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Abstract

We describe four types of hyperspace graphs; namely, the simultaneous and nonsimultaneous symmetric

product graphs, as well as their respective layers. These hyperspace graphs are meant to be analogous

to the concepts of hyperspaces in topology, in that they are constructed by taking in another graph as

an input in the construction of the hyperspace graph. We establish subgraph relationship between these

graphs and establish some properties on the orders and sizes of the graphs, as well as on the degrees

of the individual vertices of these graphs. We establish that these graphs are connected (providing

that the input graph is connected), and provide a categorization of the graphs G for which the second

symmetric product graphs are planar. We investigate the chromatic numbers and hamiltonicity of

some of these graph products. We also provide a categorization for the distances between any pair of

vertices in the symmetric product graphs. We conclude by discussing a couple of different unanswered

questions that could be addressed in the future.
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Chapter 1

Introduction

In the field of Topology, there exists a particular type of topological space called a hyperspace. These

hyperspaces are constructed by taking in some other topological space as an input, and constructing a

new topological space on some family of subsets of the original space. A number of different techniques

can be used to construct open sets on this new space, by establishing some notion of how ”close” sets

are. One particular hyperspace is Fk(X) [1], which takes in a metric space X and has a space of

{U ⊆ X | U is finite, |U | ≤ k}

and a metric defined as

d(U, V ) = max

(
sup
u∈U

(
inf
v∈V

d(u, v)

)
, sup
v∈V

(
inf
u∈U

d(u, v)

))
,

with which a topology can be constructed. (A similar topology can be constructed even if X is not

a metric space, but this notion of distances is sufficient for this paper.) By observing graphs as the

union of several homeomorphic copies of the unit interval in R3, (i.e, edges, where the intersection

of two or more edges at their ends is a vertex), one can construct the topological hyperspace Fk(G),

where G is an arbitrary graph viewed as a topological space.

This concept of taking in spaces as inputs and constructing new spaces is analogous to the concept

of product graphs in graph theory. A product graph is constructed by taking in some number of

graphs as input, and constructing a new graph. These product graphs are typically constructed with

a vertex set that is some subset of the Cartesian product of the vertex sets of its component graphs,
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and adjacencies that are based on the adjacencies of the original graph’s vertices. For example, the

Cartesian product of two graphs G and H, denoted G�H, is defined as follows:

V (G�H) = {(u, v) | u ∈ V (G), v ∈ V (H)},

(u1, v1)(u2, v2) ∈ E(G�H) ⇐⇒ (u1 = u2, v1v2 ∈ E(H)) ∨ (u1u2 ∈ E(G), v1 = v2).

As the two concepts are very similar, different graph products can be constructed in an effort to mimic

different types of topological hyperspaces. [3] As we can construct the hyperspace Fk of a graph G

when observed as a topological space, it makes sense to try to construct a direct analogy to Fk in a

graph theoretic sense. Hence, we construct two different types of ”hyperspace” graph that are meant

to mirror the behavior of the topological hyperspace Fk in two different ways. For some arbitrary

graph G (observed in a graph theoretic sense), we construct the two hyperspace graphs Fk(G) and

Sk(G).

As these graphs are very similar in construction to product graphs, we naturally attempt to answer

certain questions about these hyperspace graphs that have been answered about other product graphs.

In Chapter 3, we discuss which hyperspace graphs are subgraphs of others. In Chapter 4, we establish

some theorems about the orders and sizes of these graphs, as well as the degrees of their vertices. In

Chapter 5, we briefly establish that these graphs are connected, provided that the original graph is

also connected. In Chapter 6, we give some bounds for the chromatic numbers of these graphs, based

on the chromatic number of the original graph. In Chapter 7, we give a categorization for the distances

between arbitrary vertices in the hyperspace graphs. In Chapter 8, we show whether or not certain

hyperspace graphs are Hamiltonian, or if they contain a Hamiltonian path. Finally, we conclude in

Chapter 9 by stating some potential research questions for the future. Of particular note are the

questions of uniqueness of these hyperspace graphs (that is, if two hyperspace graphs are isomorphic,

must their original graphs also be isomorphic), and how these hyperspace graphs might be used to

gain some understanding of the topological space Fk(G).
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Chapter 2

Definitions

Symmetric Product Graph

For all graph theory terminology, we use the vocabulary described in [2].

Let G be a graph. Let A,B ⊆ V (G) be non-empty. We define the kth symmetric product graph of G,

denoted by Fk(G), as follows:

1. A ∈ V (Fk(G)) ⇐⇒ A ⊆ V (G), 1 ≤ |A| ≤ k

2. Let A,B ⊆ V (G) be non-empty. AB ∈ E(Fk(G)) if ∃W ⊆ V (G) and ab ∈ E(G) such that the

following hold true:

(a) A = W ∪ {a}

(b) B = W ∪ {b}

(c) A 6= B.

(In this context, we call ab the transversal edge of the adjacency between the vertex sets A and

B. Note that this edge is not necessarily unique for a given A and B.)

Consider P4, with vertices labeled 1, 2, 3, 4 in order. We can show that the sets A = {1, 2} and

B = {1, 3} are adjacent in F2(P4). Let W = {1}, a = 2 and b = 3. Then A = W ∪ {a} and
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B = W ∪ {b}, and a 6= b. Thus, AB ∈ E(F2(G)). If |A| 6= |B|,, then we choose our W slightly

differently, in that W is now exactly equal to one of A or B. Suppose A = {3} and B = {3, 4}. Then

by letting W = {3}, a = 3 and b = 4, we have that A = W ∪{a}, B = W ∪{b}, and A 6= B. Therefore,

AB ∈ E(F2(G)).

Figure 2.1: F2(P4).

For notational convenience, if G is a graph of order n, we write Fn(G) as F(G).

Symmetric Product Layer Graph

Let Vk = {A ⊆ V (G) | |A| = k}. Then we define the kth symmetric product layer graph of G, denoted

by Lk(G), as the vertex-induced subgraph of F(G) on Vk.

Simultaneous Symmetric Product Graph

Let G be a connected graph. Then we define the kth simultaneous symmetric product graph of G,

denoted by Sk(G), as follows:

1. A ∈ V (F2(G) ⇐⇒ A ⊆ V (G), 1 ≤ |A| ≤ k

2. Let A,B ⊆ V (G) be non-empty. Then AB ∈ V (G) if the following hold true:

(a) ∀a ∈ A,∃b ∈ B such that ab ∈ E(G) or a = b.

(b) ∀b ∈ B, ∃a ∈ A such that ab ∈ E(G) or a = b.

(c) A 6= B.
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For notational convenience, if G is a graph of order n, we write Sn(G) as S(G).

Again, we shall consider P4, with vertices labeled 1, 2, 3, 4 in order. If A = {2}, and B = {1, 3}, then

we have that AB ∈ E(S2(G)), as A 6= B, 2 is adjacent to 1 and therefore ∀a ∈ A,∃b ∈ B such that

ab ∈ E(G), and 1 and 3 are both adjacent to 2 and thus ∀b ∈ B, ∃a ∈ A such that ab ∈ E(G).

Figure 2.2: S2(P4). Notice that F2(P4) is actually a subgraph of S2(P4) (a result that holds in general,

which we will prove later).

Simultaneous Symmetric Product Layer Graph

Let Vk = {A ⊆ V (G) | |A| = k}. Then we define the kth simultaneous symmetric product layer graph

of G, denoted by Mk(G), as the vertex-induced subgraph of S(G) on Vk.
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Chapter 3

Subgraphs

In this chapter, we establish the subgraph relationships of the graph products we defined. The theorems

in this chapter are going to be especially useful when we wish to establish the connectedness of these

graphs in Chapter 5, the planarity of these graphs in Chapter 6, the chromatic number of these graphs

in Chapter 7 and the distances between these graphs in Chapter 8.

Let G be a graph, and let H be a subgraph of G. Let i, k ∈ Z+ such that i ≤ k. In this chapter, we

will establish the following relationships between hyperspace graphs.

• Li(G) is a subgraph of Fk(G).

• Mi(G) is a subgraph of Sk(G).

• Fi(G) is a subgraph of Fk(G).

• Si(G) is a subgraph of Sk(G).

• Lk(G) is a subgraph of Mk(G).

• Fk(G) is a subgraph of Sk(G).

• Fk(H) is a subgraph of Fk(G) (along with similar results for S, L and M).

• If V (H) 6= V (G), then Fk(G) contains multiple disjoint subgraphs that are isomorphic to Fk(G)

(along with similar results for S, L and M).
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Theorem 3.1. Let G be a graph. Then Li(G) is a subgraph of Fk(G) for i ≤ k.

Proof: By definition, V (Li(G)) = {A ⊆ V (G) | |A| = i}. Also, V (Fk(G)) = {A ⊆ V (G) | |A| ≤ k}.

Since i ≤ k, it is obvious that V (Li(G)) ⊆ V (Fk(G)).

Since the requirement for two vertex sets A,B ⊂ V (G) to be adjacent in Li(G) is exactly the same

requirement for those vertex sets to be adjacent in Fk(G), it is obvious that AB ∈ E(Li(G))→ AB ∈

E(Fk(G)). Hence, we have that Li(G) is a subgraph of Fk(G).

Theorem 3.2. Let G be a graph. Then Mi(G) is a subgraph of Sk(G) for i ≤ k.

Proof: By definition, V (Mi(G)) = {A ⊆ V (G) | |A| = i}. Also, V (Sk(G)) = {A ⊆ V (G) | |A| ≤ k}.

Since i ≤ k, it is obvious that V (Mi(G)) ⊆ V (Sk(G)).

Since the requirement for two vertex sets A,B ⊂ V (G) to be adjacent in Mi(G) is exactly the same

requirement for those vertex sets to be adjacent in Sk(G), it is obvious that AB ∈ E(Mi(G))→ AB ∈

E(Sk(G)). Hence, we have that Mi(G) is a subgraph of Sk(G).

Theorem 3.3. Let G be a graph. Then Fi(G) is a subgraph of Fk(G) for i ≤ k.

Proof: By definition, V (Fi(G)) = {A ⊆ V (G) | |A| ≤ i}. Also, V (Fk(G)) = {A ⊆ V (G) | |A| ≤ k}.

Since i ≤ k, it is obvious that V (Fi(G)) ⊆ V (Fk(G)).

Since the requirement for two vertex sets A,B ⊂ V (G) to be adjacent in Fi(G) is exactly the same

requirement for those vertex sets to be adjacent in Fk(G), it is obvious that AB ∈ E(Fi(G))→ AB ∈

E(Fk(G)). Hence, we have that Fi(G) is a subgraph of Fk(G).

Theorem 3.4. Let G be a graph. Then Si(G) is a subgraph of Sk(G) for i ≤ k.

Proof: By definition, V (Si(G)) = {A ⊆ V (G) | |A| ≤ i}. Also, V (Sk(G)) = {A ⊆ V (G) | |A| ≤ k}.

Since i ≤ k, it is obvious that V (Fi(G)) ⊆ V (Fk(G)).

Since the requirement for two vertex sets A,B ⊂ V (G) to be adjacent in Si(G) is exactly the same

requirement for those vertex sets to be adjacent in Sk(G), it is obvious that AB ∈ E(Si(G))→ AB ∈

E(Sk(G)). Hence, we have that Si(G) is a subgraph of Sk(G).

Theorem 3.5. Let G be a graph. Then Lk(G) is a subgraph of Mk(G).
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Proof: Let A ∈ V (Lk(G)). Then A ⊆ V (G) such that |A| = k. Therefore, A ∈ V (Mk(G).

Let AB ∈ E(Lk(G)). Then ∃W ⊆ V (G) and an edge ab ∈ E(G) such that A = W ∪{a}, B = W ∪{b}

and A 6= B. Let v ∈ A. If v 6= a, then v ∈ W and thus v ∈ B. If v = a, then v is adjacent to b ∈ B.

Thus, ∀v ∈ A, either v ∈ B, or v = a and thus ab ∈ E(G). By similar argument, we can get that

∀v ∈ B, either v ∈ A, or v = b and thus ab ∈ E(G). We know by definition that A 6= B. Then by

definition, AB ∈ E(Mk(G).

Theorem 3.6. Let G be a graph. Then Fk(G) is a subgraph of Sk(G).

Proof: Let A ∈ V (Fk(G)). Then A ⊆ V (G) such that |A| = k. Therefore, A ∈ V (Sk(G).

Let AB ∈ E(Fk(G)). Then ∃W ⊆ V (G) and an edge ab ∈ E(G) such that A = W ∪{a}, B = W ∪{b}

and A 6= B. Let v ∈ A. If v 6= a, then v ∈ W and thus v ∈ B. If v = a, then v is adjacent to b ∈ B.

Thus, ∀v ∈ A, either v ∈ B, or v = a and thus ab ∈ E(G). By similar argument, we can get that

∀v ∈ B, either v ∈ A, or v = b and thus ab ∈ E(G). We know by definition that A 6= B. Then by

definition, AB ∈ E(Sk(G).

Theorem 3.7. Let G be a graph. Let H be a subgraph of G. Then Fk(H) is a subgraph of Fk(G).

Proof: Suppose A ∈ V (Fk(H)). Then A ⊂ V (H) such that |A| ≤ k, and thus, A ⊂ V (G) such that

|A| ≤ k. Therefore, A ∈ V (F(G)).

Suppose A,B ∈ V (Fk(H)) such that AB ∈ E(Fk(H)). Then there exists a set W ⊂ V (H) and an

edge ab ∈ E(H) such that A = W ∪ {a}, B = W ∪ {b} and A 6= B. But since H is a subgraph of

G, this W ⊂ V (G) and ab ∈ E(G) as well, and thus, AB ∈ E(Fk(G)). Thus, Fk(H) is a subgraph of

Fk(G).

Using similar arguments, we can prove the following three theorems:

Theorem 3.8. Let G be a graph. Let H be a subgraph of G. Then Sk(H) is a subgraph of Sk(G).

Theorem 3.9. Let G be a graph. Let H be a subgraph of G. Then Lk(H) is a subgraph of Lk(G).

Theorem 3.10. Let G be a graph. Let H be a subgraph of G. Then Mk(H) is a subgraph of Mk(G).

Theorem 3.11. Let G be an arbitrary graph. Let A be some arbitrary subset of V (G) such that the

vertex-induced subgraph of G on A (which we will call H) is connected. Let B be some subset of

8



V (G)\A. The collection of vertex sets

FB = {U ∪B | U ⊆ A,U 6= ∅}

induces a subgraph of F(G). Call this graph HB. Then HB contains a subgraph that is graph isomorphic

to F(H), and |V (F(H))| = |V (HB)|

Proof: Define the following function:

f : V (F(H))→ FB

such that f(U) = U ∪ B. If U ∈ V (F(H)), then U ⊂ A and U 6= ∅, and therefore, U ∪ B ∈ FB ,

which is our range. Let V ∈ FB . Then V = U ∪ B for some U ⊂ A,U 6= ∅. Thus, U ∈ V (F(H)),

and thus f(U) = V . Hence, our function is onto. Let U1, U2 ∈ F(H) such that f(U1) = f(U2).

Then U1 ∪ B = U2 ∪ B. Therefore, U1 ∪ B\B = U2 ∪ B\B. Since we know that U1, U2 ∈ F(H), we

know that U1, U2 ⊆ A. Since B = V (G)\A, we know A and B are disjoint, and thus, U1 and U2 are

pairwise disjoint with B. Therefore, we have that U1 ∪B\B = U1 and U2 ∪B\B = U2. Then we have

that U1 = U2. Thus, our function is one-one. Since f is one-one and onto, it is a bijection. Hence,

|V (HB)| = |V (F(H))|.

Let U1, U2 ∈ F(H) such that U1 and U2 are adjacent in F(H). Then there exists a set W ⊆ V (F(H))

and an edge u1u2 ∈ E(H) such that U1 = W ∪ {u1} and W ∪ {u2}, with U1 6= U2. Let V1 = f(U1) =

U1 ∪ B, and V2 = f(U2) = U2 ∪ B. Since U1 6= U2, we know that V1 6= V2 due to the fact that f is a

bijection. Let W ? = W ∪B. Note that V1, V2 ⊆ V (G) are nonempty, and W ? ⊆ V (G). Additionally,

u1u2 ∈ E(H), therefore, u1u2 ∈ E(G). Notice that W ?∪u1 = W∪B∪u1 = (W∪u1)∪B = U1∪B = V1,

and W ?∪u2 = W ∪B∪u2 = (W ∪u2)∪B = U2∪B = V2. Then, by definition, V1 and V2 are adjacent

in F(G) since V1, V2 ∈ V (HB). Therefore, HB contains a subgraph that is graph isomorphic to F(H),

and |V (F(H))| = |V (HB)|

Using similar arguments, we can show the following:

Theorem 3.12. Let G be an arbitrary graph. Let A be some arbitrary subset of V (G) such that the

vertex-induced subgraph of G on A (which we will call H) is connected. Let B be some subset of

V (G)\A. The collection of vertex sets

FB = {U ∪B | U ⊆ A,U 6= ∅}

9



induces a subgraph of S(G). Call this graph HB. Then HB contains a subgraph that is graph isomorphic

to S(H), and |V (S(H))| = |V (HB)|
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Chapter 4

Order, Size and Vertex Degree

Establishing some properties about the orders and sizes of these hyperspace graphs, as well as the

degrees of their vertices, could be useful in proving the uniqueness of these hyperspace graphs. That

is, if Fk(G) is isomorphic to Fk(H), need G be isomorphic to H? Note that a similar question can be

asked of Sk, as well as Lk for certain values of k, but for Mk, there are several graphs for which this

is not the case for any k 6= 1 (for example, M2(C4) =M2(K4) = K6).

In this chapter, we give values for the following:

• The orders of Lk, Mk, Fk and Sk,

• The sizes of Lk and Fk.

Additionally, we show that if F(G) contains a vertex U of degree 2 such that |V (G)| ≥ 3, then U = {u},

where u is a singleton of G.

Theorem 4.1. Suppose G is a graph of order n. Then:

• The orders of Lk(G) and Mk(G) are both

(
n

k

)
.

• The orders of Fk(G) and Sk(G) are both

k∑
i=1

(
n

i

)
.

Proof: This follows directly from the definitions of the vertex sets of our hyperspace graphs.
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Theorem 4.2. Suppose G is a graph of order n and size m. Then the size of Lk(G) is(
n− 2

k − 1

)
m.

Proof: Suppose AB ∈ E(Lk(G)). Then there exist W and ab as in the definition of our adjacency in

Lk(G). If a ∈W , then either b ∈W and then A = B, or b 6∈W and |A| 6= |B|, and therefore, at least

one of A,B is not in V (Lk(G)). Therefore, a 6∈W . By similar process, we get b 6∈W . If |W | < k − 1,

then |A| = |W ∪{a}| < k, and thus A 6∈ V (Lk(G)). If |W | > k− 1, then |A| = |W ∪{a}| > k and thus

A 6∈ V (Lk(G)) Therefore, |W | = k − 1.

Suppose there are two vertex sets W1,W2 and two edges a1b1 and a2b2 such that A = W1 ∪ {a1} =

W2 ∪ {a2} and B = W1 ∪ {b1} = W2 ∪ {b2}. If a1 6= a2, then a2 ∈ W1. But then a2 ∈ B, which

in turn means that a2 ∈ W2 ∪ {b2}. If a2 ∈ W2, then |A| = k − 1, which contradicts our choice of

A ∈ V (Lk(G)). Therefore, a2 = b2. But then a2b2 6∈ E(G). This is a contradiction. Therefore,

a1 = a2. Relabel this vertex as a. By similar logic, we get that b1 = b2. Relabel this vertex as b.

Suppose W1 6= W2. Since |W1| = |W2| = k − 1, ∃w ∈W1\W2. But then if A = W1 ∪ {a} = W2 ∪ {a},

then this means both w ∈ A (as w ∈ W1) and w 6∈ A (as w 6∈ W2, and w = a would contradict our

choice of ab). Therefore, W1 = W2.

Therefore, each unique edge AB in Lk(G) corresponds to a unique choice of k− 1 vertices to go in W ,

and a traversal edge ab that is not incident on any vertex in W . Since each of our k− 1 vertices must

be in both A and B, our choice of edge to traverse must not be incident on any of these k− 1 vertices.

Hence, we take our choice of edge ab first, and then choose our k − 1 vertices from the n− 2 vertices

that ab is not incident on. The number of ways to make such a selection is given by the formula above.

Theorem 4.3. Suppose G is a graph of order n and of size m. Then the size of F(G) is

m2n−2 + n2n−1 −
n∑

v∈V (G)

2n−d(v)−1,

where d(v) is the degree of v in G.

Proof: Without loss of generality, assum |A| ≤ |B|. We will break this up into two separate problems:

counting the number of edges AB where |A| = |B|, and counting the number of edges AB where

|A| + 1 = |B|. Note that these are the only two possibilities for A and B based on the definition for

adjacencies in Fn(G).
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Case 1: We wish to count the number of edges AB such that |A| = |B|. If |A| = |B| = k, then

AB ∈ E(Lk(G)). Then we can count the number of edges of the form given by merely summing the

number of edges in each Lk(G) over 1 ≤ k ≤ n. Then the number of edges of this form is

n∑
k=1

m

(
n− 2

k − 1

)
= m2n−2

Case 2: We wish to count the number of edges AB such that |A| + 1 = |B|. Then there must exist

some set W and some edge ab ∈ E(G) such that W ∪ {a} = A and W ∪ {b} = B. Since |B| > |A|, we

must have that a ∈ W , and b 6∈ A. Hence, B = A ∪ {b}. In order to count the number of edges, we

shall sum over our choice of b. Hence, the number of edges of this type is∑
b∈V (G)

N(b),

where N(b) is the number of edges AB such that B = A ∪ {b}.

To count N(b), we must count the number of choices that we have for A. Notice that each valid choice

for A corresponds to a unique adjacency, as if A1 6= A2, then the two edges A1B and A2B cannot be

the same. For a set A to be a valid choice, there must exist some a ∈ A such that ab ∈ E(G). In

order to better count these number of choices, we further subdivide our cases based on the number of

vertices in A. Hence,

N(b) =

n−1∑
k=1

NA(b, k),

where NA(b, k) is the number of valid of choices for A of size k given a vertex b.

NA(b, k) is just equal to the total number ways to choose k vertices to be in A minus the number of

ways to choose k vertices to be in A such that none of them are neighbors of A. Therefore,

NA(b, k) =

(
n− 1

k

)
−
(
n− d(v)− 1

k

)
.

Thus,

N(b) =

n−1∑
k=1

(
n− 1

k

)
−
(
n− d(v)− 1

k

)
= 2n−1 − 2n−d(v)−1,

and therefore, the total number of edges of the type AB where |A|+ 1 = B is just∑
b∈V (G)

2n−1 − 2n−d(v)−1 = n2n−1 −
∑

b∈V (G)

2n−d(b)−1.

Hence, the total number of edges in F(G) is just

m2n−2 + n2n−1 −
n∑

v∈V (G)

2n−d(v)−1.
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Theorem 4.4. Let G be an arbitrary graph of order n. Then Mk(G) is a complete graph of order
(
n
k

)
if and only if δ(G) ≥ n− k.

Proof: Suppose δ(G) ≥ n − k. Let A,B be arbitrary vertex sets of size k. Let v ∈ A. Then since

d(v) ≥ n−k, there are at most k−1 vertices u ∈ G such that v is both not adjacent to u and that u 6= v.

Thus, by the pidgeonhole principle, there must be at least one vertex u in B such that v is adjacent to

u or u = v. This holds for any arbitrary vertex in A, and by symmetry, hold for any arbitrary vertex

in B with respect to A. Then by the definition of the adjacencies in Mk(G), AB ∈ E(Mk(G)).

Conversely, suppose that there exists a vertex v ∈ V ((G)) such that d(A) ≤ n− k− 1. Then, there are

at least k vertices in u ∈ G such that v is both not adjacent to u and v 6= u. Let A be an arbitrary

vertex set of G containing v, and let B be an arbitrary vertex set containing k vertices of the type u as

described above. Then since v is not adjacent to any vertex in B, AB 6∈ E(Mk(G)), and thusMk(G)

is not complete.

Example: Consider the graph G = Kn−e, where e = u1u2. Then S(G) can be constructed as follows:

The vertex set {u1} is adjacent to every vertex that does not contain u2. The vertex set {u2} is

adjacent to every vertex that does not contain u1. Every vertex in V (S(G))\{{u1}, {u2}} is adjacent

to every other vertex in V (S(G)). Therefore, S(G) can be identified, as it is K2n−3, along with two

additionally vertices, which are connected to all but 2n−1 − 1 of the original vertices, of which there

are 2n−2 that they have in common.

Theorem 4.5. Let G be a connected graph such that |V (G)| ≥ 3. Then A is a vertex of degree 2 in

F(G) if and only if A is singleton containing a vertex of degree 1 in G.

Proof: Suppose A is a singleton {a}, where d(a) = 1. Let B be adjacent to A. If W = {a}, then our

edge is ab, where b is the only vertex adjacent to a; otherwise, A would have two vertices. If W = ∅,

then our edge must also be ab, where b is the only vertex adjacent to a; otherwise, A could not be one

of our two sets. Hence, A is only adjacent to two sets: {b}, and {a, b}. Hence, our forward proof holds.

We shall now show that the backwards proof also holds: if A is either a singleton, but of a vertex of

degree 2 or more, or if A is not a singleton, then A has at least 3 neighbors.

Suppose A is a singleton {a} where d(a) ≥ 1. Let b1, b2 be adjacent to a. Then the following sets are

adjacent to A:
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• {b1}

• {b2}

• {a, b1}

• {a, b2}.

Thus, A is not a vertex set of degree 2.

Now suppose A contains two unique vertices a1 and a2. We need to show that there are three vertex

sets adjacent to A. This argument needs to be broken into two cases.

Case 1: a1 is not adjacent to a2. There must exist some vertex b1 adjacent to a1 and some vertex b2

adjacent to a2. We must subdivide into further cases:

Subcase 1: b1 ∈ A. Then following sets are adjacent to A:

• A\{a1} (W = A\{a1}, choice of edge a1b1)

• A\{b1} (W = A\{b1}, choice of edge a1b1)

• A ∪ {b2}\{a2} (W = A\{a2, b2}, choice of edge a2b2)

Note that even if b1 = b2, none of these sets are the same. Therefore, A is not a vertex set of degree 2.

Subcase 2: b1 6∈ A. Then the following sets are adjacent to A:

• A ∪ {b1} (W = A, choice of edge a1b1)

• A ∪ {b1}\{a1} (W = A\{a1}, choice of edge a1b1)

• A ∪ {b2}\{a2} (W = A\{a2, b2}, choice of edge a2b2)

Again, note that even if b1 = b2, none of these sets are the same. Therefore, A is not a vertex set of

degree 2.

Case 2: a1 is adjacent to a2. Since |V (G)| ≥ 3 and G is connected, there must exist some other vertex

b adjacent to either a1 or a2. Without loss of generality, assume it is adjacent to a1. Then we divide

into two subcases:
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Subcase 1: b ∈ A. Then following sets are adjacent to A:

• A\{a1} (W = A\{a1}, choice of edge a1b)

• A\{b} (W = A\{b}, choice of edge a1b)

• A\{a2} (W = A\{a2}, choice of edge a1a2)

Note that even if b1 = b2, none of these sets are the same. Therefore, A is not a vertex set of degree 2.

Subcase 2: b 6∈ A. Then the following sets are adjacent to A:

• A ∪ {b} (W = A, choice of edge a1b1)

• A ∪ {b}\{a1} (W = A\{a1}, choice of edge a1b)

• A ∪ \{a2} (W = A\{a2}, choice of edge a1a2)

Hence, the backward proof is true as well. Therefore, the theorem holds.

Theorem 4.6. For graphs such that |V (G)| ≥ 3, a vertex of degree 2 in S(G) corresponds to a singleton

containing a vertex of degree 1 in G.

Proof: By similar logic to the last proof, we have that A = {a} for some degree one vertex a is only

adjacent to the sets {b} and {a, b}, where b is adjacent to a. Similarly, since F(G) is a subgraph of

S(G), we have that any vertex A not of the form {a} for some vertex of degree 1 is going to be adjacent

to the same vertices as outlined in the backward portion of the last proof. Hence, the theorem holds.
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Chapter 5

Connectedness

For each of our proofs in this section, we are going to assume that G is a connected graph. If this is

the case, then we have that each of our hyperspace graphs are connected.

Theorem 5.1. Lk(G) is a connected graph.

First, we prove that for any vertex setW such that |W | = n−1, there exists a path between A = W∪{a}

and B = W ∪ {b} in Lk(G) for any a, b 6∈W .

Since G is connected, we know there exists a path between a and b. Label the vertices of this path

u1, u2, ..., ul, with a = u1 and b = ul. Let i0 = l. Let I = {i|ui ∈ A}. We know this set is non-empty,

as a = u1. Let i1 be the largest number of I, i2 be the second largest, and so on until ir (where

ir = 1). Note r ≤ l. For all 0 ≤ j ≤ r, define the set Uj as (A ∪ {b})\{uij} (see the figure below for

an explanation). Note that in particular, U0 = A, as and A∪ {b}\{a} = W ∪ {b} = B, as uir = a and

A ∪ {b}\{a} = W ∪ {b} = B. We then construct the following path in Lk(G):

Uj , Uj\{uij+1
}∪{uij+1+1}, Uj\{uij+1

}∪{uij+1+2}, ..., Uj\{uij+1
}∪{uij−1}, Uj\{uij+1

}∪{uij} = Uj+1.

This path connects the vertices Uj and Uj+1. Then by adjoining each of the paths between each Uj

and Uj+1, we get a walk between the vertices U0 = A and Ur = B. Hence, there is a path between the

vertices A and B in Lk(G).
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Figure 5.1: An example of the connectedness between two sets A and B, where A and B differ by one

vertex. We wish to show that set A (pictured above by the square vertices) and set B (pictured below)

are connected.

Figure 5.2: The set B. Notice how we have drawn the graph in a way such that a path between vertex

1 and vertex 5 (the two vertices by which A and B differ) are directly in the center of the graph.

Figure 5.3: By our notation in the proof above, i0 = 5, i1 = 4, i2 = 2 and i3 = 1, with r = 3. We start

by moving vi1 = v4 over to the position of vi0 = 5.
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Figure 5.4: We then start moving vi2 = v2 towards vi1 = v4. The two vertices are not adjacent in our

choice of path this time, so this will take two steps.

Figure 5.5: Continuing the movement of the last step.

Figure 5.6: Finally, we move vi3 = v1 to vi2 = v2. We now exactly match the set B as pictured above.

Hence, A and B are connected.
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Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} such that A 6= B. Relabel these vertices so that

any common vertices A and B share occur at the beginning of the set and with the same index; i.e.,

relabel the vertices of A and B such that A = {b1, b2, ..., br, ar+1..., ak} and B = {b1, b2, ..., bk}.

For i ≥ r, Vi = {b1, b2, ..., bi, ai+1, ..., ak}. Note in particular that Vr = A and Vk = B. Let

Wi = {b1, b2, ..., bi−1, ai+1, ..., ak}. Then Vi−1 = Wi ∪ {ai} and Vi = W{i} ∪ {bi}. Since we know

by construction that ai 6= bi for i ≥ r+ 1, we know that our previous statement holds for Vi−1 and Vi

when i ≥ r + 1. Hence, for i ≥ r, there exists a path between Vi and Vi+1. Then by combining all of

these paths for r ≤ i ≤ n, we obtain a walk between A and B. Since this is true for arbitrary vertex

sets, we have that Lk(G) is connected.

Theorem 5.2. Mk(G) is connected.

As Lk(G) is a subgraph of Mk(G) with the same number of vertices, it is obvious that Mk(G) is

connected.

Theorem 5.3. Fk(G) is connected. (V (G) ≥ n).

Since each Li(G) is connected, we merely need to prove that each Li(G) has at least one connection

to Li+1(G) for all i ≤ k − 1, and we have by construction that Fk(G) is connected. Take an arbitrary

vertex set A of G of size i, with i ≤ n − 1. Then A is a proper subset of V (G). Let u be a vertex

in V (G)\A and v be a vertex in A. Then since G is connected, there exists a path v1, v2, ..., vr such

that v1 = u and vr = v. Since u 6∈ A yet v ∈ A, there must exists a vertex vj such that vj 6∈ A yet

vj+1 ∈ A. Then by selecting our set W = A and our edge as vj+1vj , we have that B = A + {vj} is

adjacent to A in Fk(G). Since A ∈ V (Li(G)) and B ∈ V (Li+1(G)), we have a connection between

Li(G) and Li+1(G) in Fk(G). Hence, we have that Fn(G) is connected.

Theorem 5.4. Sk(G) is connected.

Since Fn(G) is a subgraph of Sk(G) with the same number of vertices, it is obvious that Sk(G) is

connected.
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Chapter 6

Planarity

In previous works, there have been efforts to categorize which graphs G (observed as topological spaces)

are such that Fk(G) is embeddable in Rn for particular values of n. This is very similar in concept to

establishing which graphs G (observed in a graph theoretic sense) are such that Fk(G) (or Sk(G)) are

planar. Hence, in this chapter, we provide a categorization for which graphs G are such that F2(G)

and S2(G) are planar. Note that as F2(G) is a subgraph of Fk(G) for k ≥ 2, the set of graphs for

which Fk(G) is planar will be a subset of the set of graphs for which F2(G) is planar for k ≥ 2 (and

the same holds for Sk(G) as well).

Planarity of F2(G)

Theorem 6.1. F2(Pn) is planar for all n ∈ N.

To draw F2(Pn) in a planar way, we shall specify locations to place each of the vertices, and then

argue that if each edge is drawn as the line segment connecting the two vertices it is incident on, that

none of the edges will intersect.

Label the vertices of Pn with the numbers 1 through n, such that ∀2 ≤ i ≤ i− 1, i is adjacent to i− 1

and i+ 1. Then draw the vertices of F2(Pn) on the xy-coordinate plane as follows:

• If A = {i}, then draw A at the point (i, 0).

21



• If A = {i, j} with i < j, then draw A at the point (i, j − i).

Suppose that AB ∈ E(F2(G)). Then ∃W ⊆ V (Pn) and an edge ab ∈ E(Pn) such that A = W ∪ {a}

and B = W ∪ {b}. Since A 6= B, at least one of a and b is not in W . Then if |W | ≥ 2, we have that at

least one of A and B is of order at least 3. This contradicts the fact that A,B ∈ V (F2(G)). Therefore,

|W | ≤ 1. We shall now divide the edges AB into three categories, based on our possible choices of W

and ab.

• W = ∅. In this case, both A and B are singletons, with a = i and b = i+ 1. Then the edge AB

connects the points (i, 0) and (i+ 1, 0).

• W = {i}, a = j, b = j + 1 with j ≥ i. If j = i, then A = {i} and B = {i, i + 1}, and the edge

AB connects the points (i, 0) and (i, 1). If j > i, then A = {i, j} and B = {i, j + 1}, and the

edge AB connects the points (i, j − i) and (i, j − i+ 1).

• W = {i}, a = j, b = j + 1 with j < i (equivalently, j + 1 ≤ i). If j + 1 = i, then A = {i}

and B = {i− 1, j}, and the edge AB connects the points (i, 0) and (i− 1, 1). If j + 1 < i, then

A = {j+1, i} and B = {j, i}, and the edge AB connects the points (j+1, i− j−1) and (j, i− j).

Notice that the first two types of edges form a subset of the unit grid, whereas the third type of edges

connect points of the form (i, j) to (i+ 1, j − 1).
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Figure 6.1: A plane drawing of F2(P4). Note that F2(Pn) can be drawn in a plane way through similar

construction.

As shown above, when drawn this way, F2(P4) is plane. This holds in general for Pn when drawn in

this manner. Hence, F2(Pn) is planar.

Theorem 6.2. F2(Cn) is planar if and only if n ≤ 3.

Proof: We will start by showing that F2(C3) is planar, then showing that F2(C4) is non-planar by

constructing a K3,3 subdivision of that graph. From there, we will show a general method to construct

a K3,3 subdivision of F2(Cn) for n ≥ 4.

Figure 6.2 gives a plane drawing of F2(C3), hence it is planar.
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Figure 6.2: A plane drawing of F2(C3).

Since we have a plane drawing of F2(C4), it must be planar.

To prove: F2(C4) is non-planar. Label the vertices of C4 with the numbers 1 through 4 such that i

is adjacent to i + 1 for i < 4, and 1 and 4 are adjacent. Figure 6.3 shows that F2(C4) has a K3,3

subdivision.
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Figure 6.3: A drawing of F2(C4). The K3,3 subdivision has bold edges.

Since F2(C4) is contains a K3,3 subdivision, it is non-planar.

To prove: F2(Cn) is non-planar for n > 4. Label the vertices of C4 with the numbers 1 through n such

that i is adjacent to i+ 1 for i < n, and 1 and n are adjacent. We then construct a K3,3 subdivision

of this graph much in the same way that we constructed it for C4. One partition contains the vertices

{1, 3}, {2, 4} and {2}, and the other partition contains the vertices {1, 2}, {2, 3} and {3, 4}. The paths

that we have between the vertices are almost exactly the same. The only difference in the construction

of our paths for Cn in general is that {1, 3} is now no longer adjacent to {3, 4} and {2, 4} is no longer

adjacent to {1, 2}. Rather, we take the path between {1, 3} and {3, 4} to be

{1, 3}, {3, n}, {3, n− 1}, ..., {3, 5}, {3, 4}

and the path between {2, 4} and {1, 2} to be

{2, 4}, {2, 5}, ..., {2, n}, {1, 2}.
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Thus, F2(Cn) has a K3,3 subdivision for n > 4, and thus, F2(Cn) is non-planar.

Theorem 6.3. F2(Sn) is planar if and only if n ≤ 3.

Proof: By Theorem 3.7, since Sn is a subgraph of Sn′ for n ≤ n′, it is sufficent to prove the following

statements:

1. F2(S3) is planar.

2. F2(S4) is nonplanar.

If the first statement is true, then we have that F2(Sn) is a subgraph of F2(S3) for n ≤ 3, and

therefore F2(Sn) must also be planar for n ≤ 3. If the second statement is true, we have that F2(S4)

is a subgraph of F2(Sn) for n ≥ 4, and therefore F2(Sn) is also nonplanar for n ≥ 4.

To show that F2(S3) is planar, note that by Theorem 3.6, F2(S3) is a subgraph of S2(S3). In figure

6.11, we have a plane drawing of S2(S3). Therefore, S2(S3) is planar, and thus, F2(S3) is planar.

To prove: S2(S4) is non-planar. Below is a drawing of S2(S4) that illustrates a K5 subdivision.
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Figure 6.4: A drawing of F2(S4). The K5 subdivision has bold edges.

Note that the bolded edges above form a K5 subdivision, with endpoints {1}, {1, 2}, {1, 3}, {1, 4} and

{1, 5}. Hence, F2(S4) is non-planar.

Theorem 6.4. Let G be the graph in Figure 6.5. Then F2(G) is planar.

Figure 6.5: The graph G.
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Below is a plane drawing of F2(G).

Figure 6.6: A drawing of F2(G).

Since we have a plane drawing of F2(G), F2(G) is planar.

Theorem 6.5. Let G be the graph in Figure 6.7. Then F2(G) is non-planar.

Figure 6.7: The graph G.

Below is a drawing of F2(G). To show that it is non-planar, we show that it has a K3,3 subdivision.
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Figure 6.8: A drawing of F2(G). The K3,3 subdivision has bold edges.

Since F2(G) has a K3,3 subdivision, F2(G) is non-planar.

Theorem 6.6. Let G be a connected graph. Then F2(G) is planar if and only if G is one of the

following:

• Pn for some n ∈ N.

• C3.

• S3.

• The graph G pictured in figure 6.5.

We already have that if G is one of the above graphs, then F2(G) is planar. Thus, we need to prove

that if G is a graph such that F2(G) is planar, then G is necessarily one of the above graphs. Let G be

a graph such that F2(G) is planar. If there is a vertex of degree 4 or more in G, then S4 is a subgraph

of G, which by Theorem 3.7 means that F2(S4) is a subgraph of F2(G). Then by Theorem 6.3, since

29



F2(S4) is non-planar, F2(G) is also non-planar. Hence, the maximum degree that a vertex in G can

have is 3.

Suppose the maximum degree of a vertex in G is 3. Label this vertex 1, and its neighbors 2, 3 and 4.

Suppose that |V (G)| ≥ 5. Then since G is connected and the degree of 1 is 3, there must exist some

vertex (label it 5) that is adjacent to at least one of 2, 3 and 4. Without loss of generality, suppose it

is adjacent to 4. Then the graph H pictured in Figure 6.7 is a subgraph of G, which by Theorem 3.7

means that F2(H) is a subgraph of F2(G). Then by Theorem 6.5, since F2(H) is non-planar, F2(G)

is also non-planar. This is a contradiction. Thus, if the maximum degree of a vertex in G is 3, then G

must have exactly 4 vertices. In this case, we have 4 possibilities:

• G = S3. This is one of the cases we stated in the theorem.

• G is the graph pictured in Figure 6.5 This is another one of the cases we stated in the theorem.

• G is K4 less one edge. Label the vertices of this graph with the numbers 1 through 4 such that

2 is not adjacent to 4. Then the path 1, 2, 3, 4 is a cycle in G, and thus C4 is a subgraph of

G. Then by Theorem 3.7, F2(C4) is a subgraph of F2(G), and then by Theorem 6.2, F2(C4) is

non-planar, and thus F2(G) is also non-planar.

• G is K4. We use similar logic to the previous case to show that F2(G) is non-planar.

Suppose now that the maximum degree of a vertex in G is at most 2. Then G is either Pn for some

n ∈ N (which is one of the cases stated in this theorem) or G is Cn for some n ∈ N. If G is Cn for

n ≥ 4, then by Theorem 6.1, F2(G) is non-planar. Then if G is Cn for some n ∈ N, n must be 3, and

thus G = C3 (which is the last case outlined in the theorem). Therefore, our theorem holds.

Planarity of S2(G)

Theorem 6.7. S2(Pn) is planar if and only if n ≤ 4.

By Theorem 3.8, since Pn is a subgraph of Pn′ for n ≤ n′, it is sufficent to prove the following

statements:
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1. S2(P4) is planar.

2. S2(P5) is nonplanar.

If the first statement is true, then we have that S2(Pn) is a subgraph of S2(P4) for n ≤ 4, and therefore

S2(Pn) must also be planar for n ≤ 4. If the second statement is true, we have that S2(P5) is a

subgraph of S2(Pn) for n ≥ 5, and therefore S2(Pn) is also nonplanar for n ≥ 5.

To prove: S2(P4) is planar. To prove this, we must merely draw S2(P4) in a plane way.

Figure 6.9: A plane drawing of S2(P4)

.

Since we have a plane drawing of S2(P4), it must be planar.

To prove: S2(P5) is nonplanar.

Below is a drawing of S2(P5). To show that it is non-planar, we show that it has a K5 subdivision.
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Figure 6.10: A drawing of S2(P5). The K5 subdivision has bold edges.

Consider H to be the subgraph of S2(P5) induced by the vertex set {{3}, {2, 3}, {3, 4}, {2, 4}, {3, 5}}.

This is isomorphic to K5 minus two edges incident on the same vertex (corresponding to {3, 5}).

Consider the paths: {3, 5}, {2, 5}, {1, 4}, {2, 3} and {3, 5}, {4}, {3}. These paths are disjoint from each
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other, as well as H (less the endpoints of the paths). Additionally, these paths join {3, 5} with {2, 3}

and {3} respectively. Thus, F2(P5) has a K5 subdivision. Therefore, by Kuratowski’s theorem, F2(P5)

is nonplanar.

Theorem 6.8. S2(Cn) is nonplanar for n ≥ 3.

Proof: S2(C3) = K6. Thus, F2(C3) is nonplanar.

For C4, label the vertices of C4 with the numbers 1 through 4 such that 1 is not adjacent to 3 and 2 is not

adjacent to 4. The subgraph of F2(C4) induced by the vertex set {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}}

is isomorphic to K5. Thus, F2(C4) is nonplanar.

For n ≥ 5, as P5 is a subgraph of Cn, by Theorem 3.8, we have that S2(P5) is a subgraph of S2(Cn).

Since S2(P5) is nonplanar, S2(Cn) is nonplanar for n ≥ 5.

Theorem 6.9. S2(Sn) is planar if and only if n ≤ 3.

By Theorem 3.8, since Sn is a subgraph of Sn′ for n ≤ n′, it is sufficent to prove the following

statements:

1. S2(S3) is planar.

2. S2(S4) is nonplanar.

If the first statement is true, then we have that S2(Sn) is a subgraph of S2(S3) for n ≤ 3, and therefore

S2(Sn) must also be planar for n ≤ 3. If the second statement is true, we have that S2(S4) is a

subgraph of S2(Sn) for n ≥ 4, and therefore S2(Sn) is also nonplanar for n ≥ 4.

To prove: S2(S3) is planar. To prove this, we must merely draw S2(S3) in a plane way.

33



Figure 6.11: A plane drawing of S2(S3)

.

Since we have a plane drawing of S2(S3), it must be planar.

To prove: S2(S4) is non-planar. Note that by Theorem 3.6, F2(S4) is a subgraph of S2(S4). By

Theorem 6.3, we have that F2(S4) is non-planar. Therefore, S2(S4) is non-planar.

Theorem 6.10. Let G be the graph in Figure 6.12. Then S2(G) is non-planar.

34



Figure 6.12: The graph G.

To prove: S2(G) is non-planar. Note that by Theorem 3.6, F2(G) is a subgraph of S2(S4). By Theorem

6.5, we have that F2(G) is non-planar. Therefore, S2(G) is non-planar.

Theorem 6.11. Let G be a connected graph. Then S2(G) is planar if and only if one of the following

is true:

• G = Pn for n ≤ 4.

• G = S3.

Proof: We already have by previous theorems that if G is one of the above graphs, then S2(G) is

planar. Hence, we need to prove that if S2(G) is planar, then G is one of the above graphs. Let G be

an arbitrary connected graph such that S2(G) is planar. If G is not a tree, then it must have a cycle.

However, if this were the case, then there would be some n such that Cn is a subgraph of G, and thus

S2(Cn) would be a subgraph of S2(G). Since S2(Cn) is non-planar for n ≥ 3, this cannot be the case,

as S2(G) is planar. Then G must be a tree. If G has a vertex of degree 4 or more, then S4 would be a

subgraph of G, and thus S2(S4) would be a subgraph of S2(G). As S2(S4) is non-planar, this cannot

be the case. Hence, G’s maximum degree is at most 3. If G’s maximum degree is exactly 3, then G

has a vertex v of degree 3. If G has more than four vertices, however, then one of the vertices that

v is adjacent to must also be adjacent to another vertex. This would mean that the graph given in

Figure 6.12 would be a subgraph of G, and then we arrive at a contradiction, as S2 of that graph is

non-planar. Thus, if G’s maximum degree is 3, it must be S3. If G’s maximum degree is 2 or less,

then since G is a tree, it must be a path. Since G is planar, we have by Theorem 6.7 that it must be

Pnwith n ≤ 4. Therefore, our theorem holds.
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Chapter 7

Colorings

In this chapter, we establish a couple theorems re the chromatic numbers of our hyperspace graphs, as

for a given graph product, it is a common question to ask if the chromatic number of a product graph

can be obtained from the chromatic numbers of their component graphs. These theorems (as well as

the concepts behind them) are later used in Chapter 9, when attempting to establish whether or not

certain hyperspace graph contain Hamiltonian paths.

Theorem 7.1. Li(G) is at worst k-colorable for all 1 ≤ i ≤ n, where k is the chromatic number of G.

Proof: By definition, an edge AB exists in Li(G) if and only if there exists some set W and some edge

ab such that A = W ∪ {a} and B = W ∪ {b}, with A 6= B. Since |A| = |B| = i, this means that

|W | = i−1 and a, b 6∈W . Color each vertex of G with a number between 0 and k−1. Let the coloring

of an arbitrary vertex v be cv. Once this is done, color each vertex of Li(G) such that its number is

equal to the sum of the numbers of the vertices that are in the set corresponding to that vertex, taken

mod k. Suppose AB ∈ Li(G). Then there exist a set W and an edge ab as described above. Then we

have that the color of A is given by (∑
v∈W

cv

)
+ ca,

and that the color of B is given by (∑
v∈W

cv

)
+ cb.

If these two numbers were the same taken mod k, then if we were to set these two equations equal to
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each other mod k and subtract the large sums over the vertices in W from both sides, we would get

that ca = cb mod k. Since we know that a and b are adjacent, they do not have the same number mod

k. This is a contradiction; therefore, B’s number must be different than A’s number, mod k. Hence,

we have a k-coloring of Li(G).

Remark: G being k-chromatic does not imply that Li(G) is k-chromatic. In particular, notice that

L2(K4) = K2,2,2 is 3-chromatic, whereas K4 is 4-chromatic.

Theorem 7.2. F(G)’s chromatic number is k + 1, where k is the chromatic number of G.

Proof: By definition, an edge AB exists in F(G) if and only if there exists some set W and some edge

ab such that A = W ∪ {a} and B = W ∪ {b}, with A 6= B. Color each vertex of G with a number

between 1 and k. Let the coloring of an arbitrary vertex v be cv. Once this is done, color each vertex

of F (G) such that its number is equal to the sum of the numbers of the vertices that are in the set

corresponding to that vertex, taken mod k + 1. Suppose AB ∈ F (G). Then there exist a set W and

an edge ab as described above. Since A 6= B, we have that at least one of a, b 6∈W . We shall split this

into three cases.

1. a, b 6∈W . Then we have that the color of A is given by(∑
v∈W

cv

)
+ ca,

and that the color of B is given by (∑
v∈W

cv

)
+ cb.

If these two numbers were the same taken mod k+ 1, then if we were to set these two equations

equal to each other mod k + 1 and subtract the large sums over the vertices in W from both

sides, we would get that ca = cb mod k+1. Since we know that a and b are adjacent, they do not

have the same number mod k. This is a contradiction; therefore, B’s number must be different

than A’s number, mod k + 1.

2. a 6∈W, b ∈W . Then we have that the color of A is given by(∑
v∈W

cv

)
+ ca,

and that the color of B is given by (∑
v∈W

cv

)
.
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If these two numbers were the same taken mod k, then if we were to set these two equations

equal to each other mod k and subtract the large sums over the vertices in W from both sides,

we would get that ca = 0 mod k + 1. Since we know that ca is between 1 and k mod k + 1, it

cannot be equal to 0 mod k+ 1. This is a contradiction; therefore, B’s number must be different

than A’s number, mod k + 1.

3. a ∈W, b 6∈W . By similar argument to the last case, we can show that B’s label must be different

than A’s label, mod k + 1.

Then for every edge AB ∈ F(G), their colors must be different. Hence, we have a k + 1-coloring of

F(G).

Additionally, as F(G) contains an embedded copy of G, namely Ln−1(G), along with an additional

vertex that is adjacent to every vertex of this embedded copy. Hence, F(G) is at best k+ 1 colorable.

Therefore, F (G)’s chromatic number must be k + 1.
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Chapter 8

Distances

In this chapter, we ultimately establish a categorization for the distances between two arbitrary vertex

sets U and V in Fk(G) and Sk(G). While these theorems may not be the best for getting the distance

between two vertex sets from a computational standpoint, they may be useful in proofs for future

research questions.

Theorem 8.1. Define the distance between a vertex u and a set of vertices V as follows:

d(u, V ) = min
v∈V

d(u, v).

Take two sets A,B ∈ S(G). Then the distance between the vertex sets A and B in S(G) is equal to

max

{
max
a∈A

d(a,B),max
b∈B

d(b, A)

}
.

Proof: Let the value specified in the above theorem be called dS . By definition, we know that either

there exists some vertex a ∈ A such that d(a,B) = dS or that there exists some vertex b ∈ B such

that d(b, A) = dS . Without loss of generality, assume that the former case is true.

Suppose that the true distance between A and B in S(G) is less than dS . Call this value k.

Then there exists a sequence of sets of vertices U1, U2, ..., Uk+1 such that U1 = A, Uk+1 = B, and the

sets Ui and Ui+1 are adjacent in S(G) for all i ≤ k.

Let u1 = a. By definition, we know that there must exist some vertex u2 ∈ U2 such that either u1 = u2

or u1u2 ∈ E(G).
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Through iterative construction, we can build a sequence of vertices ui such that ui ∈ Ui, and either

ui = ui+1 or uiui+1 ∈ E(G) for all i ≤ k.

This sequence of vertices {ui}k+1
i=1 readily induces a path of at most length k between a and some vertex

uk+1 ∈ B, once duplicate vertices and loops are eliminated. Then we have that d(a,B) ≤ k.

But we already stated that d(a,B) = dS > k. This is a contradiction. Hence, d(A,B) ≥ dS .

To show that d(A,B) ≤ dS , we construct a path of length dS between A and B.

Label the vertices in A as {a1, a2, ..., ar}.

Since every vertex in d(ai, B) ≤ dS , we know that for every vertex a ∈ A, there must exist some vertex

b ∈ B such that d(a, b) ≤ dS . Then for every vertex ai ∈ A, there must exist a path ui,1, ui,2, ..., ui,di+1

such that ui,1 = ai, ui,di+1 ∈ B, and di ≤ dS .

Define the following sets

Uj =
⋃

1≤i≤r

ui,j

for all j ≤ dS + 1, where ui,j is defined as we did before for j ≤ di + 1, and ui,j = ui,di+1 for all

j > di + 1. Notice that every vertex in each Uj has at least one vertex in Uj−1 and Uj+1 that it is

either the same as or adjacent to; namely, ui,j is either the same as or adjacent to both ui,j−1 and

ui,j+1. Lastly, notice that by our definitions, U1 = A and UdS
⊂ B.

In a similar method, define the sequence of sets Vj in a similar method, but with V1 = B and VdS
⊂ A.

Now let Wj = Uj ∪ VdS+1−(j−1). Then every vertex in each Wj will have some vertex in Wj−1 and

Wj+1 that it is adjacent to (namely, if the vertex was originally in Uj , its corresponding vertices in Uj+1

and Uj−1, and if the vertex was originally in VdS+1−(j−1), its corresponding vertices). Then we have a

sequence of vertex sets such that W1 = A, WdS+1 = B, and as long as Wj 6= Wj+1, WjWj+1 ∈ E(G).

However, if some Wj = Wj+1, we would be able to construct a path of distance less than dS between

A and B by simply omitting the repeated vertices and removing any loops in the sequence. Since we

already determined this to be impossible, each Wj must be different than Wj+1.

Therefore, d(A,B) ≤ dS , and thus, d(A,B) = dS .

Theorem 8.2. Let G be an arbitrary tree of order n. Then diam(F(G)) = n− 1.
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Proof: We can partition F(G) into sets of vertices, where each of our partitions contains all of the

vertex sets of a fixed size. Since we know that the partition containing all vertex sets of size k is

adjacent to at most two other partitions, namely the one containing all vertex sets of size k + 1 and

the one containing all vertex sets of size k − 1, we know that d(V (G), {v}) is at least k − 1 for every

vertex v ∈ V (G). Therefore, diam(F(G)) ≥ n− 1.

We now need to prove that d(U, V ) ≤ n − 1 for any two vertex sets U, V ⊂ V (G). We do this by

structural induction on the number of vertices of our original graph n.

Base: n = 1. In this case, our tree is just a single vertex, and F(G) is also merely a single vertex. A

single vertex has diameter 0 = 1− 1 = n− 1, so the theorem holds for the base case.

Inductive step: Suppose that for all trees G of size k, F(G) has diameter k − 1 or less.

Let G be an arbitrary tree of size k+1. Let U, V ⊂ V (G). We need to prove that d(U, V ) ≤ (k+1)−1 =

k.

Since G is a tree of order 2 or more, we know that G has a leaf. Let v be some arbitrary leaf of G.

Case 1: v 6∈ U , v 6∈ V . In this case, U and V are both vertex sets of the induced graph H that

we get by removing the leaf v from G. Since this graph is obtained by removing a leaf from a tree

of size k + 1, we know that H is a tree of size k. Then by inductive hypothesis, we know that

dF(H)(U, V ) ≤ k− 1. But since H is a subgraph of G, we know that F(H) is a subgraph of F(G), and

thus, dF(G)(U, V ) ≤ k − 1 ≤ k, and we have the theorem hold.

Case 2: v ∈ U , v 6∈ V . Let u be the vertex that v is adjacent to in G. Then U is adjacent to the

set W = U − {v} ∪ {u} in F(G). Since W and V both do not contain v, we know by Case 1 that

d(W,V ) ≤ k − 1. Therefore, d(U, V ) ≤ (k − 1) + 1 = k, and the theorem holds.

Case 3: v 6∈ U , v ∈ V . See case 2.

Case 4: v ∈ U , v ∈ V . This case requires its own subcases.

Subcase 1: U = {v} or V = {v}. Since we know that H is a tree, it has at least two leaves. Select a

new leaf of the tree G. Since this new leaf is not in at least one of U and V , we can use Case 1, 2 or 3

to show that d(U, V ) ≤ k.

Subcase 2: U 6= {v} and V 6= {v}. Consider the sets U? = U\{v} and V ? = V \{v}. Note that both of
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these sets are nonempty. Let H be the induced subgraph of G obtained by removing v. Note that H

is a tree. Then we have that dF(H)(U
?, V ?) ≤ k− 1. Let d = dF(H)(U

?, V ?) ≤ k− 1. Therefore, there

exist a sequence of subsets of V (H), denoted {W ?
i }di=0, such that W ?

0 = U?, W ?
d = V ?, and each W ?

i

is adjacent to W ?
i+1. Therefore, W ?

i \W ?
i+1 contains at most vertex, and vice-versa. If vi ∈ W ?

i \W ?
i+1

then there exists a v ∈W ?
i+1 such that v1v ∈ E(G), and vice-versa. Lastly, the two sets are not equal.

Now let Wi be defined as W ?
i ∪ {v}. Wi\Wi+1 still contains at most one vertex, since both contain v

as a vertex and thus is not in Wi\Wi+1. We similarly have that Wi+1\Wi contains at most one vertex.

If vi ∈ W star
i \W ∗i+1 then there exists a v ∈ W ∗9+1 such that v1v ∈ E(G), and vice-versa. Lastly, we

still have that Wi 6= Wi+1, as neither of their respective W ? sets contained j as a vertex, and therefore

Wi and Wi+1 must differ on the same vertex that their respective W ? sets differed on. Therefore, we

have that Wi is adjacent to Wi+1 in G. Additionally, note that U = W0 and V = Wd. Then we have

that {Wi}di=0 is a walk from U to V of length d ≤ k − 1 ≤ k in F(G). Therefore, dF(G)(U, V ) is at

most d ≤ k, and the theorem holds.

Then by inductive hypothesis, we have that d(U, V ) ≤ n − 1 for all trees of size n. Therefore,

diam(F(G)) ≤ n− 1, and thus, diam(F(G)) = n− 1.

Theorem 8.3. Let G be an arbitrary connected graph of size n. Then diam(F(G)) = n− 1.

Proof: By similar argument used in the last proof, we can get that diam(F(G)) ≥ n− 1.

Let H be a spanning tree of G. Then H is a subgraph of G, and thus F(H) is a subgraph of

F(G). Then by properties of the diameter of graphs, diam(F(G)) ≤ diam(F(H)) = n − 1. Thus,

diam(F(G)) ≤ n− 1, and thus, diam(F(G)) = n− 1.

Theorem 8.4. Let G be an arbitrary graph of size n. Let U, V ⊂ V (G). If there exists a partition of

the vertices of G such that the induced subgraph of G on each of those partitions is connected, each set

of the partition contains at least one vertex in U and at least one vertex in V or no vertex in either U

or V , and the partition has k sets, then d(U, V ) ≤ n− k.

Proof: Suppose such a partition exists. Call the sets of this partition P1, P2, ..., Pk. Let Hi be the

induced subgraph of G on Pi. Let ni be the order of Hi. Then
∑k

i=1 ni = n. For all 0 ≤ i ≤ k, let

Ui =

V ∩ i⋃
j=1

Pj

 ∪
U ∩ k⋃

j=i+1

Pj

 .
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Note that U0 = U , Uk = V , and that for all 0 ≤ i ≤ k − 1, Ui\Pi+1 = Ui+1\Pi+1; in other words,

the only vertices in which Ui and Ui+1 can possibly differ by are those vertices that are in Pi+1.

Additionally, if Pi+1 contains no vertices in either U or V , then Ui = Ui+1.

To prove: d(Ui, Ui+1) ≤ ni−1. Trivially, if Pi+1 contains no vertices in either U or V , then Ui = Ui+1,

and thus d(Ui, Ui+1) = 0 = 1 − 1 ≤ ni − 1. Suppose Pi+1 ∩ U 6= ∅ and Pi+1 ∩ V 6= ∅. Let

W = Ui\Pi+1 = Ui+1\Pi+1. Consider the family of vertex sets

F = {W ∪A‖A ⊂ Pi+1, A 6= ∅}.

Then by previous theorem, we have that the induced subgraph of F(G) on F is isomorphic to F(Hi+1),

and both Ui and Ui+1 are in F . Then by the prior theorem, we have that

dF (Ui, Ui+1) ≤ |V (Hi+1)| − 1 = ni − 1.

Then since the induced subgraph of F(G) on F is a subgraph of F(G), we have that

dF(G)(Ui, Ui+1) ≤ dF (Ui, Ui+1) ≤ ni+1 − 1.

Then d(U, V ) ≤
∑k−1

i=0 d(Ui, Ui+1) ≤
∑k−1

i=0 ni+1 − 1 = n− k. Therefore, the theorem holds.

Theorem 8.5. Let G be an arbitrary graph of size n. Let U, V ⊂ V (G). Let P be the largest partition

of the vertices of G such that the induced subgraph of G on each of those partitions is connected, each

set of the partition contains at least one vertex in U and at least one vertex in V OR no vertex in

either U or V , and the partition has k sets, then d(U, V ) = n− k.

Proof: We know that there exists a trivial partition of the vertices of G that satisfies the criterion

above; namely, P ? = {V (G)}. Since the partition can have at most n non-empty sets, there must be

a largest element of the family of all partitions that satisfy the above criterion above. Let P be such

a partition, and let k be its size. By the previous proof, we have that d(U, V ) ≤ n− k.

Suppose that d(U, V ) ≤ n − k − 1. Then there exists a collection of vertices {Ui}n−k−1i=0 such that

U0 = U , Un−k−1 = V and Ui is adjacent to Ui+1 for 0 ≤ i ≤ n− k − 2. Let ei be the transversal edge

between Ui and Ui+1 (review chapter 1 for the definition of a transversal edge). Consider the graph

H, where V (H) = V (G) and E(H) = {ei | 0 ≤ i ≤ n− k− 2}. Then H has at least k+ 1 components,

as it has n vertices and only n− k − 1 edges. We shall show that each of the components of H has at

least one vertex contained in both U and V , or no vertex in either U or V .
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Suppose U contains a vertex in some arbitrary component of H. We will show that if Ui contains

some vertex in this component, then Ui+1 also contains some vertex in that component, and by an

inductive argument, as U0 = U contains some vertex in that component, we have that Un−k−1 = V

contains some vertex in that component.

Suppose Ui contains some vertex u in a component of H. Then Ui = W ∪ {u} and Ui+1 = W ∪ {v}

for some W ⊂ V (G) and v ∈ V (G). But then uv is a transversal edge, and thus uv ∈ E(H). Then v

is in the same component of u, and thus Ui+1 contains some vertex in the same component.

By similar argument (working backwards), we end up getting that if V contains some vertex in some

arbitrary component of H, then U also contains some vertex in that same component of H. Then

each component of H either has some vertex in both U or V , or no vertex in either U or V . Let

P ′ = {A | Ais the set of vertices of some component of H}. Then P ′ has at least k + 1 sets, is a

partition of V (G), and satisfies the criterion given in the statement of the theorem of this proof. But

this contradicts our choice of P . Therefore, d(U, V ) > n− k − 1, and therefore, d(U, V ) = n− k.
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Chapter 9

Hamiltonicity

Whenever a new category a graph is created, it is a common graph theoretic question to ask whether

or not the graph is Hamiltonian. However, since the categorization of Hamiltonian graphs in general

is an open problem, we have chosen to focus on a specific category of hyperspace graphs for this area:

specifically, we are looking at Fk(Pn). To start, we first examine F2(Pn).

Theorem 9.1. ∀n ∈ N, F2(Pn) is Hamiltonian.

The Hamiltonian path of F2(Pn) is readily observed by looking at Pn. First, start with the vertex set

{1}. Then, iterate through the vertex sets {1, 2}, {1, 3}, ..., {1, n}. Next, move to the vertex set {2, n},

and then go through the vertex sets {2, n−1}, ..., {2, 4}. Next, move to the vertex set {3, 4}, and start

over, incrementing the second vertex to n, increasing the first vertex by one, decrementing the second

vertex to the vertex that is a distance of two to the right of the first vertex, and then incrementing the

first vertex by one once more. Once all of these steps have been completed, the path should currently

end at {n− 1, n}, and should cover all of the vertices in F2(Pn) excluding the singletons and every set

of the form {i, i+ 1} for i even (with the possible exception of {n− 1, n}, if n is odd). Continue this

path by moving to the vertex set {n}. Here is an image of the path we have taken thus far:
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Figure 9.1: A Hamiltonian cycle of F2(P4).

We complete this cycle by closely following the path {n}, {n− 1}, ..., {1}; however, for each set of the

form {i, i+ 1} that has not been visited, we will instead take the edges {i+ 1}, {i, i+ 1}, {i} instead

of the edge {i+ 1}, {i}. See Figure 9.2.
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Figure 9.2: The first part of a Hamiltonian cycle of F2(P5).

Similarly, for n even, the Hamiltonian cycle is shown in Figure 9.3.

Figure 9.3: A Hamiltonian cycle of F2(P5).

Hence, we have that F2(Pn) is Hamiltonian ∀n.
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The question then arises: is F3(Pn) Hamiltonian? To start, we checked to see if L3(Pn) has a Hamilto-

nian path, to see if we could, in some form, ”attach” this Hamiltonian path to the Hamiltonian cycle.

The reason why we chose to attack the problem this way was to possibly implement some iterative

method to show that Fk(Pn) is Hamiltonian in general.

To start, we found that L3(P4) has a Hamiltonian path (rather trivially, as we have that L3(P4) '

L1(P4) ' P4). Next, we attempted to see if L3(P5) has a Hamiltonian path. Note that this graph

is actually bipartite, as the original graph P5 is also bipartite. Then we immediately have that this

graph does not contain a Hamiltonian path; in one of its partitions, there are 6 vertices (specifically,

the vertex sets whose constituent vertices sum to an even number) and in its other partition, there

are 4 vertices (the vertex sets whose constituent vertices sum to an odd number). Since this graph is

bipartite, if it did have a Hamiltonian path, it would have to alternate between vertices between its

first partition and vertices in its second partition. However, since this number of vertices differs by

more than one, this is impossible. We can generalize this statement to the following:

Theorem 9.2. Lk(Pn) does NOT contain a Hamiltonian path for any n such that 2 ≤ k ≤ n− 2 and

n ≥ 5 is odd.

(Credit to Brendan Shah for this generating functions proof)

Let j = n−1
2 ≥ 2. Since Pn is bipartite, by theorem 7.1, we know that Lk(G) is bipartite. Label

the vertices of Pn with the numbers 0 and 1 such that the two vertices of degree 1 are both labeled

with a 1, and no two adjacent vertices are labeled with the same number. Then Lk(G) is bipartite,

with the vertices in the first partition consisting of those vertex sets whose constituent vertices sum

to 0 mod 2, and the vertices in the second partition consisting of those vertex sets whose constituent

vertices sum to 1 mod 2. We wish to show that the number of vertices in these sets differ by more

than 1. Then our problem can be stated as follows:

Given the string 1010...101, of length n select some odd number of characters k from the string. What

is the difference between the number of ways we can choose an even number of 1s and the number of

ways we choose an odd number of 1s?

The number of elements in the first partition is given by∑
i odd

(
j + 1

i

)(
j

k − i

)
,
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whereas the number of elements in the second partition is exactly the same, but with i even. Hence,

the difference in size between these two partitions is given by

k∑
i=0

(−1)i
(
j + 1

i

)(
j

k − i

)
.

We can create a generating function for this number on k by writing it as

∑
k≥0

(
k∑

i=0

(−1)i
(
j + 1

i

)(
j

k − i

))
xk,

which is the product of
∑

i≥0
(
j+1
i

)
(−x)i and

∑
i≥0
(
j
i

)
xi. These are respectively equal to (1 − x)j+1

and (1+x)j . Therefore, their product is given by (1−x)(1−x2)j , whose kth coefficient can be obtained

by the binomial theorem. This coefficient is (−1)
k+1
2

( j
k−1
2

)
for k odd and (−1)

k
2

( j
k
2

)
for k even. Since

j ≥ 2 and k−1
2 and k

2 are both bounded between 1 and j by our restrictions, we know that both of

these coefficients are greater than j, which is in turn greater than 2. Hence, the number of elements

in these partition differs by at least 2, and thus, Lk(G) is not bipartite.
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Chapter 10

Conclusion

While we have answered a number of graph theoretic questions about these hyperspace graphs, there

are still many more directions that this research could be taken in the future. There are still more ways

to examine these graphs in a graph theoretic sense, and the connections between these graphs and the

topological space Fk(G) (if any meaningful connection can be made) are still open. In particular, we

have the following questions:

• If Fk(G) is isomorphic to Fk(H), is it necessary that G is isomorphic to H?

– What aboutSk(G)?

– How about Lk(G) (for k ≤ n− 1)?

– It is not necessarily the case for Mk(G). For example, M2(C4) is graph isomorphic to

M2(K4).

• How do the cliques of the Fk(G) relate to the dimension of the hyperspace Fk(G)? (similarly for

Sk(G), etc.)

• If there is a simplicial map from G to H, is there a simplicial map from Fk(G) to Fk(H)?

(similarly for Sk(G), etc.)
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