graph. They found that the percentage of correct answers was significantly lower for the

low data-ink condition than medium and high data-ink conditions. The study’s low

data-ink graphs were closer to Holmes-style graphs, and used complex background images.

There were no performance differences between medium and high data-ink graphs, which

followed Tufte’s erasing principles more closely, starting from standard-looking bar and line

graphs and removing ink. They also found significant differences in response time for all

conditions, with high data-ink conditions showing the fastest, low data-ink the slowest and

medium in-between. These results suggest support for data-ink maximization in graph

design, and use behavioral measures rather than subjective measures. However, there were
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only 17 participants (Gillan & Richman, 1994).

In a follow-up experiment, it was found that the presence of a pictorial background in

a graph (which lowers data-ink ratio by definition) negatively affected both response time

and accuracy. However, it was also found that this effect was more pronounced on

difference and mean questions than comparison questions, suggesting an interaction

between the presence of a background and question type. The authors conclude that

although some of their results support Tufte’s suggestions, it appears that the level of

data-ink can be either helpful or harmful depending on the task of the graph reader.

Overall, they describe finding “support for a more limited approach to graphic

minimalism” (Gillan & Richman, 1994, p. 638), which provides further evidence for the

idea of a data-ink “sweet spot” that is lower than the maximum.

Blasio and Bisantz (2002) found some support for the principle of data-ink

maximization in a simulated monitoring task using dynamic displays which emulated

industrial gauges. Twenty-four participants from a diagnostic clinic were recruited to

perform a simulated process monitoring task in which nine dynamic variables were to be

monitored. Participants monitored either low, medium or high data-ink gauges. Low

data-ink gauges included tick marks, number labels, colored regions corresponding to

“normal” and “fault” value ranges, and a redundant digital read-out of the “analog” value

(shown via a graphic that resembled a vertically-oriented thermometer). Medium data-ink

gauges still included the analog representation, but had fewer tick marks, no digital

read-out, and no colored regions. High data-ink gauges were simply digital read-outs, with

no analog representation of the data. When an “out of range” value appeared on one of the

displays, participants were to click a ’Reset’ button using a mouse. Participants were

significantly faster in identifying out-of-range values using high data-ink displays as

opposed to medium or low data-ink displays. However, it should be noted that the high

data-ink display was purely numerical (or “digital”) while the medium and low data-ink

displays were graphical in nature (Blasio & Bisantz, 2002). It could be argued that the
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study’s high data-ink condition falls outside of the realm of Tufte’s principle, as simple

numerical values are not graphs. Furthermore, it is difficult to characterize the use of color

within the data-ink framework, as color can relay meaning in a way that is independent of

the amount of ink used.

Finally, Kulla-Mader (2007) found “an overall dislike” of low data-ink graphs and a

preference for graphs with medium and high data-ink ratios among 12 participants.

Although the study attempted to measure comprehension via questions regarding graph

content, level of performance on these questions was too high for response accuracy data to

be analyzed, potentially indicating that the questions were simply too easy. It is also

interesting to note that the majority of participants described the low, medium and high

data-ink graphs as visually similar. Additionally, the low data-ink graph ordered the bars

according to magnitude of response (ranging from less than 15 minutes spent using the

internet to 4 hours or more) while the medium and high data-ink bars were ordered

according to the number of responses in each group. Overall, it seems difficult to accept

the results of this study as a valid measure of the effects of data-ink ratio.

Although previous research on the data-ink ratio has yielded mixed results, many

studies have measured recall of graphed information or design preferences as opposed to

performance measures, and have used graphs which do not closely resemble Tufte’s high

data-ink ratio designs. None of the studies compared performance in graph comprehension

tasks using Tufte’s “erasing principle” to create graphs similar to his high data-ink

re-designs. Furthermore, previous research has failed to account for user and task

characteristics which have been identified as important in the process of graph

comprehension. For those reasons, it is difficult to accept previous research as a strong test

of the data-ink ratio concept, and it seems likely that mixed results are a product of the

various methodologies employed in the data-ink ratio literature.
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Hypotheses

The previously-described models of graphical comprehension include task demands as

an important factor which can interact with characteristics of graph viewers, such as prior

knowledge and graph schemas, and with the display characteristics of a graph, such as its

data-ink ratio. Zhu (2007) refers to the relationship between visualizations and tasks as the

utility principle, which states that effective visualizations should aid users in carrying out

specific tasks. Much of the past research on the data-ink ratio suggests that the impact of

data-ink maximization on comprehension may indeed be task-dependent. Graph viewers

use graphs for a variety of reasons, such as understanding causal mechanisms, making

comparisons, making decisions, problem-solving and making predictions. Performance in

graph comprehension has been assumed to be contingent on congruence between the

demands of the viewer’s particular task and graphical format. Furthermore, task demands

have been shown to interact with other factors, such as graph format, and the usefulness of

a particular graph format seems to be dependent on task demands (Shah et al., 2005). It

has been shown that changes in the aesthetic features of graphs can have different effects

on graph-reading tasks with variable levels of difficulty (Stewart, Cipolla, & Best, 2009).

This suggests that if there is a benefit to data-ink maximization, it may only be apparent

in particular circumstances.

Carpendale (2008) describes a distinction between high-level and low-level tasks in

the use of information visualizations. Low-level tasks include compare, contrast, associate,

distinguish, rank, cluster, correlate and categorize. More complex, higher-level tasks

include understanding trends, uncertainties and causal relationships; making predictions,

and learning domains (Carpendale, 2008). An experimental design which better accounts

for the varying levels of complexity associated with particular graph reading tasks may

provide a clearer picture of the effects of data-ink ratio on graph comprehension.

The present study was conducted in two parts – an experiment which measured

response accuracy and mental effort for graphical comprehension questions using varying
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levels of both data-ink ratio and task complexity, and semi-structured expert interviews,

which provided qualitative feedback regarding the data-ink ratio.

Experiment. Based on the definitions of high and low complexity graph reading

tasks described by Carpendale (2008), low task complexity was defined as tasks which

require comparing, contrasting, distinguishing or ranking data displayed in a graphs. For

example, determining which of two groups in an experiment had the fastest reaction time

would be a low complexity task. High task complexity was defined as tasks which require

identifying overall trends or understanding causal relationships – for example, making a

conclusion about the effectiveness of different training programs.

According to Tufte and supporters of the data-ink hypothesis, increases in data-ink

ratio should result in corresponding performance increases in graph comprehension tasks,

as measured by response accuracy and mental effort. However, the results of empirical tests

of the data-ink ratio, and the frequent suggestion in the literature that the impact of

data-ink ratio may be task dependent leads to different predictions. In terms of response

accuracy, it is predicted that, overall, accuracy will be higher for low complexity questions

than high complexity. It is also predicted that participants will perform similarly well for

low complexity tasks, regardless of data-ink level. However, for high complexity questions,

it is predicted that accuracy will be lowest in the low data-ink condition (standard graphs),

highest in the high data-ink condition (Tufte’s redesigned graphs), and somewhere

in-between in the medium data-ink condition.

Some have argued that research on information visualizations has defined

effectiveness too narrowly by measuring variables such as task completion time, error rate

and user satisfaction (Zhu, 2007). Indeed, the majority of published studies on data-ink

ratio have used some combination of these measures. However, it has been noted that the

speed-accuracy trade off makes it likely that viewers could expend more mental effort to

achieve the same level of performance as measured by response accuracy, making it difficult

to judge the overall quality of different graphs and limiting the practical significance of
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such findings. These same authors contend that a measure which accounts for the amount

of cognitive effort involved in graph comprehension is necessary to evaluate the

effectiveness of different graph designs (Huang, Eades, & Hong, 2009).

Mental effort was defined as responses to a self-report Likert scale (Appendix A). It

was predicted that high complexity tasks would require greater levels of mental effort than

low complexity tasks for each graph type. It was also predicted that low complexity tasks

would result in similar levels of mental effort, regardless of the level of data-ink ratio.

Finally, it was predicted that for high complexity tasks, increasing data-ink ratio levels

would result in decreasing levels of mental effort, with lower overall levels of mental effort

for the high complexity/high data-ink condition than the low complexity/high data-ink

condition.

Additionally, previous studies on the data-ink ratio concept have failed to account for

participant characteristics which can impact graph comprehension, such as the two types of

graph schemas described by Pinker (1990). This study collected information about

participants’ experience with statistics courses, which is assumed to enrich the general

graph schema, and experience with using and creating both boxplots and bar graphs,

which is assumed to enrich instantiated graph schemas. This allowed performance data to

be analyzed in terms of participants’ graph knowledge, a potentially important factor in

graph comprehension.

Interviews. Learning to interpret graphs has been likened to learning a second

language. Those with less practice are assumed to be less capable than experienced graph

readers (Carpenter & Shah, 1998). Additionally, the complexity of graph comprehension

tasks is assumed to be an important factor in ease of comprehension (Carpendale, 2008),

but high-level tasks, such as drawing conclusions or exploring ideas, are difficult to measure

using experimental methods (Tory & Moller, 2005). These issues are likely exacerbated

when conducting research with undergraduate students, who may have limited experience

using graphs. Tufte (2015) has disparaged research on the data-ink ratio concept for using
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undergraduate students as participants . That criticism may have merit because models of

graph comprehension include graph literacy skills, or graph schemas, as an important

factor. Therefore qualitative research methods, which focus on detailed narrative

information as opposed to statistical inference, can be an important complement to

experimental data regarding the data-ink ratio.

Interview techniques have been used to evaluate the user experience of graphs

through subjective feedback regarding the effectiveness of different designs in supporting a

user’s intended tasks. In other words, one goal of interviews is to gather qualitative data

which can inform design decisions (Lam, Bertini, Isenberg, Plaisant, & Carpendale, 2012)

and result in different conclusions than other research methods (Tory & Moller, 2005).

Interview techniques are often used in combination with experimental methods, as they

focus on depth of information rather than sample size and allow for data collection in more

realistic contexts than traditional experiments (Portigal, 2013). It has been argued that

interview techniques should be used more frequently in the evaluation of graphical

information (Carpendale, 2008).

It is common to elicit qualitative feedback using a semi-structured interview method

(Carpendale, 2008). This usually involves the creation of a document known as a

discussion guide. This document is not an interview script; rather, it provides necessary

structure for the interviewer, such as introductory information, potential interview

questions, and a rough outline for the interview. However, it also allows for flexibility

during the process (Portigal, 2013). Interviews are usually audio recorded and conducted

in situ, or in the context in which the relevant activities naturally occur. This brings

realism to the interview process, help interviewees to bring to mind examples, and allows

reference to work artifacts – things that people use, create, modify, or reference in the

course of their work (Beyer & Holtzblatt, 1999). In the current study, that could include a

journal from the interviewee’s field of research or a graph they personally created.

Qualitative interview data can then be analyzed using thematic analysis, a flexible
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method in which interviewee opinions and interviewer observations are grouped into

common themes (Carpendale, 2008). Themes represent patterns in responses which relate

to the research questions at hand. Researcher judgment is inherent in thematic analysis,

and it has been argued that hard-and-fast rules as to what constitutes a theme do not

work. However, this method typically involves a number of common steps (Braun &

Clarke, 2006). First, recorded verbal data, such as audio recordings of semi-structured

interviews, are transcribed. It is important that these transcriptions are both complete and

true to the interviews themselves. This stage helps the researcher to develop a clear

understanding of the entirety of qualitative data. Next, the researcher reviews the

qualitative data to create a list of codes, or potentially interesting features about the data.

These codes can be further organized into themes, which are then reviewed. The purpose

of review is to ensure that the contained data within each theme is internally consistent,

and themes are meaningfully distinct. Finally, the resulting themes are defined and named

(Braun & Clarke, 2006).

Experiment Method

Participants

A convenience sample of 175 undergraduate students (53 women, 122 men,

M age=19.8, age range: 18-46 years) enrolled in three different sections of an introductory

psychology course at RIT was recruited for participation. Although the sample is roughly

70% men, that is similar to the percentage of men in the RIT undergraduate population

(RIT in Brief , 2015). Data collection sessions took place during the courses’ regularly

scheduled meeting times. Data were collected from 179 students, but incomplete data from

four students were not included in analysis. Participation in the experiment partially

fulfilled the research participation requirement for the course – participants received two

participation credits on the SONA research participation system.

Roughly half the sample comprised first-year students (N=87). An additional 52

students were in their second year of studies, and the remaining 36 students were in their
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third year or higher. Participants came from a variety of academic majors, including

computer science, game design and development, and various sub-disciplines of engineering.

Seventy-one percent of the sample majored in science/engineering (N=125), 22% majored

in arts/humanities (N=39), and 6% majored in social sciences (N=11). Although data

collection took place exclusively in psychology courses, none of the sample reported

psychology as their major. Seventy-four participants reported having taken a statistics

class, as opposed to 101 who had not.

In general, the sample was experienced with bar graphs. Ninety-nine percent

(N=173) of the sample reported having seen a bar graph prior to participation, 97%

(N=170) reported having used a bar graph prior to participation, and 97% (N=169)

reported having made a bar graph prior to participation. Boxplot experience was more

variable – roughly 80% (N=138) of the sample reported having seen a boxplot prior to

participation. About 63% (N=111) of the sample reported having used a boxplot prior to

participation. Finally, 52% (N=91) of the sample reported having made a boxplot prior to

participation, as opposed to 48% (N=84) who had not. Experience with statistics courses

was related to boxplot experience – all participants who had taken a statistics course had

seen a boxplot prior to participation, and nearly all had used and created a boxplot. Of the

101 participants who had not taken a statistics class, smaller numbers had experience with

boxplots (Table 1).

Table 1

Boxplot experience by experience with a statistics class

Seen boxplot Used boxplot Made boxplot

Statistics class (N = 74) 74 70 68

No statistics class (N = 101) 64 41 23
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Materials

The experiment used a 3x2x2 mixed design with two levels of task complexity (high

and low) and two graph types (bar and boxplot) as within-subjects variables and three

levels of data-ink ratio (high, medium, and low) as a between-subjects variable. Bar graphs

and boxplots were chosen because Tufte provides examples of high data-ink versions of

those graphs. Individual participants answered a common set of questions using one bar

graph and one boxplot with matched levels of data-ink ratio.

Figure 7 . Experimental stimuli: low, medium, and high data-ink bar graph and boxplots.

Using Adobe Illustrator v1.6, two types of graphs were adapted from published

psychology studies – bar graphs (Lellis et al., 2013) and boxplots (Romoser & Fisher,

2009). Three versions of each graph were created, corresponding to three data-ink ratio

levels – low, medium, and high (Figure 7). Low data-ink graphs were generally similar to

the published originals, but included additional features which Tufte specifically

recommends against, such as dashed gridlines, vertical separating lines between grouped

graphical elements, and thicker bars and boxes. High data-ink graph designs mimic Tufte’s

(2001) high data-ink redesigns of bar graphs and boxplots, as shown in Figures 2 and 3. By

placing different graph elements in different image layers, it was possible to follow Tufte’s
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“erasing principles” by simply hiding particular layers, such as gridlines or the “box”

portion of a boxplot. Although the size of some graph elements was reduced, their absolute

locations on the graph were not changed. The overall size of the graphs was held constant.

The medium data-ink graphs served as an intermediate between high and low data-ink

graphs – gridlines, T-intersections on bar graph error bars and boxplot whiskers, and

non-axis border lines were removed. Additionally, the thickness of box-shaped visual

elements was reduced by one third relative to the low data-ink versions. All graphs were

created in grayscale.

To accompany the graphs and provide context, written explanations were created to

describe the experiments from which the graphs were taken. These explanations described

the methods and stimuli of the experiment and defined relevant terminology as necessary.

They did not, however, describe the results of the experiment or any conclusions reached

by experimenters. An example graph and accompanying explanation are shown in Figure

8, and both graph explanations are shown in Appendix B.

Graph Lesson. To account for varying levels of experience with graph

comprehension tasks and the graph types used in the study, participants were given a two

to three minute presentation on the features of bar graphs and boxplots immediately before

beginning the experiment. This included information regarding axes, bar length, error

bars, quartiles, medians, whiskers, and maximum and minimum values. The accompanying

PowerPoint presentation showed example graphs which were similar in design to the

medium data-ink ratio graphs used in the experiment. As each individual graph feature

was discussed, it was highlighted in the presentation using red circles (Appendix C).

Graph comprehension questions. Response accuracy was measured using

open-ended questions regarding the content of the graphs. The questions were developed to

correspond to the previously-described low and high complexity task definitions – low

complexity questions required participants to compare, contrast, or rank while high

complexity questions required participants to understand trends and causal relationships or
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Figure 8 . Example experimental stimuli for low data-ink ratio boxplot.

make predictions. Two low complexity questions and two high complexity questions were

created for each graph, resulting in a total of eight questions per participant (Appendix D).

Mental Effort. Mental effort was measured using an adapted version of the Paas
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scale, a 9-item Likert scale ranging from “very, very low mental effort” to “very, very high

mental effort.” This scale was shown to be reliable in a study which tested problem-solving

skills and cognitive load in statistics (Paas, 1992) and has been used successfully in studies

exploring the effectiveness of graphs (Huang et al., 2009). However, the wording of some

items was changed for greater consistency within the scale (Appendix A).

Demographics questionnaire. After answering graph questions, participants also

completed a demographic questionnaire. In addition to age and gender information,

participants reported their academic major, information regarding their experience with

statistics courses, and a series of questions regarding their previous experience with both

bar graphs and boxplots (Appendix E).

Procedure

Each data collection session began with the distribution of packets which included

the necessary materials for participation. After an explanation of the purpose of the study

and time to read and sign a consent form, students were given the graph lesson and the

experiment began. Because the graphs were presented in paper format, participants were

free to refer to the graph at any point during the experiment and refer to the questions and

graph descriptions as necessary. Participants were instructed to remove the page containing

the graph if they wished to do so, as the graph and questions spanned several pages.

To account for order effects, the sequence of graph presentation was balanced across

packets – for roughly half of participants, the bar graph appeared first and for the other

half the boxplot appeared first. Additionally, participants answered questions in one of two

randomly generated orders. This resulted in two versions for each data-ink level, and six

versions in total. However, given the nature of the data collection method, participants

could have answered questions in any order. After answering the eight graph questions,

participants completed the demographic questionnaire. Participants were not given a time

limit. The majority of participants completed the task in 12-13 minutes. Consent forms

and data were collected separately.
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Packet versions were sorted prior to data collection to ensure even distribution

throughout the sample. In total, 58 participants used low data-ink graphs (30 version 1, 28

version 2), 61 used medium (31 version 1, 30 version 2), and 59 used high (30 version 1, 29

version 2).

Prior to data collection, two pilot tests were conducted. After an initial round of pilot

testing, changes were made to the graph lesson, the wording of individual questions, and to

the structure of the experimental “packet”. After an additional round of pilot testing, the

initial set of 12 questions (six per graph) was reduced to a set of eight (four per graph).

Those eight questions were selected based on the distribution of pilot results – questions

with normally distributed responses were favored over questions with skewed results and/or

multiple outliers.

Interview Method

Participants

Seven interviews were conducted with faculty members from the Rochester Institute

of Technology (RIT) with a variety of academic backgrounds. Five of seven interviewees

held doctorate degrees. Three of those were in psychology, one was in psychophysiology

and one was in industrial engineering, but taught courses in applied statistics. The other

two interviewees held a master’s degree – one in graphic design and the other an MFA in

visual and verbal communication (the terminal degree in their field). A strict selection

criteria was not used, but preference was given to those who were likely to have opinions

regarding graph design (e.g., faculty in design, human factors and statistics) and/or those

with frequent graph use. Participants were found through recommendations by other

faculty members or through departmental web pages.

Procedure

Prior to the interviews, a pilot interview was conducted to develop an effective

interview technique that would elicit pertinent information. Interviewees were recruited

from the faculty at the Rochester Institute of Technology (RIT). After agreeing to
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participate, interviewees were sent a common set of nine pre-interview questions via e-mail

(see Appendix F). These questions were general in nature, focusing on graph use and

creation, and participants’ responses were used to create a discussion guides tailored to the

interviewee (see Appendix G for example). Two interviewees had prior knowledge of the

study and interview methodology, but it was determined that their responses were not

fundamentally different from other interviewees prior to inclusion.

Each interview lasted roughly one hour and focused on the use and creation of

graphs, context of graph use, the importance of aesthetics in graph design, knowledge of

and opinions about the data-ink ratio concept, and feedback on example graphs with

varying data-ink ratios. The example graphs were the same bar graphs and boxplots that

were used in the experiment. Interviews were conducted in participants’ offices to allow

access to personal materials, research publications, graph-making software, or any other

work artifact that the interviewee wished to reference. Audio recordings of the interviews

(recorded with a Sony ICD-PX312) were summarized and synthesized using thematic

analysis. Interviewees were given a gift certificate ($10 value) for their participation in the

interview, but were not aware of any remuneration at the time they agreed to participate.

Gift certificate funding was provided by RIT’s College of Liberal Arts.

Experiment Results

Bar graph. On average, participants responded to bar graph questions with 79%

accuracy, SD=.22, 95% CI [.75, .82]. Mean accuracy for low complexity bar graph

questions was 84%, SD=.27, 95% CI [.80, .88], which was significantly higher than a 74%

mean accuracy for high complexity bar graph questions, SD=.31, 95% CI [.69, .79]. The

mean mental effort rating for all bar graph questions was 3.1, SD=1.1, 95% CI [2.9, 3.3].

The mean mental effort rating for low complexity questions was 2.6, SD=1.2, 95% CI [2.4,

2.8], which was significantly lower than the mean mental effort rating of 3.6 for high

complexity bar graph questions, SD=1.2, 95% CI [3.4, 3.8].

There was no effect of data-ink level on mean accuracy for all bar graph questions
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(both low and high complexity). However, there was one interactive effect of complexity

and data-ink level on accuracy – participants answered low complexity/high data-ink bar

graph questions (M=.87, SD= .24, 95% CIs [.81, .93]) significantly more accurately than

high complexity/high data-ink bar graph questions (M=.70, SD= .32, 95% CIs [.61, .78]).

High complexity questions generally resulted in slightly higher mental effort ratings than

low complexity questions, but there was no effect of data-ink level on mental effort ratings

for all bar graph questions, for low complexity bar graph questions, or for high complexity

bar graph questions (Figure 9).

Figure 9 . Mean accuracy and mental effort ratings for all bar graph questions, low

complexity bar graph questions, and high complexity bar graph questions. Data-ink levels

are displayed along the x-axes. Error bars represent 95% confidence intervals. Boxplot

whiskers represent 1.5 x inter-quartile range.

Experience with a statistics course did not have an interactive effect with data-ink

level on accuracy – although participants who had taken a statistics course performed

slightly more accurately in all conditions than participants who had not taken a statistics
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course, none of those differences were significant. Regardless of experience with a statistics

course, mental effort ratings were similar across conditions (Figure 10). Additionally, year

of study did not have any interactive effects with data-ink level or complexity. There were

no statistically significant differences in accuracy between participants in their first year of

study and participants in their second year of study or higher (Figure 11).

Figure 10 . Mean accuracy and mental effort ratings for all bar graph questions, low

complexity bar graph questions, and high complexity bar graph questions. Results are

further broken down by previous experience with a statistics course. Data-ink levels are

displayed along the x-axes. Error bars represent 95% confidence intervals. Boxplot

whiskers represent 1.5 x inter-quartile range.
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Figure 11 . Mean accuracy and mental effort ratings for all bar graph questions, low

complexity bar graph questions, and high complexity bar graph questions. Results are

further broken down by year of study. Data-ink levels are displayed along the x-axes. Error

bars represent 95% confidence intervals. Boxplot whiskers represent 1.5 x inter-quartile

range.

Boxplot. Boxplot questions were answered with 55% accuracy, SD=.32, 95% CI [.50,

.60], which was significantly lower than overall bar graph accuracy. Participants responded

slightly more accurately to high complexity questions (M=57%, SD=.36, 95% CI [.51, .62])

than low complexity questions (M=53%, SD=.40, 95% CI [.47, .59]), but that difference

was not statistically significant. However, the mean mental effort rating of 3.6, SD=1.3,

95% CI [3.4, 3.8] for high complexity questions was significantly higher than the mean

mental effort rating for low complexity questions (M=3, SD=1.3, 95% CI [2.8, 3.2]). The

overall mean mental effort rating for boxplot questions was 3.3, SD=1.2, 95% CI [3.1, 3.5],

which was not significantly different than the mean mental effort rating for bar graph

questions.
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As with bar graph questions, there were no effects of data-ink level on mean accuracy

or on mental effort ratings. This was the case for all boxplot questions (both high and low

complexity), for low complexity boxplot questions only, and for high complexity boxplot

questions only. Participants performed least accurately using high data-ink graphs in both

the low and high complexity conditions, but those differences were not statistically

significant. For low complexity questions, mental effort ratings were slightly lower in the

medium data-ink condition than low and high data-ink conditions (Figure 12).

Figure 12 . Mean accuracy and mental effort ratings for all boxplot questions, low

complexity boxplot questions, and high complexity boxplot questions. Data-ink levels are

displayed along the x-axes. Error bars represent 95% confidence intervals. Boxplot

whiskers represent 1.5 x inter-quartile range.

Previous experience with a statistics course did not have any interactive effects with

data-ink level or with complexity level. In overall accuracy (both high and low complexity

questions), participants who had taken a statistics course performed more accurately on

average than participants who had not taken a statistics course in the low and medium
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Figure 13 . Mean accuracy and mental effort ratings for all boxplot questions, low

complexity boxplot questions, and high complexity boxplot questions. Results are further

broken down by previous experience with a statistics course. Data-ink levels are displayed

along the x-axes. Error bars represent 95% confidence intervals. Boxplot whiskers represent

1.5 x inter-quartile range.

data-ink groups, but lower in the high data-ink group. However, none of those accuracy

differences were statistically significant. Mean accuracy scores were more similar between

participants with and without experience with a statistics course in the high complexity

condition than in the low complexity condition. However, those differences were also not

statistically significant (Figure 13). As with bar graph questions, year of study did not

have interactive effects on accuracy with boxplot questions (Figure 14).

Previous experience with boxplot creation also did not have any interactive effects

with data-ink level or complexity level on accuracy. Interestingly, participants who

reported previous experience with boxplot creation (91 participants, as opposed to 84 who

had not) had lower mean accuracy scores in all but one condition – low
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Figure 14 . Mean accuracy and mental effort ratings for all boxplot questions, low

complexity boxplot questions, and high complexity boxlot questions. Results are further

broken down by year of study. Data-ink levels are displayed along the x-axes. Error bars

represent 95% confidence intervals. Boxplot whiskers represent 1.5 x inter-quartile range.

complexity/medium data-ink ratio. However, none of those differences were statistically

significant. In most cases, participants who reported previous experience with boxplot

creation had slightly lower mental effort ratings. However, overall mental effort ratings

using high data-ink graphs were more variable among participants with previous experience

with boxplots (Figure 15). For complete tables of experiment results, including accuracy

and mental effort data for individual graph comprehension questions, see Appendix H.
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Figure 15 . Mean accuracy and mental effort ratings for all boxplot questions, low

complexity boxplot questions, and high complexity boxplot questions. Results are further

broken down by previous experience boxplot creation. Data-ink levels are displayed along

the x-axes. Error bars represent 95% confidence intervals. Boxplot whiskers represent 1.5 x

inter-quartile range.

Mental effort reanalysis. In addition to the aforementioned analyses, mental effort

ratings for both bar graph and boxplot questions were reanalyzed in two ways. First, the

scale was collapsed using its semantic features. Ratings of 1-4 (all variations of “low mental

effort”) were recoded as a rating of 1, ratings of 5 (“neither high nor now mental effort”)

were recoded as a rating of 2, and ratings of 6-9 (all variation of “high mental effort”) were

recoded as a rating of 3. In a second re-analysis, mental effort ratings were collapsed

numerically. Ratings of 1-3 were re-coded as a rating of 1, ratings of 4-6 were recoded as a

2, and ratings of 7-9 were re-coded as a rating of 3. In both cases, collapsing mental effort

scores failed to reveal any effects.
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Unexpected graph annotations. Fourteen participants returned graphs with

additional features drawn on them (see Appendix I for complete set of images). Eleven

high data-ink graphs were annotated and four medium data-ink graphs were annotated. No

features were found added to low data-ink graphs. However, some participants did not

return detached graph pages with their data packets, so this list cannot be considered

exhaustive.

Five participants added bar graph features to high data-ink graphs and 3 to medium

data-ink graphs. Three of 8 of these participants reported having taken a statistics class,

and 6 of 8 reported having created a bar graph prior to participation. All participants who

modified bar graphs reported having seen a bar graph graph prior to participation. Six

participants added features to high-data ink boxplots and 1 added features to a medium

data-ink boxplot. Five of 7 boxplot modifiers reporting having taken a statistics class and

6 of 7 reported having created a boxplot prior to participation.

Bar graph annotations included horizontal lines drawn from bars to the y-axis or

from on bar to another (Figure 16), vertical separating lines between grouped boxplot

elements (Figure 17), and boxes in place of white space in high data-ink boxplots (Figure

18). Six participants added features to a bar graph, 6 added features to a boxplot, and 2

added features to both. Added bar graph features included horizontal lines drawn across to

the y-axis or to other graph elements (6 participants), additional tick marks on the y-axis

(1 participant) and numerical labels on particular bars (1 participant). Boxplot

annotations included vertical separating lines between grouped elements (2 participants),

boxes in place of white space in high-data ink graphs (2 participants), and horizontal tick

marks, either at the ends of vertical line elements or median dots or to the y-axis (3

participants). For a complete set of annotations, see Appendix I.
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Figure 16 . Example of a participant who drew horizontal lines on a high data-ink bar

graph. Brightness and contrast adjustments were made to improve annotation visibility.

Figure 17 . Example of a participant who drew vertical lines on a high data-ink boxplot.

Brightness and contrast adjustments were made to improve annotation visibility.

Figure 18 . Example of a participant who drew boxes on a high data-ink boxplot.
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Interview Results

Data-ink ratio and example graphs. Three interviewees were familiar with the

data-ink ratio concept and provided opinions about it. One of those three had a

background in design and the others had backgrounds in psychology and imagining science.

Two of those interviewees had personal copies of Tufte’s book. One of the three described

the data-ink ratio as a “neat idea” and agreed that graph features with no relevance should

be removed. However, like Carswell (1992), that interviewee also expressed doubts as to

whether data-ink ratios can actually be measured and did not believe that the data-ink

ratio should be maximized, but rather that there is a “sweet spot” for data-ink levels which

is lower than the maximum. This was because making graph elements too small makes

them difficult to see and additional elements, such as gridlines, can be helpful to guide

viewers’ eyes. This interviewee reported that he did not apply the data-ink ratio to the

design of graphs he creates. The interviewee with an imaging science background described

the data-ink concept as a design argument that didn’t result in more usable graphs.

Finally, a third interviewee, who had a background in design, felt much more positively

about the data-ink concept and followed and taught many of Tufte’s recommendations for

graph creation. The remaining four interviewees were either unfamiliar with the data-ink

concept or only vaguely familiar with it.

Feedback regarding the low data-ink bar graph tended to be negative or neutral. It

was described as both “fat” and “chunky” by different interviewees, suggesting that the

bars were seen as disproportionately large for the size of the graph. One interviewee

described it as heavy handed, not due to the size of the bars, but because of the “noise” in

the form of gridlines, tick marks, and other elements that could be described as

non-data-ink. A different interviewee disliked the box around the graph. On the other

hand, the graph was also described as having “some nice elements” – the T-intersections on

the error bars were seen as helpful and the gridlines were not “too heavy,” but could have

been fainter. Another interviewee identified this as their favorite bar graph version, as the
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gridlines were helpful due to width of the graph. That interviewee also found

T-intersections at the end of error bars to be helpful.

One participant described the medium data-ink graph as “more pleasing” than the

low data-ink bar graph due to the increased white space and thinner bars, but would have

added faint gridlines and T-intersections to the error bars. On the other hand, a different

participant felt that the bars should have been closer together to facilitate comparisons,

but identified the graph as their favorite bar graph version nonetheless.

Two participants felt that the high data-ink bar graph would take longer to interpret

than the other versions, although one did note that familiarity with the high data-ink style

might make it easier to use. An additional interviewee described the graph as “horrible.”

On the other hand, a different interviewee found this graph to be elegant and minimal, but

unnecessarily wide due to the increase in white space created by the thin bars. That

interviewee also noted that adding gridlines to this graph would have created a criss-cross

pattern with the thin bars. When asked whether moving the bar pairs closer together

would improve this graph, a different interviewee said that it would, but that such a change

would not impact her negative feelings toward the graph. One interviewee felt that there

was “less in the way” in the high data-ink bar graph, and that it could be improved further

by removing the “bar” portions of the graph. This interviewee saw bars in general as a

waste of ink which might not add anything, as the error bars are the key information.

Another interviewee felt that the high data-ink bar graph had been “cleaned up” compared

to the others, but that the bars could be thicker to make it easier to differentiate between

their colors. This is similar to to Few’s (2009) argument that graph elements can be

over-reduced.

The low data-ink boxplot was generally described as too busy. More interviewees

gave negative comments about the gridlines in this graph than about the bar graph

gridlines. Although they were the same size and color as the gridlines in the bar graph,

there were a greater number in the boxplot (4 vs. 9, respectively), suggesting that opinions
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regarding the inclusion of gridlines are dependent upon the specific graph. One interviewee

felt that the T-intersections at the ends of the whisker portions were unnecessary.

The medium data-ink boxplot received more positive feedback than the low data-ink

boxplot, though many interviewees suggested changes to the design which they felt would

improve it. One interviewee commented that T-intersections at the ends of whiskers and

subtle gridlines would improve the graph. Another would have liked vertical separating

lines between the experimental conditions. A third interviewee said that a hybrid of the

low and medium data-ink graphs would be ideal, though a specific combination of features

was not mentioned.

The high data-ink boxplot was widely disliked – all but one interviewee found it hard

to read. It was noted that the box portion, present in the low and medium data-ink

boxplots, helps to make each individual boxplot look like a cohesive unit. This is similar to

Kosslyn’s (1985) argument that completing forms results in fewer perceptual units. One

interviewee commented that the graph required too many “mental gymnastics,” and wasn’t

sure that she would have known it was a boxplot in a different context. On the other hand,

a different interviewee felt that the high data-ink boxplot “says the same thing as the

others,” but does so more efficiently. Additionally, that interviewee felt that the high

data-ink design would be accepted with time, and that the other designs may eventually

look archaic. Finally, two interviewees who gave negative feedback about this graph

commented that it does highlight the trend of median values in the graph due to the large

amount of white space around them.

Graph use. Interviewees reported using graphs for a variety of reasons, including

publishing empirical results, understanding others’ research, teaching courses, measuring

student progress in courses, evaluating the effectiveness of interventions, and more.

Frequency of graph use ranged from daily, to weekly, to multiple times over the course of a

semester. Two interviewees described their graph use as “very frequent” and “extremely

frequent,” respectively. Heavy graph use was reported when involved in research projects.
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Bar graphs, scatterplots and line graphs were commonly encountered among

interviewees, though other types, such as radial graphs, boxplots, ISOTYPE and

histograms were also mentioned. Some interviewees preferred to use particular types of

graphs, such as bar graphs, because of ease of interpretation, or boxplots because they

show complete distributions. One interviewee had a preference for graphs that plotted

every data point. Others didn’t have preferences for particular types of graphs, and instead

preferred whichever graph was most appropriate for the particular situation.

Graph creation. Interviewees created graphs using a variety of software tools,

including Excel, SPSS, R Statistics, Adobe Illustrator, InDesign, MATLAB, and Jmp.

Some interviewees used multiple programs for graph creation, choosing whichever is more

appropriate (or easier) for a given graph creation task. For example, R Statistics was

described as allowing the most customization of graphs, which was not always seen as

necessary for all occasions. Two interviewees reported sketching graphs by hand when early

in the graph design process, which was described as a way to avoid the limitations of

software and find the best way to display the data.

A number of salient themes emerged on the topic of graph creation goals. Nearly all

interviewees named clarity as a design goal, which was defined as readability or “ease of

use,” as well as avoiding clutter. Interviewees wanted their graphs to be understood by

others with little effort. One interviewee noted that context is important for clarity. For

example, she expected that any graph would be described in writing prior to appearing in a

research article to provide a context for that graph. Accuracy was also mentioned

frequently as a design goal – graphs should show the data as they actually are without

obscuring phenomena. The use of truncated axes was the typical example of inaccuracy or

dishonesty in graph design, and multiple interviewees noted that accuracy problems are

frequently unintentional, but problematic nonetheless. One interviewee identified accuracy

as the most important factor in graph design, and noted that it can be difficult to judge

the accuracy of graphs created by others.
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All interviewees were conscious of the aesthetics of graphs they create, but had a

variety of definitions for this concept. Some used words like “clean” or “elegant” to

describe their goals with regard to aesthetics. Features such as the size, color, and

placement of graph elements were seen to impact the aesthetics of a graph. Both of the

interviewees with a design background mentioned “balance” as a graph design goal – the

idea that a graph creator must make trade-offs between simplicity, visual interest, clarity,

and completeness. This design goal was reminiscent of Tukey’s advice for “well-tuned”

graphs. Some interviewees described graph-making conventions as “heavy-handed” or even

ugly, and nearly all interviewees expressed some level of dissatisfaction with the look of

default designs created by graph-making software.

Effective labeling was critical to a number of interviewees – three reported that labels

are among the first features of graphs that they read, and that they are helpful for

identifying the variables or conditions in an experiment. Good labeling was said to include

titles, legends, and figure captions. One interviewee felt that good labeling is more

important than limiting visual clutter. A different participant mentioned the importance of

the layout of labels in graph design – for example, labels shouldn’t be shown at 90 degree

angles and the alignment of labels should be consistent for improved readability.

Gestalt principles were mentioned in multiple interviews by those with both

psychology and design backgrounds. A designer noted that gestalt principles are

foundational to design education. Features such as color and grouping via proximity were

seen as important to good graph design. Symbols were also used to group graphed data.

The principle of closure was implicitly discussed – one interviewee noted that the “box”

portion of a boxplot helps each element to look like a cohesive unit.

The importance of matching graph type to data type was emphasized by three

interviewees. For example, bar charts were said to be appropriate for comparing categorical

data, while scatterplots or line graphs would be appropriate for trend data. Both of these

interviewees had seen graphs which were not appropriate for the data they showed. This
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was seen as an aspect of graph design that requires particular skill and knowledge. The

match between graph types and data types was described as a type of “natural mapping,”

which was also important to other factors of graph design, such as matching the orientation

of a legend to the orientation of the graphs features it represents. One of these interviewees

stressed that graph creators should not create only one type of graph for a given situation,

but that graph types can be used inappropriately.

Hierarchical structure in graph design was mentioned by two interviewees. One

reported that the data should always be primary in visual emphasis, that features such as

axes and legends should be secondary, and that gridlines and tick marks should be tertiary.

Primary content should “come up to the surface” while everything else “recedes to a place

of secondary of tertiary importance.” If anything “upstages” the data, it is a design

problem which can make a graph “heavy-handed.” The other interviewee reported that the

“most important things” in a graph should be emphasized in the design, and that the

designer should know what the hierarchy of their graph is. For example, if a line graph is

being used to show trend data, the line portion is most important, and that element should

be bolder than elements such as axes or tick marks.

Interviewees had few absolute rules with regard to graph creation – the majority of

design choices described during the interviews were dependent upon the specific features of

the data and context of presentation. Interviewees did not want graphs to be “busy” or

include superfluous features, but definitions of what constitutes superfluous varied between

participants and situations. For example, some interviewees reported disliking gridlines in

graphs, but mentioned scenarios in which they might include them, such as allowing

readers to track across a particularly wide graph or the use of a single gridline to highlight

a particular value. Similarly, two interviewees noted that they might include gridlines for

their own use as a measurement tool during data exploration, but remove them when

creating graphs for the public. One interviewee liked Tufte’s suggestion to create gridlines

using thin white lines on the bars themselves. Similarly, some interviewees found the
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inclusion of T-intersections on graph elements to be useful, while others preferred them to

be left out.

Discussion

The hypothesis that low complexity questions would be answered more accurately

than high complexity questions was supported in the case of bar graph questions, but not

for boxplot questions. One potential explanation for this difference is the sample’s relative

lack of experience with boxplots as compared to bar graphs, which relates Pinker’s (1990)

concept of instantiated graph schema, or knowledge of specific graph types – it would be

predicted that increased experience with a particular type of graph would be associated

with improved performance using that type of graph. However, participants who had

created a boxplot or taken a statistics class did not outperform participants with less

boxplot experience or those who had not taken a statistics class. Because boxplot

experience questions were binary in nature, it is possible that they failed to capture the

degree of boxplot experience, and that even participants who reported having used or

created a boxplot had much less experience with this type of graph than with bar graphs.

The hypothesis that participants would perform similarly for low complexity tasks,

regardless of data-ink level, was supported – for both bar graph and boxplot questions, no

statistically significant differences in accuracy were found between data-ink conditions. The

hypothesis that accuracy would increase with data-ink level in high complexity questions

was not supported – for both bar graph and boxplots, no statistically significant differences

in accuracy were found between data-ink conditions.

The hypothesis for increased accuracy in high complexity/high data-ink conditions

was not supported. Accuracy in high data-ink/high complexity conditions was slightly

lower than in low data-ink/high complexity and medium data-ink/high complexity

conditions for both bar graph and boxplot questions, though those differences were not

statistically significant. Contrary to this hypothesis, participants in the high data-ink/low

complexity/bar graph condition performed significantly more accurately than those in the
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high data-ink/high complexity/bar graph condition. In all other cases, data-ink and

complexity did not have interactive effects on accuracy.

The hypothesis that high complexity questions would yield higher mental effort

ratings than low complexity questions was supported. For both bar graph and boxplot

questions, mean mental effort ratings were significantly higher in high complexity

conditions than in low complexity conditions. Although these differences were small and

there was only one statistically significant difference in accuracy between high and low

complexity questions, this suggests that participants did in fact find the high complexity

questions to be more difficult than low complexity questions, and provides further evidence

for Carpendale’s (2008) task complexity definitions.

The hypothesis that low complexity tasks would result in similar levels of mental

effort, regardless of data-ink level was partially supported. For bar graph questions, mental

effort ratings in the medium data-ink/low complexity condition were less variable than in

the low and high data-ink conditions. The largest variability in mental effort ratings for

low complexity bar graph and boxplot questions occurred in the high data-ink conditions.

However, these differences were not large, and there were no statistically significant

differences in mean mental effort ratings.

The hypothesis that increasing data-ink levels would result in decreasing levels of

mental effort for high complexity questions was not supported. The pattern of mental

effort responses for high complexity questions was generally similar to that of low

complexity questions, with the widest range of mental effort ratings occurring in high

data-ink conditions and the smallest range occurring in medium data-ink conditions.

Again, these differences were relatively small and there were no statistically significant

differences in mean mental effort ratings.

Although there is some support for data-ink maximization in the literature, those

studies used small samples and misrepresented Tufte’s recommendations. For example,

Gillan and Richman (2009) claimed to have found limited support for data-ink
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maximization, as participants used their low data-ink graphs less accurately and slower

than medium and high data-ink graphs. However, only their medium and high data-ink

graphs accurately reflected Tufte’s recommendations, and like the present study, no

performance differences were found between those designs. Although it is possible that

Holmes-style graphs, which use visual metaphors, lead to performance deficits when

participants are asked to make precise judgments about graphed data, that finding does not

suggest that Tufte’s recommendations to remove features like gridlines and T-intersections

and to reduce the size of other graph elements are sound. Indeed, the results of this study

suggest that those recommendations do not lead to improved performance.

Lohse’s (1997) model of graph comprehension predicts that graph designs which

require less effort to comprehend are those that shift processing from working memory to

perceptual systems. The results of this study suggest that maximizing data-ink does not

facilitate this shift. At best, mental effort ratings were similar, regardless of data-ink level,

and the most variable mental effort ratings occurred in high data-ink conditions. At the

same time, the presence of “chartjunk” in the form of gridlines and T-intersections did not

seem to facilitate the comprehension processes described by Simkin and Hastie (1987), such

as projection, or “sending out a ray” from one graph point to another, though some

participants did presumably “miss” those features, and drew them on their graphs

themselves.

Increases in the variability of mental effort responses for high data-ink graphs seem to

make sense in light of interview data – multiple interviewees felt that the high data-ink

graphs would be more difficult to interpret than the low or medium data-ink designs.

However, the high data-ink graphs appeared to be as usable as other designs, and although

high data-ink graphs received more variable mental effort ratings than low and medium

data-ink graphs, participants were still able to answer questions with high data-ink graphs

with similar levels of accuracy.

Both interview and experiment data suggest that if there is an optimal design, it may
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be a medium data-ink level, as most interviewees preferred those designs and they yielded

less variable mental effort ratings in many cases. It is also possible that this reduced

mental effort variability was related to the graph lesson that occurred prior to

participation, which used medium data-ink graphs when explaining bar graph and boxplot

features. In either case, the effect was not large, and participants did not answer questions

more accurately using medium data-ink graphs.

With regard to Tufte’s claim that his high data-ink designs would be accepted with

time, interview feedback indicated that high data-ink designs are not encountered or

accepted by frequent users of graphs. Although models of graph comprehension and the

results of the present study do seem to support the claim that viewers would be

accustomed to high data-ink ratio designs, it does not seem that they have started to

“catch on” in the years since Tufte published the data-ink concept.

Future Directions. As noted previously, instantiated graph schemas – knowledge

regarding specific graph types – have been identified as an important factor in graph

comprehension (Pinker, 1990). One interviewee commented that she would not have been

able to identify Tufte’s high data-ink boxplot as a boxplot without the context provided by

the interview, suggesting that this particular graph did not activate a boxplot schema for

that individual. Just as interviewees were informed of the type of graph they were being

shown, experiment participants were told which types of graphs they would be using and

given a lesson on interpreting both graph types prior to participation. Future studies

should examine the effect of data-ink levels on graph comprehension with naive

participants of varying experience levels. It is possible that some participants would have

had more difficulty with the high data-ink boxplot had they received less pre-participation

information about graph types.

Because none of the sample reported majoring in psychology or human factors, it

seems unlikely that a large portion of participants was familiar with the type of studies

from which the graphs came. However, this study did not attempt to measure graph
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content knowledge, an important factor in models of graph comprehension. Future studies

should investigate the impact of content knowledge as it relates to the data-ink ratio

concept.

Multiple interviewees noted that they found the high data-ink bar graph to be too

wide, a criticism which suggested that this graph did not make effective use of gestalt

grouping principles. Future studies could make proportional reductions in the overall size

of graphs as graph elements are reduced in size. For example, rather than holding the size

of the graph constant, the proportion of white space to bar width could be held constant –

as the size of bars is reduced, the overall width of the graph could be reduced. Similarly,

one interviewee noted that the thin bars of the high data-ink bar graph made it more

difficult to differentiate between bar colors, another criticism which suggested that the high

data-ink bar graph did not fully leverage gestalt grouping principles. This criticism was

similar in nature to the criticisms of Few (2009). However, neither of these criticisms were

validated in the experiment – neither accuracy nor mental effort ratings suffered when

using the high data-ink bar graph. Although it is possible that graph designs which

balance data-ink maximization with more effective use of gestalt grouping principles could

yield different results, the present findings suggest that participants are resilient to

superficial design changes and would perform similarly regardless.

The present study used accuracy and mental effort as performance measures. It was

assumed that increases in the amount of time participants required to understand graphs

and answer questions would be reflected in reflected in mental effort ratings. Future studies

could test this assumption by measuring or limiting response time and measuring response

accuracy. It is possible that specific graph designs result in longer response times, and that

these performance differences are not accurately captured by self-report data.

Although previous work has shown that design characteristics do affect

comprehension, the design changes in this study did not. This suggest that not all display

characteristics are created equally. Future studies should attempt to identify the design
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characteristics which do affect performance in graph comprehension tasks. Additionally,

future studies should further investigate the role of aesthetics and aesthetic preferences

with regard to performance in graph comprehension tasks. Previous studies have measured

preferences with regard to the data-ink ratio, but none have examined the relationship

between performance and graph design preferences. It is possible that there is a connection

between data-ink preferences and real or perceived benefits to performance in graph

comprehension tasks.

Conclusion

The results of this study do not support claims that high data-ink ratio graph designs

will result in increased graph comprehension. Rather, they suggest that the data-ink ratio

concept deals with the subjective issue of graph aesthetics. Arguments about the aesthetics

of graphs are worth having – interview data showed that graph creators care about the

look of graphs and make efforts to ensure that their graphs meet their aesthetic standards.

A graph creator who prefers the look of Tufte’s high data-ink graphs should feel free to use

them, but graph creators should not feel that maximizing data-ink ratio will result in more

usable graphs. In defending his ideas, Tufte argued that it would be a mistake to

underestimate the audiences of graphical information. With regard to graph designs with

different data-ink ratios, this sentiment seems to be appropriate – graph users with varying

levels of experience can extract complex information from high data-ink ratio designs. But

they are just as good when data-ink ratio is not maximized. Future studies should further

investigate the relationship between aesthetic preferences and the data-ink ratio.
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Appendix A

Paas Mental Effort Scale – Original and Adapted

Figure A1 . Original version of the Paas mental effort scale, which used different language

at the extreme ends of the scale.

Figure A2 . Adapted version of the Paas mental effort scale, which appeared after every

question. A rating of 8 was changed to “very high mental effort” and 9 was changed from

“extremely high” to “very, very high mental effort” to match the low end of the scale.
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Appendix B

Graph Explanation Paragraphs

Bar Graph

The following graph depicts the results of an experiment which measured reaction

time in an attention orienting task – which asked children from 5 different age groups to

respond with a key press after the appearance of a stimulus. The experimental stimulus – a

solid black box – was presented at particular intervals. The box was considered either valid

– in a location indicated by an arrow-shaped cue – or invalid – opposite the location

indicated by the arrow-shaped cue. Participants were asked to respond to the black box as

soon as possible by pressing the spacebar, regardless of whether it was valid or invalid.

Reaction times were measured in milliseconds.

Boxplot

The following graph depicts the results of an experiment which measured secondary

looks – the act of glancing in the most likely direction of oncoming traffic after beginning a

turn – in a group of older drivers. All participants completed pre-training simulator and

field tests in which the proportion of intersections with secondary looks was measured.

Next, one group received active, immersive training using the simulator while a second

group received passive, classroom-style training. A control group received no further

training. All 3 groups were then tested again in both the simulator and in the field, with

the proportion of intersections with secondary looks measured again.
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Appendix C

Graph Lesson

The italicized text accompanying each image was presented verbally to participants as the

image displayed.

• Bar graphs typically show comparisons between categories. The categories are

arranged along the X-axis.

• In this graph, the categories are fruit types – apples, plums, oranges.

• The measure by which categories are being compared is on the Y-axis. On this graph

the measure is price per pound in US dollars.
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• The bars themselves have lengths proportional to the values they represent, which are

typically means.

• The top edge of the bar represents the value for that category. The average price per

pound of apples in this graph is around $2.10.

• The darker lines at the end of each bar are error bars. They typically reprsent

different measures of variability.
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• In the bar graph you’ll be looking at, they will represent the standard error of the

mean. If the error bars of two categories overlap, it’s unlikely that there is a

statistically significant different between them.

• Boxplots also show comparisons between categories. The categories are arranged along

the X-Axis.

• In this graph, the categories are voice parts in a chorus âĂŞ bass, tenor, etc.
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• Again, the measure by which the categories are being compared is on the Y-Axis. On

this graph, the measure is height in inches.

• Boxplots represent data through quartiles, which divide a data set into 4 groups, each

representing 25% of the data. The box represents the middle 50% of the data set.

• The upper edge of the box represents the value at which 25% of the data is greater.

25% of bass 2 singers are taller than around 74 inches.
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• The bottom edge of the box represents the value at which 25% of the data is smaller.

25% of bass 2 singers are shorter than around 70 inches.

• The dark line inside the box represents the median âĂŞ the middle value in the data

set. The median bass 2 singer is around 72 inches tall.

• The lines protruding from the top and bottom of the box are called whiskers, and can

represent different things. In the graph you will look at, they represent the maximum

and minimum values in the dataset.

• The tallest singer in the bass 2 group is around 75 inches.

• The shortest singer in the bass 2 group is around 66 inches.
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Appendix D

Graph Comprehension Questions and Answers

Answers to questions presented in italics.

Low Complexity Questions – Bar Graph

1. Which variable had a larger effect on reaction time – age or validity?

Age

2. Which age group had the fastest reaction times?

Age 10

High Complexity Questions – Bar Graph

1. Based on the graph, what reaction times (in milliseconds) would you predict for a

group of 12 year olds:

Valid stimuli –

Invalid stimuli –

Correct answers predicted reaction times between 300-420 for valid stimuli and

300-450 for invalid stimuli. Predictions in which the invalid reaction time was lower

than valid were considered incorrect.

2. What can you conclude about the effect of the valid/invalid condition on reaction

time?

Invalid condition leads to slower reaction times AND/OR the difference between

reaction times goes down with age.

Low Complexity Questions – Boxplot

1. In the passive learning/field drive condition, did the higher maximum proportion of

intersections with secondary looks occur before or after training?

Before / Pre-Training.
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2. Did training have an effect in the passive learning/field drive condition?

No. Answers such as “very little,” “barely,” etc. were also accepted.

High complexity Questions – Boxplot

1. Which learning method (active vs. passive & simulator vs. field drive) would you

recommend for increasing safe driving habits?

Active learning/field drive. Answers that did not include both parts were not accepted.

2. The experimenters decide to assess a third training style that blends active and

passive learning. What would you predict to be the minimum proportion of

intersections with secondary looks measured pre-training?

Answers ≤ 15 were accepted. If participants gave a range of numbers, an average

number was calculated for analysis.
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Appendix E

Demographic Questionnaire

Figure E1 . Demographic questionnaire included at the end of the experimental packet.
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Appendix F

Pre-Interview Questions

1. How frequently do you use graphs? (in classes? In research?)

2. For what reasons do you use graphs?

3. What type(s) of graphs do you use most frequently? (Bar graphs? Scatterplots? etc.)

4. Are there types of graphs that you prefer?

5. How frequently do you create your own graphs?

6. What types of graphs do you create most frequently?

7. How do you create your own graphs? (What software do you use?)

8. Are there any software/tools you prefer to use?

9. What are the most important factors in the design of graphs that you create?
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Appendix G

Example Discussion Guide
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Appendix H

Results Tables

Table H1

Accuracy and mental effort data for bar graphs questions broken down by data-ink and

complexity.

Accuracy Mental Effort

M SD 95% CI M SD 95% CI

All questions 0.79 0.22 [.75, .82] 3.10 1.12 [2.92, 3.26]

Low complexity bar Qs 0.84 0.27 [.80, .88] 2.58 1.22 [2.39, 2.76]

High complexity bar Qs 0.74 0.31 [.69, .78] 3.61 1.28 [3.42, 3.80]

Low Data-ink Ratio 0.80 0.23 [.74, .86] 3.10 1.17 [2.76, 3.38]

Medium Data-ink Ratio 0.78 0.23 [.72, .84] 3.00 0.83 [2.79, 3.23]

High Data-ink Ratio 0.78 0.20 [.73, .84] 3.20 1.33 [2.84, 3.55]

Low DIR x low complexity 0.82 0.28 [.75, .90] 2.64 1.26 [2.30, 2.98]

Medium DIR x low complexity 0.82 0.29 [.74, .89] 2.54 1.00 [2.28, 2.81]

High DIR x low complexity 0.87 0.24 [.81, .93]* 2.54 1.40 [2.17, 2.92]

Low DIR x high complexity 0.77 0.31 [.69, .86] 3.49 1.33 [3.14, 3.84]

Medium DIR x high complexity 0.74 0.30 [.66, .82] 3.48 1.01 [3.22, 3.75]

High DIR x high complexity 0.70 0.32 [.61, .78]* 3.85 1.45 [3.47, 4.23]
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Table H2

Accuracy and mental effort data for boxplot questions broken down by data-ink and

complexity.

Accuracy Mental Effort

M SD 95% CI M SD 95% CI

All questions 0.55 0.32 [.50, .60] 3.29 1.19 [3.11, 3.47]

Low complexity boxplot Qs 0.53 0.40 [.47, .59] 3.01 1.32 [2.81, 3.21]

High complexity boxplot Qs 0.57 0.36 [.51, .62] 3.57 1.32 [3.38, 3.78]

Low Data-ink Ratio 0.57 0.31 [.49, .65] 3.40 1.12 [3.12, 3.72]

Medium Data-ink Ratio 0.58 0.31 [.50, .66] 3.10 1.06 [2.83, 3.37]

High Data-ink Ratio 0.50 0.35 [.41, .59] 3.36 1.37 [3.00, 3.73]

Low DIR x low complexity 0.55 0.41 [.44, .66] 3.17 1.30 [2.82, 3.51]

Medium DIR x low complexity 0.56 0.38 [.46, .66] 2.87 1.13 [2.58, 3.16]

High DIR x low complexity 0.47 0.41 [.37, .58] 3.00 1.52 [2.59, 3.41]

Low DIR x high complexity 0.58 0.33 [.49, .67] 3.68 1.17 [3.36, 3.99]

Medium DIR x high complexity 0.59 0.36 [.50, .69] 3.33 1.29 [3.00, 3.67]

High DIR x high complexity 0.53 0.40 [.42, .63] 3.73 1.47 [3.33, 4.12]
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Table H3

Accuracy and mental effort data for individual graph comprehension questions. Complexity

levels are noted parenthetically.

Accuracy Mental Effort

M SD 95% CI M SD 95% CI

Bar graph Q1 (high) 0.78 0.42 [.71, .84] 3.88 1.52 [3.65, 4.11]

Bar graph Q2 (low) 0.85 0.36 [.79, .90] 3.23 1.62 [2.99, 3.48]

Bar graph Q3 (high) 0.70 0.46 [.63, .77] 3.34 1.62 [3.09, 3.58]

Bar graph Q4 (low) 0.83 0.14 [.77, .88] 1.92 1.25 [1.73, 2.11]

Boxplot Q1 (low) 0.51 0.50 [.43, .58] 3.36 1.66 [3.11, 3.61]

Boxplot Q2 (low) 0.55 0.50 [.48, .63] 2.66 1.31 [2.46, 2.85]

Boxplot Q3 (high) 0.55 0.50 [.48, .63] 2.76 1.45 [2.54, 2.97]

Boxplot Q4 (high) 0.58 0.50 [.51, .65] 4.39 1.79 [4.12, 4.66]
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Table H4

Accuracy and mental effort data for individual bar graph comprehension questions, broken

down by data-ink level. Complexity levels are noted parenthetically.

Accuracy Mental Effort

M SD 95% CI M SD 95% CI

Bar graph Q1 (high)

Low DIR 0.82 0.38 [.72, .93] 3.68 1.49 [3.29, 4.08]

Medium DIR 0.78 0.42 [.68, .89] 3.83 1.37 [3.47, 4.19]

High DIR 0.72 0.45 [.61, .84] 4.12 1.68 [3.68, 4.57]

Bar graph Q2 (low)

Low DIR 0.82 0.38 [.72, .93] 3.30 1.59 [2.88, 3.72]

Medium DIR 0.80 0.40 [.70, .90] 3.31 1.51 [2.91, 3.71]

High DIR 0.91 0.28 [.84, .99] 3.09 1.76 [2.62, 3.55]

Bar graph Q3 (high)

Low DIR 0.72 0.45 [.60, .84] 3.30 1.66 [2.86, 3.74]

Medium DIR 0.70 0.46 [.58, .82] 3.14 1.43 [2.76, 3.51]

High DIR 0.67 0.47 [.55, .80] 3.58 1.76 [3.11, 4.05]

Bar graph Q4 (low)

Low DIR 0.82 0.38 [.72, .93] 1.98 1.32 [1.63, 2.34]

Medium DIR 0.83 0.38 [.74, .93] 1.78 0.97 [1.52, 2.03]

High DIR 0.83 0.38 [.73, .93] 2.00 1.41 [1.62, 2.38]
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Table H5

Accuracy and mental effort data for individual boxplot comprehension questions, broken

down by data-ink level. Complexity levels are noted parenthetically.

Accuracy Mental Effort

M SD 95% CI M SD 95% CI

Boxplot Q1 (low)

Low DIR 0.52 0.50 [.38, .65] 3.58 1.69 [3.13, 4.03]

Medium DIR 0.48 0.50 [.35, .61] 3.20 1.55 [2.80, 3.60]

High DIR 0.52 0.50 [.38, .65] 3.30 1.74 [2.84, 3.77]

Boxplot Q2 (low)

Low DIR 0.59 0.50 [.46, .72] 2.75 1.24 [2.42, 3.08]

Medium DIR 0.63 0.49 [.51, .76] 2.53 1.13 [2.24, 2.82]

High DIR 0.43 0.50 [.30, .56] 2.70 1.54 [2.28, 3.11]

Boxplot Q3 (high)

Low DIR 0.55 0.50 [.42, .69] 2.89 1.19 [2.58, 3.21]

Medium DIR 0.53 0.50 [.40, .66] 2.63 1.39 [2.27, 2.99]

High DIR 0.57 0.50 [.44, .70] 2.75 1.73 [2.29, 3.21]

Boxplot Q4 (high)

Low DIR 0.61 0.49 [.48, .74] 4.46 1.76 [3.99, 4.92]

Medium DIR 0.65 0.48 [.53, .77] 4.03 1.70 [3.59, 4.47]

High DIR 0.48 0.50 [.35, .62] 4.70 1.89 [4.19, 5.20]
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Appendix I

Graph Annotations
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Appendix J

IRB Form C
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