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ABSTRACT 

 

Golisano Institute for Sustainability 

 

Rochester Institute of Technology 

 

 
Degree:   Doctorate of Philosophy 

 

Name of Candidate: Schuyler W. Matteson 

 

Title:   Progress in Energy Storage Technologies: Models and Methods for Policy Analysis 

 

 

 

Climate change and other sustainability challenges have led to the development of new 

technologies that increase energy efficiency and reduce the utilization of finite resources.  To 

promote the adoption of technologies with social benefits, governments often enact policies 

that provide financial incentives at the point of purchase. In their current form, these subsidies 

have the potential to increase the diffusion of emerging technologies; however, accounting for 

technological progress can improve program success while decreasing net public investment. 

This research develops novel methods using experience curves for the development of 

more efficient subsidy policies.  By providing case studies in the field of automotive energy 

storage technologies, this dissertation also applies the methods to show the impacts of 

incorporating technological progress into energy policies.  Specific findings include learning-

dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience 

curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost 

competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle 

subsidy programs. Notably, the results show that considering learning rates in policy 
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development can save billions of dollars in public funds, while also lending insight into the 

decision of whether or not to subsidize a given technology.   

 
Abstract Approval: 

Committee Chair:       _________________________________ 

Associate Provost and Director:  _____________________________ 
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I. Introduction 

1.1 Background and Rationale 

Population growth, aging infrastructure, increased electricity demand and the growth of 

intermittent renewable energy sources have placed new demands on the electricity grid. A 

variety of options exist to decrease these demands, including energy efficiency measures, 

transmission and distribution upgrades, and the adoption of energy storage technologies. Of 

these options, energy storage is the least utilized due to the relative immaturity of the market, 

though investment in the development of new energy storage has been increasing rapidly. At 

the same time, consumers and governments are looking for alternative fuel options for personal 

transportation.  Energy storage in the form of vehicle batteries has been a key component in the 

growth of the plug-in hybrid electric and all-electric vehicle markets.  As a result, the energy 

storage sector is consistently introducing new technologies for both grid and automotive 

applications. A recent report predicts that the global market for energy storage for grid use 

alone could rise from $200 Million in 2012 to over $10 Billion in 2017 (Warshay 2013). 

However, even with new systems, such as lithium based batteries, flywheels, and compressed 

air technology, providing a range of potentially valuable services, mature technologies that 

have achieved lower cost through experience and scale have only recently begun to lose market 

share to emerging technologies (KEMA 2012). 

To bridge the gap in upfront capital cost between emerging technologies and the 

incumbents, billions of dollars of public funds are spent every year to incentivize the adoption 

of technologies with perceived public benefits. These subsidy programs are often developed 

without clear description of methods and information, and may result in a less than optimal 

allocation of funds. This research intends to use the experience curve as a predictor of 
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technological progress to draw insight into the future costs of emerging energy storage 

technologies to help create lower cost and higher impact subsidy policies. 

The experience curve and its variants are often used for energy policy analysis 

(International Energy Agency 2000; Junginger et al. 2005; Neij et al. 2003), and allow users to 

quantify and forecast cost reductions in a technology as cumulative production increases. 

Tsuchiya (1989) is among the first to utilize experience curves to quantify the total investment 

needed to bring a technology, in his case photovoltaics, to price parity. Herron and Williams 

(2013) analyze how differences in willingness to pay among different consumers influences the 

subsidy required to bridge the gap between current and target costs. Experience curves have 

also been used to forecast technological growth in many energy technologies (Harmon 2000; 

Weiss et al. 2010). 

The empirical experience curve gives a statistically robust fit over a range of costs and 

production for variety of energy technologies (Neij et al. 2003), including photovoltaic 

(Harmon 2000; van der Zwaan and Rabl 2004), wind (Junginger et al. 2005), and coal (Yeh and 

Rubin 2007). Figure 1 shows the well-known derivation of the photovoltaic experience curve, 

which uses historical cost and production data to determine the percentage decrease in module 

cost for each doubling of cumulative production. Further applications and review of experience 

curves is presented in Anzanello and Fogliatto (2011). There is also a stream of literature which 

seeks to develop multi-factor experience curves that distinguish factors such as learning by 

doing, learning by searching, economies of scales and material costs (Kobos et al. 2006). 



 3 

 

Figure I. The experience curve of photovoltaic modules (Harmon 2000) 

 

There is a gap in the literature, with a limited amount of technological progress studies, 

including experience curves and learning rate information for energy storage technologies.  

There is also limited application of this information to policy analysis. Some studies assess the 

progress of batteries through the lens of technical performance characteristics. For example, 

Gerssen-Gondelach and Faaij (2012) project likely scenarios for lithium-ion battery 

performance traits over various timelines to determine whether the batteries may be able to 

reach certain energy, emissions, and cost targets. Mayer et al. (2012) address technological 

progress modeling by forecasting the cost of proton exchange membrane fuel cells and lithium-

ion batteries to 2020 using an augmented two-factor experience curve. However, the methods 

result in a scenario analysis of the experience curve model, in order to determine input criteria 

for meeting various 2020 cost targets.  
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This project fills the gap by providing case studies for constructing the experience 

curves of three separate energy storage technologies including lithium-ion batteries, lead-acid 

batteries, and plug-in hybrid electric vehicles. The experience curves are developed utilizing a 

traditional single factor experience curve, which is augmented based on the technology’s 

material inputs and costs and is utilized for policy and market analysis. 

 There are also three new methods developed, one in each section, to supplement the 

literature on policy analysis for energy technologies. Each method utilizes information derived 

from the experience curves to show how the incorporation of technological progress models 

improves policy development and assessment. The first method is for developing cost-effective 

learning-dependent tapering subsidies and is outlined to show the benefits of using 

technological learning analysis in subsidy program development.  Second, new residual 

experience curve methodologies are used to assess how learning rates in incumbent 

technologies affect policies and markets for emerging technologies.  Finally, market curves 

constructed using various resolution levels are combined with experience curves to determine 

how diffusion patterns are affected in fractional markets. 

 

1.2 Research Objectives 

This research has been completed to provide additional resources to policymakers and 

new information and methodologies to researchers.  New case study information is provided 

regarding the historical development of energy storage technologies, and is in the form of 

newly developed experience curves and learning rates for three separate energy storage 

technologies, including lithium-ion batteries, lead-acid batteries, and plug-in hybrid electric 
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vehicles.  This contribution expands the knowledge base of sustainable energy research by 

providing additional resources to those studying technological progress.   

The second area of contribution is methodological: in each of the three chapters, a new 

method is developed to aid in the assessment of technological learning and provide guidance to 

those interested in the adoption of emerging technology.  These new methods result in policy 

implications and recommendations in the specific cases presented, and also allow for a wide 

range of applications to other energy technologies and markets. 

The specific methods developed include: 

 The creation of learning-dependent tapering subsidies based on changes in the 

distance between the experience curve and a cost target, using lithium-ion 

batteries as a case study,  

 The development of a residual experience curve – experience curve minus 

material costs – and learning rates in lead-acid batteries and the application of 

the results in a gap-to-parity analysis (the distance of a technology to price 

parity) of lithium batteries, and  

 The construction of a person-level market curve for a cascading diffusion 

analysis of plug-in hybrid electric vehicles.   

With better information, researchers and policymakers can create more efficient policies 

to enhance the adoption and diffusion of key sustainability technologies.  Higher economic 

efficiency in the promotion of these technologies, such as electrified transportation and energy 

storage systems, benefits society by providing improved technical performance and decreased 

environmental impacts, which satisfies the three pillars of sustainability. 
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1.3 Dissertation Outline 

The case study and method contributions described above are explained in Chapters II, III, 

and IV respectively. An outline of the dissertation and a summary of each chapter are provided 

below: 

Chapter II: Governments subsidize diffusion of a variety of energy technologies believed to 

provide social benefits. These subsidies are often based on the idea that stimulating learning 

and industry development will lower costs to make the technology competitive, after which 

point the subsidy can be removed.  Two questions related to the design of subsidy programs are 

investigated. One question is how net public investment changes with the time interval over 

which subsidies are reduced, i.e. semi-annually, annually, etc. Governments prefer to reduce 

subsidies more often to lower public costs, producers prefer longer time periods for a more 

stable investment environment. The second question addressed is uncertainty in learning rates. 

Learning rates describe the fractional cost reduction per doubling of cumulative production; 

slower learning implies more government investment is needed to reach a cost target. These 

questions are analyzed via a case study of subsidizing electric vehicles (EV) in the United 

States. Given the importance of lithium battery cost in the price of an EV, historical data is 

gathered to build an experience curve that describes cost reductions for lithium-ion vehicle 

batteries as a function of cumulative production. Our model assumes vehicle batteries 

experience the same learning as consumer electronics, yielding a learning rate of 22%. Using 

learning rates ranging from 9.5-22%, the public subsidy needed to reach a battery cost target of 

$300/kWh battery in ten years is estimated. For a 9.5% learning rate, semi-annual, annual and 

biannual tapering costs a total 24, 27, and 34 billion USD respectively. For 22% learning, semi-

annual, annual and biannual tapering costs a total 2.1, 2.3, and 2.6 billion USD respectively. 
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While the tapering does affect program cost, uncertainty in learning rate is the largest source of 

variability in program cost, increasing the importance of realistic ranges for learning rates when 

planning electric vehicle and other technology subsidies. 

 

Chapter III: The low price of lead-acid, the most popular battery, is often used in setting cost 

targets for emerging energy storage technologies. Future cost reductions in lead acid batteries 

could increase the investment and time scales needed for emerging storage technologies to 

reach cost-parity. To characterize cost reductions, this chapter develops the first documented 

experience curves for lead-acid batteries. Results of regression to a standard experience curve 

using 1985-2012 data yield a poor fit, with R
2
 values of 0.17 for small batteries and 0.05 for 

larger systems. To address this problem, battery costs are separated into material costs (of 

which lead is the largest component) and residual costs, and find experience curves for residual 

costs. Running time averages are also used to address market volatility in material costs. These 

two modifications increase R
2
 to 0.78 and 0.74 for small and large systems respectively. The 

learning rate for residual costs is found to be around 20%, a discovery with policy implications.  

Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy 

storage start-ups and public policy programs. Generalizing this result, learning in incumbent 

technologies must be understood to properly assess the potential of emerging technologies. 

 

Chapter IV: The social benefit of energy technology subsidies is typically underestimated when 

considering only the costs and benefits per item directly subsidized. This approach misses the 

motivation underlying many subsidies: increased production drives technological progress and 

reduces cost. When the cost of a subsidy is calculated including the "free" diffusion that occurs 
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after the technology becomes economically competitive, the social benefits of the subsidy are 

markedly greater. Subsidies for Plug-in Hybrid Electric Vehicles (PHEV) in the U.S are 

examined, showing that accounting for technological progress and eventual market activation 

reduces the subsidy cost per vehicle by over 90%, suggesting that the current $7,500 per 

vehicle PHEV subsidy is in the public interest. The modeling framework shows, more 

generally, that assessing technological progress is critical to understand the benefits of a 

subsidy policy. 

 

Chapter V: This chapter summarizes the key results of this dissertation regarding experience 

curves for energy storage technologies and the potential to improve future policies.   
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II. Learning-Dependent Subsidies for Lithium-Ion Electric Vehicle 

Batteries 

2.1 Introduction 

Electric vehicles (EV) are thought to provide a variety of benefits to society, including 

decreased emissions, improved environmental performance in regions with clean grid 

electricity, and have recently shown safety improvements over internal combustion vehicles 

due to increased crumple zones and low centers of gravity (Inside EVs 2013).  Due to these 

potential benefits, federal and state governments in many countries offer subsidies and/or tax 

credits toward the purchase of EVs. In the United States, for example, the federal incentive is 

an income tax deduction of up to $7,500 depending on the battery capacity of the vehicle and is 

set to end after the first 200,000 EVs purchased (Department of Energy 2013).  

EV subsidies are an example of broader government efforts to promote the development 

of energy technologies viewed as socially desirable, such as photovoltaic modules (Dincer 

2011), and fuel cells (Brown et al. 2007). In general, a diffusion subsidy is set up to support a 

technology at a specified level over a fixed time period (Kimura and Suzuki 2006) or target 

production level (Internal Revenue Service 2013). At the expiration date and/or production 

level, a decision is made to cease or decrease the subsidy. A recent, more innovative system in 

Europe sets an explicit schedule for annual subsidy decreases (degression) for feed-in-tariffs 

(FIT) for renewable energy (del Rio 2012; Munoz et al. 2007; Wand and Leuthold 2011). The 

idea behind degression is that government support should decrease as costs fall due to industry 

development, e.g. (Kimura and Suzuki 2006; del Rio 2012)  

There are important questions as to how to best design subsidy policies. A pervasive 

challenge is how to explicitly embed technological progress into planning reductions of the 
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subsidy over time (Wand and Leuthold 2011; Herron and Williams 2013). Ideally, a diffusion 

subsidy stimulates the industry to reduce cost to the point that the subsidy is no longer needed. 

The central idea is to fix the subsidy rate as the difference between the technology and the 

average consumer’s willingness to pay. Once the technology reaches the average willingness to 

pay, price parity has been achieved and the subsidy is removed.  

A variety of prior work has explored relationships between technological progress and 

subsidy policies. The experience curve, a empirically observed power law decline of cost as a 

function of cumulative production, is often used to forecast future costs (International Energy 

Agency 2000; Junginger et al. 2005; Neij et al. 2003). Tsuchiya (1989) pioneered the use of 

experience curves to quantify the total investment needed to bring a technology to price parity, 

in this case, photovoltaic modules. Wand and Leuthold (2011) embed learning rates into a 

larger model estimating the public benefits and costs of the FIT of PV in Germany. Herron and 

Williams (2013) analyze how differences in willingness to pay among different consumers 

influences the subsidy required to bridge the gap between current and target cost.  

A critical design component of a subsidy is how it is tapered, i.e. how often and by how 

much it is reduced. There is an important tension to balance in the frequency of tapering: 

governments prefer to reduce the subsidy more often in response to cost reductions in order to 

lower public costs. Producers on the other hand prefer longer-term subsidy commitments to 

justify capital investments. There are also administrative considerations, e.g. reducing a subsidy 

every week would not be practical to implement.  

Two open questions with respect to subsidy design are explored. The first is how public 

subsidy investments change as a function of the time interval over which the subsidy is tapered, 

e.g. annually, biannually or otherwise. European FIT policies, for example, assume an annual 
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reduction, but it is worth examining the implications of other choices. The second question is 

how variability in learning rates effect the public investment required to reach cost parity. Prior 

analyses of subsidy-induced progress assume a single learning rate value (Wand and Leuthold 

2011; Tsuchiya 1989). However, there is substantial variability in learning rates (Electric 

Power Research Institute 2013), and lower learning could substantially increase the public 

investment required to reach price parity. The German FIT policy goes the furthest to account 

for variability in expected learning by allowing optional year-end adjustments of plus or minus 

1%, according to observed cost reductions (Klein et al. 2010; Ragwitz and Huber 2005). It is 

important, however, to explicitly analyze the variability in public investments as a function of 

uncertain learning rates at the outset. This will inform the degree of flexibility to build into the 

subsidy and also government willingness to invest if cost reductions are lower than baseline 

expectations. A model is therefore constructed to estimate the net government subsidy required 

to reach price parity as a function of how often the subsidy is reduced for various set learning 

rates.  

These questions are analyzed via a case study of the subsidy of electric vehicles in the 

United States. The case study has its own merit; in particular it produces the first publicly 

available experience curve for lithium batteries. While the International Energy Agency reports 

a value for EV battery learning rates (International Energy Agency 2013), the underlying data 

and analysis are not publicly available. The main challenge in building an experience curve is 

lack of publicly available data on price/cost and production. An experience curve using the 

assumption that learning rates for vehicle lithium batteries will be similar to their consumer 

electronics counterparts, for which historical data are available.  
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This choice will increase uncertainty in the results, though the methods for constructing 

the curve in this analysis can be utilized again when future data become available. Furthermore, 

larger lithium-ion batteries that are used in electric vehicles are most often simply a collection 

of smaller cells, like those in consumer electronics, connected in a circuit, and share materials, 

chemistry, and energy characteristics (Andrea 2010). For example, 6,000 – 8,000 of the most 

common type of small cell lithium-ion battery, the 18650, are combined to form the new Tesla 

Model S battery pack (Fisher 2013; Mayer et al. 2012). There are additional components in this 

case, such as a control system and wiring, though for this analysis we do not assess learning in 

these components, and choose to represent lithium-ion electric vehicle battery learning as 

analog to learning in smaller lithium-ion batteries.  

In recent years, lithium-ion batteries have grown in popularity and applications, 

resulting in active research and development, particularly for transportation. Much of the 

published research centers around reducing the costs of these batteries (Anderson 2009; Axsen 

et al. 2008; Gaines and Cuenca 2000; Cready et al. 2003; Kalhammer et al. 2007; Takashita 

2007; Lowe et al. 2010; Barnett 2009). Another stream of research examines the resource and 

environmental implications of battery use (Dunn et al. 2012; Gaines et al. 2010; Goonan 2012; 

Notter et al. 2010; Wilburn 2008; Zackrisson et al. 2010). Research, development and 

industrialization has led to improved battery performance and reduced cost. 

Over the past few decades, lithium-ion batteries have been most commonly used to 

power small electronic devices, such as laptop computers and mobile phones. Due to their high 

specific energy, lithium ion batteries are becoming the dominant technology for Electric 

Vehicles (EVs). Currently though, they are an expensive choice compared to gasoline in 

internal combustion engines, stemming from a lack of economies of scale and high materials 
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costs. In many cases, the EV battery accounts for around 50% of the total cost of the vehicle 

(International Energy Agency 2013). High battery costs imply EVs are not economically 

profitable for most consumers, presenting a substantial barrier to adoption. However, battery 

costs continue to fall. The rapidity and extent of cost reductions in lithium-ion batteries is a 

critical driver of the affordability of EVs in the near term.  

While impacts from the life cycle of batteries need assessment and management (Notter 

et al. 2010), questions regarding the current and future environmental benefits of electric 

vehicles will not be addressed. In addition, it has been argued that the operation phase of an 

electric vehicle is only as clean as its electricity supply (Michalek et al. 2011), though other 

studies suggest pollutants will be reduced regardless of the power supply due to improvements 

in energy efficiency by switching away from internal combustion engines (Electric Power 

Research Institute and National Resources Defense Council 2007; Massachusetts Institute of 

Technology 2010). Carbon and criteria air pollutant emissions associated with EVs are 

expected to reduce along with increased electricity production from renewable sources. The co-

evolution of the electricity grid and future demand from EVs is, however, a complicated matter.  

 

2.2 Methodology 

2.2.1 Experience Curve 

The experience curve is a mainstay of retrospective forecasting for energy technologies. 

Developed first to describe cost reductions in aircraft manufacturing (Wright 1936), the 

experience curve is an empirically observed power law decay of some characteristic of 

industrial processes and cumulative experience implementing that process (Teplitz 1991; Yelle 

1979). In the energy domain, the experience curve takes the form: 
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C (P) = C0(P/P0)
-α 

                   (1) 

where P is a measure of cumulative adoption of the technology (e.g., the total kilowatt-hour 

capacity of batteries produced), C is the price per energy unit (e.g., $/Wp or $/kWh), C0 and P0 

are initial cost and production values, α is a (positive) empirical constant, known as the learning 

coefficient. The fractional reduction in cost for every doubling of production is known as the 

Learning Rate (LR) and is given by  

       (2) 

Equation (1) gives a statistically robust fit over a surprising range of costs and production for 

variety of energy technologies (Neij et al. 2003), including photovoltaic (Harmon 2000; van der 

Zwaan and Rabl 2004), wind (Junginger et al. 2005), circuitry (Moore 1965), and coal (Yeh 

and Rubin 2007). Experience curves have been used to forecast progress for a variety of energy 

technologies (Harmon 2000; Weiss et al. 2010). There is also a stream of literature to develop 

multi-factor experience curves that distinguish factors such as learning by doing, learning by 

searching, economies of scales and material costs (Kobos et al. 2006; Yu et al. 2011). In this 

chapter, a single factor experience curve is used, focusing on how to utilize it for subsidy policy 

analysis. Future analyses could include potential spillover effects from other types of battery 

production; such as additional types of consumer electronics or batteries manufactured for use 

in uninterruptable power supply systems. 

 Note that this analysis utilizes experience curves rather than learning curves. 

Conceptually, the terms are very similar, however they are technically different in that 

experience curves refer to the reduction in production costs (labor, process, etc.) with every 

doubling of cumulative production, whereas learning curves refer only to the reduction in direct 

labor input (hours worked, etc.) required to complete a task (produce one battery).   

LR =1-2a
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 At varying learning rates, lithium-ion batteries will require different quantities of 

cumulative production to reach cost targets, following the relationship that higher learning rates 

require less production to meet the per kWh cost goal.  These production totals are calculated 

using the equation 

      (3) 

where PCt is cumulative production needed to meet the cost target, P0 is cumulative production 

in the initial year, Ct is the target cost of the technology, and C0 is the cost of the technology in 

the initial year. Note that equation 3 is a reorganization of equation 1.  This allows us to input 

the empirically determined learning rate to solve for the cumulative production. 

The cumulative production targets vary substantially, meaning that at similar annual 

production rates, scenarios operating at low learning rates will take much longer to reach cost 

goals than those at higher learning rates.  Analogously, at different learning rates, cost 

reductions occur at different rates. At a given level of cumulative production, the learning rate 

will determine the number of units needing to be produced to reach the cost target.  

2.2.2 Subsidy costs 

Given that the primary goal of a subsidy is to bring the technology to price parity, the 

learning-dependent investment formula can used to determine the subsidy (S) needed for a 

given level of production (P): the difference between the experience curve cost and a target cost 

(Ct) that represents price parity with some alternative:  

      (4) 
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As units are produced and cumulative production increases, the subsidy decreases until the 

technology reaches price parity, at which point government support can be withdrawn. 

Equation 4 allows us to calculate the instantaneous subsidy, the subsidy required at any given 

point of the experience curve. 

 Equation 4 can be integrated to calculate the total cost of a subsidy plan, representing a 

scenario in which the subsidy is reduced infinitesimally for each incremental increase in 

production: 

    (5) 

Continuous decrease of the subsidy is infeasible from an administrative standpoint, in 

practice the subsidy needs to be reduced over discrete intervals of increases in production. 

Figure 1 illustrates different tapering schedules and how the schedules affect total public 

investment. Instead of an integral of the experience curve, the total investment in a tapered 

subsidy is the sum of rectangular areas with each height as the experience curve cost during an 

interval, and the width is the difference in production over the interval. The red line in figure 1 

represents a flat subsidy that remains constant over the life of the program.  The green and blue 

lines are tapered more frequently, while a subsidy plan that follows the black curve is tapered 

with each unit of production.  The black line represents the minimum subsidy policy, calculated 

with equation 5.  The area under each separate colored line represents the total cost of the 

subsidy plan.  Clearly, the red line subsidy plan results in the highest total cost, while tapering 

more frequently reduces the total cost of the plan.  
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Figure 1.  Comparison of subsidy levels (red, green, blue) for different tapering schedules.  

The area under each separate line is the total public investment for the subsidy plan. 

 
2.2.3 Cost Target 

It is common in policy analysis to compare the cost of an evolving technology to some 

cost target or price parity, typically chosen as static in time (International Energy Agency 2013; 

Howell 2012; Tsuchiya 1989; Wand and Leuthold 2011). While it is certainly worth 

considering dynamic and heterogeneous targets, to bound the scope of this work the following 

practice is used. For EVs, the International Energy Agency and the Department of Energy use a 

cost target of $300/kWh for vehicle batteries (Howell 2012; International Energy Agency 

2013). While this number is not explained, it is found to correspond to the net present value of 

electric and conventional vehicles becoming equivalent for plausible values of input parameters 

(e.g. vehicle lifespan of 10 years, 10,000 miles driven annually, $3.50/gallon gasoline price, 

discount rate of 5%). Lithium-ion batteries for vehicles reportedly cost $600/kWh at the end of 

2012 (International Energy Agency 2013).  
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In reality this target is a moving one, because gasoline and electricity prices vary over 

time. However, gas prices are expected to increase in the future rather than decrease, and 

therefore this target represents an upper bound on the total subsidy program costs for EVs, 

since any increase in gas price will raise the target line, decreasing the distance between the 

technology cost and the target. 

Chapters III and IV incorporate alternative methods for determining the cost target of a 

given technology, in order to account for potential variability or heterogeneity in the parity 

price.  Whereas the current chapter assesses a constant target price, chapter III treats price 

parity for emerging technologies as the cost of the incumbent technology, which more than 

likely is not constant.  In that case, the parity price is often a moving target, corresponding to 

cost reductions in the incumbent proportional to the incumbent’s learning rate.  Chapter IV 

takes the price parity discussion a step farther, treating the target cost as a heterogeneous value 

that varies by consumer.  The cost target is thus different for each consumer, and is represented 

by the individual’s economic willingness to pay for the emerging technology relative to the 

incumbent. 

Figures A1 and A2 in Section 6.1 of the Appendix show how reducing the cost target 

would affect the total cumulative production required to meet the goal.  A small decrease in the 

price parity target, whether due to technological learning in an incumbent technology or an 

increase in the emerging technology’s material costs, can drastically affect the cumulative 

production requirement, thereby increasing the total cost of the subsidy program.  Depending 

on how large the gap to price parity becomes, the subsidy program cost may exceed social or 

environmental, causing policymakers to halt incentives for the technology. 
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2.2.4 Justifying Zero Long-Term Cost 

 In equation (1) the limit as cumulative production goes to infinity is zero cost. 

Obviously, no technology has zero cost; the implicit assumption is that long-term cost is too 

small to influence the variable region over which the equation is being used. While there can 

arise practical obstacles to progress in cost reduction that are difficult or even impossible to 

predict, it is possible to estimate an asymptotic cost based on material prices in the 

thermodynamic limit. Estimating this cost and comparing it to the cost target is part of the 

process of using equation (1) for the assessment of energy technologies.  Due to the high 

potential for efficiency improvements in lithium batteries (Srinivasan 2008) the asymptotic cost 

per kWh of the technology is very small. Using current experimentally determined material 

composition data (Wang et al. 2013), applying thermodynamic efficiency limits (R. A. Huggins 

2010), and utilizing current material cost data (Infomine 2013), the asymptotic cost is estimated 

to vary between $3 and $11 per kWh, or around 1-2% of current costs.  Since asymptotic cost is 

significantly less than the target cost and it would not noticeably affect the results, the 

asymptotic cost is neglected hereafter. 

2.2.5 National versus International Experience Curves and Subsidy Policies 

Many technologies, including electric vehicles, are produced by multi-national 

companies and have global markets. The experience curve for many components of a 

technology should thus apply to global prices and global cumulative production. This section 

focuses on a national analysis (the United States) based on the following rationale: While there 

is potential for international coordination (Herron and Williams 2013), subsidy policies are 

currently a domestic affair. Without doubt, a nation considering a subsidy policy will see the 
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effects of lower prices due to adoption in other nations. However, a national policy ought to 

realize its goals regardless of actions taken outside its jurisdiction.  

This is not always optimal or even feasible, but analyzing a purely national policy is an 

appropriate starting point, particularly since the US represents nearly 40% of the global EV 

stock (International Energy Agency 2013). If the national policy is deemed too expensive or 

otherwise ineffective, analysis can be expanded to include actions by other nations. While 

learning in lithium batteries for consumer electronics could also contribute to a reduction in the 

price of electric vehicles, this consideration is neglected via reasoning analogous to the above. 

It is important to understand the potential of an EV subsidy aside from possible spillovers from 

other sectors.  

  

2.3 Results and Discussion 

2.3.1 Experience Curve 

It is preferable to use cost data to develop the experience curve, equation (1), but here, 

as in many other cases, only price data is available. Historical pricing for lithium-ion batteries 

in consumer electronics over the interval 1993-2005 was taken from (Brodd; Takashita 2007). 

These prices are converted to real 2005 dollars using annual national inflation rates for the 

United States (Inflation Calculator 2013). Annual production data, on a per kWh basis, are 

found for lithium-ion batteries in consumer electronics (Battery University 2013). This is 

converted to cumulative production so that the adjusted data, shown in Table 1, is suitable for 

fitting an experience curve. 
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Table 1.  Historical Price and Production Data for lithium-ion batteries  (in 2005 US$) (Brodd; 

Takashita 2007; Battery University 2013) 

 

Fitting this data to Equation (1), the historical learning rate for lithium-ion batteries is 

found to be 22% for the time period between 1993 and 2005. The curve and data are plotted 

together in Figure 2, and the resulting r-squared value for this statistical fit is 0.955. It is 

important to note that during this time period, lithium-ion batteries were used primarily for 

small portable electronics.  

Throughout this paper the initial cost of lithium-ion batteries is taken to be $600/kWh 

(Howell 2012) and the initial production level is 2.3 million kWh annually in 2012 

(International Energy Agency 2013). In a recent publication, the IEA reports having calculated 

a learning rate of 9.5% for EV batteries (International Energy Agency 2013).  Data supporting 

the calculation of these learning rates is not provided however, and it is not entirely clear what 

types of batteries or price/cost measures are being used. Regardless, there is clearly significant 
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uncertainty in future learning rates and to account for this, a range of learning rates are 

considered, including the range between the empirically derived value and the IEA value.   

 

 

Figure 2.  Experience Curve for Lithium-ion Batteries 1993-2005. 

 

The experience curve used is thus 
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Where P is measured in kWh. The existing range of learning rates between 9.5 and 22% is 
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2.3.2 Subsidy Analysis 

The learning space, consisting of learning rates between 5% and 25%, is used in 

equation 3 to calculate the cumulative production needed to reach the cost target, and the 
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9.5%, 425 million kWh of additional battery capacity would be required to reach the same 

target. The total production of capacity required spans orders of magnitude, highlighting the 

importance of the value of the learning rate.  

 

 

Figure 3. Cumulative production of lithium-ion batteries needed to reach cost target of 

$300/kWh as a function of learning rate 

 

Shown in figure 4, results for the total cost of a continuous decreasing subsidy range 

from $2 – $87 billion as a function of learning rate, while the total cost of an annually tapered 

subsidy range from $1 – $18 billion. This is because at higher learning rates, much less 

cumulative production is required to reach the cost target, as shown by figure 3.  As the 

cumulative production needed to reach the goal increases, both total public investment and the 

required annual market growth rate increase.   
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Figure 4. Total subsidy cost as a function of learning rate and tapering interval 

 

An important aspect of figure 4 is how tapering affects total cost at each learning rate.  

Tapering less frequently increases total cost, shifting the curve up.  This phenomenon is shown 

by the total program costs for different learning rates and taper schedules in Table 2, and will 

be discussed further in the following sections.  Figure A3 in Section 6.1 of the Appendix 

expands on this idea by illustrating the reductions in subsidy level as cumulative production 

increases at various learning rates. 

 

  7.5% 9.5% 12.0% 15.0% 17.5% 21.7% 

Semi-Annual 75 24 10 5.1 3.5 2.1 

Annual 87 27 11 5.6 3.8 2.3 

Bi-annual 115 34 14 6.7 4.4 2.6 

Table 2. Total cost of an electric vehicle subsidy program, in billions of USD, for select 

learning rates and taper schedules. 
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2.3.3 EV market growth rates and learning 

The experience curve does not contain a time component. Ramping up manufacturing 

and building consumer markets both have rate limitations, thus is important to consider how 

quickly the EV industry would need to grow in order to achieve the cost target. Three time 

frames are considered: 10, 15 and 20-year goals. These time frames are representative of 

practical goals for the lithium-ion battery market, but are longer compared to aggressive 

programs such as the recent “EV Everywhere Grand Challenge” in the United States, which 

sets a goal of five years or less (Department of Energy 2011), and the goal of cost parity by 

2020 set forth in the recent “Global EV Outlook” (International Energy Agency 2013). Figure 5 

shows the relationship between learning rate and the annual growth rate needed to meet 

different timeline goals.  Due to the exponential relationship, marginal increases in the learning 

rate lead to drastic changes in necessary growth rates.  While it is difficult to alter a 

technology’s learning rate, figure 5 does show that it is important to have a grasp on the 

learning rate in order to set reasonable market goals. 

At the historical 22% learning rate, battery price falls rapidly with production and only 

26 million kWh of lithium-ion battery capacity must be produced worldwide to reach a 

$300/kWh cost target.  This is equivalent to about 1.3 million EVs with an average battery size 

of 20 kWh.  At an annual growth rate of 22%, this would be achieved in ten years.  To put this 

in perspective, the IEA reports that in 2012, the EV market grew by over 160% (International 

Energy Agency 2013).  While this rate is unlikely to continue for a decade, growth rates in 

excess of those needed in the 22% learning rate scenario are possible. 

 With the slightly more favorable IEA learning rate of 9.5% a total of about 450 million 

kWh or around 23 million lithium-ion electric vehicle batteries must be produced to reach the 
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cost target.  A growth rate of 62% is necessary to meet the target in ten years.  Additionally, if 

all of this purchasing occurred within the United States, EVs would represent about ten percent 

of the country’s total vehicle fleet by 2022 (Department of Transportation 2013). 

 

 

Figure 5.  Annual growth in lithium-ion battery production necessary to meet cost goal in 

target number of years at various learning rates, and annual tapering 

 
2.3.4 Discrete Subsidy Tapering  

Figure 4 shows the total cost for a continuously decreasing subsidy. As mentioned 

earlier, in practice subsidies must be tapered in discrete steps. Regular intervals (e.g. annual, 

biannual) are presumed to be preferable to provide stability for producers and consumers, 

although different tapering schedules would affect total subsidy cost. An interval subsidy works 

as follows. For each learning rate, setting a 10-year target determines required growth rates to 

meet the target, shown in Figure 5. After a given time interval, the subsidy is reduced to meet 

the cost reduction via the experience curve, as shown in Figure 1. The areas of each rectangle 
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are added to obtain total subsidy cost until the target is met. Figure 5 shows the total subsidy 

cost for different tapering schedules. Figure 6 shows the annual and cumulative budget for a 

subsidy policy with a resolution of one year.  The total cost of the plan amounts to $27 billion 

over the course of ten years.  

 

 

Figure 6. Annual (blue) and Cumulative (red) budget of annually tapered subsidy – 9.5% 

learning rate, 10 year target to reach $300/kWh cost, 62% EV annual market growth  

 

An important aspect of this plan is the annual budget for the subsidy.  While the subsidy 

per kWh for lithium-ion batteries decreases each year as shown in Table 3, the annual budget 

for the plan increases every year except the final year of the plan (as shown by the blue 

segment of the bars in figure 6). This is due to the exponential growth in the production of the 

batteries, which is a constant 62% growth in annual production per year.  The amount of 

batteries produced increases by a greater magnitude each year under these conditions, gradually 

increasing the annual budget for subsidies until the final year.  Figures A5–A7 in Section 6.1 of 
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the Appendix show how annual and cumulative budget can be increased or decreased by 

altering learning rates and program timelines. 

 

Year Subsidy/kWh 

2013 $300  

2014 $260  

2015 $222  

2016 $187  

2017 $155  

2018 $124  

2019 $96  

2020 $69  

2021 $45  

2022 $22  

Table 3.  Annual subsidy per kWh for lithium-ion batteries at 9.5% LR and 62% market 

growth 

 

In the first year of the program, 2013, the current price of lithium-ion batteries is 

$600/kWh and the target price is $300/kWh, therefore the subsidy needed per kWh is $300.  

Mathematically, due to the continuous nature of the learning rate formula, the technology 

learns with each kWh of production, which results in a marginal decrease in cost.  It follows 

then that as the cost decreases, the necessary subsidy decreases as well.  However, in this plan 

the subsidy is re-evaluated only at the beginning of each year, not after each kWh, which 

essentially results in the government overpaying for all but the first kWh of each year. 

The frequency of subsidy tapering is important.  If the subsidy is more frequently 

tapered the total cost of the subsidy plan will decrease, as shown in Figure 4. To more clearly 

demonstrate variance in the total cost of the subsidy plan as function of interval, Figure 7 

shows total subsidy for bi-annually, annually, semi-annually, and quarterly tapering with a 
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learning rate of 9.5%. The growth rate of the EV market is held constant for all time periods to 

aid in the comparison of the various tapering schedules. 

 

 

Figure 7.  The effect of tapering frequency on total subsidy program cost: learning rate = 9.5% 

 

 The calculations show that tapering the subsidy for lithium-ion batteries quarterly as 

opposed to annually saves $4 billion, or 15% of the total project budget.  The cost savings are 

even greater when compared to flat subsidy programs, in which the same quantity is paid to the 

consumer over the life of the subsidy.  For example, if the subsidy was set to the initial rate, 

$300/kWh, and maintained at that level for the life of the program, the total cost would amount 

to $134 billion, four times greater than the annually tapered subsidy, which emphasizes the 

importance of adjusting subsidy levels. 

 Figure A8 in Section 6.1 of the Appendix shows how the percentage of the total 

investment provided by the government varies by tapering schedule.  The results show that 

tapering more frequently not only saves on total program costs, but also reduces the 

technology’s dependence on public funds.  This allows the government to provide a smaller 
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percentage of the total investment required to drive adoption of a technology; in this case, 

electric vehicles. 

2.3.5 Policy Discussion 

The results indicate that, when tapering annually, the total cost of a lithium-ion battery 

subsidy is in the range of $2-27 billion for learning rates from 9.5-22%. Setting aside the 

robustness of this range for the time being, the policy implications of this result are discussed 

next. To first recap the current U.S. subsidy since 2009, consumers purchasing an electric 

vehicle are entitled up to a $7,500 tax deduction (Internal Revenue Service 2013). Our results 

suggest that this current subsidy level of $7,500 per EV roughly matches the gap between 

current EV prices and the government cost target. Adoption of EVs, partly due to this subsidy, 

has increased rapidly in recent years, with the number of EVs purchased more than doubling 

each of the past three years. While renewal is possible, the current subsidy is phased out after 

three production increments of 200,000 vehicles. For this subsidy to realize the $300/kWh cost 

goal on this schedule, a learning rate of 33% would be required. The current policy production 

range is thus not likely to bridge EVs to economic competitiveness.  

This finding moves the discussion forward to whether or not the government should 

adopt a new subsidy plan, estimated here to cost $2-27 billion USD when tapered annually. 

This is a complex issue that connects to the expected benefit of electric vehicles compared to 

competing avenues for public spending.  This dissertation will only take a narrow view of the 

issue here, restricting the discussion to a comparison with U.S. federal subsidies for corn 

ethanol. The electric vehicle and biofuel scenarios are not strictly congruent, however many of 

the expected social benefits of corn ethanol and EV are similar, such as increased energy 

independence, jobs, and reduced emissions. The ethanol subsidy provides a sense of historical 
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willingness for the federal government to invest in a transport fuel perceived as socially 

beneficial.  

 Corn ethanol has been federally subsidized in the U.S. since the early 1970’s. The 

primary form of subsidy from 1970-2011 was a tax credit ranging from 40-51 cents per gallon. 

In 2011, the direct subsidy expired, and corn ethanol is now indirectly subsidized through the 

Renewable Fuels Standard, which mandates a schedule of production targets for ethanol 

(Environmental Protection Agency 2013). The General Accounting Office estimates the sum of 

federal subsidies from 1970-2000 totaled $7.7-11.7 billion USD (General Accounting Office 

2000). Ethanol production grew rapidly in 2000 onwards, increasing from 1.62 billion gallons 

in 2000 to 13.9 gallons in 2011 (Energy Information Administration 2013).  Subsidy 

investments increased accordingly, ranging from $1-5 billion USD annually after 2001 (Cox 

and Hug 2010). This results in a total subsidy cost of around $40 billion USD over the full life 

of the subsidy program from 1970-2011. Viewed through the narrow lens of the biofuels 

subsidy policy, even the upper end of the range for EV subsidies – $27 billion USD – is well 

below what has been historically spent on ethanol. Considering that technological learning 

suggests that the subsidy holds promise to be a one-time, rather than ongoing, expense, a 

lithium-ion battery program seems an attractive investment.  

In addition to the net sum the federal government is willing to invest in EV subsidies, 

there is also the critical question regarding tapering schedules. Direct ethanol subsidies 

continued at similar levels for a period of decades and then were cut to zero in 2011. Mitigating 

the net cost of the electric vehicle subsidy requires tapering.  At the same time, industry 

requires a certain degree of stability in subsidies to justify long-term investments. Tapering that 

depends entirely on the shifting political winds in Congress is problematic for industry 
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confidence. While a degree of adaptability is desired, a schedule for tapering based on observed 

and projected cost reductions, such as an experience curve, is a way forward.  

2.3.6 Discussion of Uncertainty 

While this study has provided an initial assessment of the range of expected costs for an 

electric vehicle subsidy program, there are a number of issues not addressed here that should be 

clarified in future work:  

Using the right experience curve – First, decision-makers might consider the resulting 

range in the net cost of EV subsidy programs cost unacceptably large. Even if the worst-case 

cost were deemed acceptable, it is possible that learning rates could fall outside of our plausible 

band of 9.5-22%. Also, it could be that a more complex experience curve relationship is 

appropriate for lithium batteries. Research to better understand past and potential future cost 

reductions in lithium-ion battery production could address these uncertainties. This research 

must be completed for EV policy to succeed. A research investment of hundreds of thousands 

to a few million dollars could do much to clarify a subsidy program that could run in the 

billions of dollars. 

Beyond battery price – Price is by no means the sole determinant of desirability of a 

vehicle.  The limited range of electric vehicles, for example, is an important performance gap 

that influences consumer decisions. While plug-in hybrids effectively address this issue, the 

need for hybrid drivetrain adds to vehicle price. If the subsidy successfully drives adoption of 

EVs, other benefits may follow, such as increasing familiarity with, and reducing perceived risk 

of, EVs, and the addition of charging infrastructure, thereby mitigating consumer range anxiety 

with plug-in vehicle purchases. 
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Heterogeneous markets for electric vehicles – the constant $300/kWh target assumes a 

homogeneous market for electric vehicles. Regional differences in gasoline prices and 

individual differences in driving patterns and vehicle preference presumably result in a 

heterogeneous market. If consumers in more favorable sub-markets adopt EVs first, public 

subsidy can be reduced since the willingness to pay of first adopters is higher. Herron and 

Williams (2013) developed a method to analyze the geographic heterogeneity of markets for 

residential fuel cells. An extension of this approach to EV markets could clarify how a lower 

subsidy could succeed in realizing economically competitive EVs.     

 

2.4 Conclusions and Recommendations 

Lengthening the subsidy interval increases public investment, more so given lower learning 

rates and correspondingly high subsidy requirements. These results inform a multi-criteria 

decision on the appropriate tapering interval. Government budget offices prefer a shorter 

interval to reduce expenditures, but subsidy program administrators prefer longer intervals and 

corresponding reduced work to update. Producers prefer a longer interval to justify capital 

investments. Shorter intervals may actually encourage consumers to purchase due the creation 

of concrete expiration dates for discounts. The appropriate interval will thus depend on the 

technology and associated preferences of producers and consumers. Factors other than net 

investment cost are not analyzed here, but they are noted as important topics for future work.  

Subsidy costs are sensitive to learning rate. There is roughly a factor of 10 difference in net 

public subsidy using the IEA reported learning rate for lithium batteries versus our value 

obtained from consumer electronics’ batteries. This uncertainty is important to manage in the 

policy process. If a subsidy is implemented based on expectations of rapid learning that are not 
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achieved, political support could wane and the subsidy withdrawn before the technology 

reaches its potential. One way to mitigate this uncertainty is for governments to invest in 

estimating learning rates before putting a subsidy program into place. This option is particularly 

useful in the United States since many lithium-ion batteries used in the US are manufactured 

there. Spillover effects from international production and consumer electronic battery 

manufacturing could be accounted for in this scenario as well. Budgeting assuming more 

pessimistic assumptions for learning rate mitigates the risk of future overspending, but also 

makes the subsidy less politically palatable. Such tensions are at play in every debate on public 

investments, our role here is to point out the importance of learning rate in the net investment in 

the subsidy.  

Subject to the uncertainties and model improvements discussed in section 5, results with the 

current model indicate a subsidy price of 2.1 – 34 billion USD, depending on tapering and 

learning rate. If reaching the cost target of $300/kWh implies that EVs become attractive to 

mass consumer markets causing increased adoption and diffusion, this range of program costs 

is a one time public investment to develop EVs to competitiveness. Whether this sum is an 

appropriate expenditure of public funds depends on the externality benefits per EV and the 

degree to which EVs are adopted after becoming competitive to an average consumer (i.e. the 

market saturation point). The former has been studied by Michalek et al. (2011), though it fair 

to assert that there is much work to improve the certainty of externality valuation models.  

Chapter IV provides a detailed analysis of the potential for subsidies to activate broad 

technological diffusion and also quantifies the potential environmental benefits of a subsidy 

program using a case study of plug-in hybrid electric vehicles.  The results are similar to those 

in the current chapter, showing that incorporating technological progress is beneficial to 
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program development. Chapter IV also expands on the assessment of benefits to include the 

total societal benefits of a subsidy program based on the adoption of plug-in hybrid electric 

vehicles, even after the subsidy has been removed. 
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III. Residual Learning Rates in Lead-Acid Batteries: Effects on 

Emerging Technologies 

3.1 Introduction 

As the world moves into a data-driven future immersed in digital technology, new 

constraints are imposed on our infrastructure systems.  In the case of electricity, reliability has 

become a premium service, with governments, hospitals, data centers, corporations, and 

personal mobile technologies requiring a higher quantity, and a better quality of service than 

ever before.  Many organizations, including electric utilities themselves, are now turning to 

energy storage systems to provide much needed energy security. 

 In the world of batteries, the lead-acid chemistry is the most common (Haas and Cairns 

1999; Linden 2010). Lead-acid batteries were first developed in 1860 by Gaston Plante and 

have grown into the most widely used electrical energy storage system due to their high 

reliability and low cost (Huggins 2010). As shown in Table 4, compared to other energy 

storage technologies, lead-acid batteries remain one of the cheapest options, giving them a 

distinct advantage in popular applications.  

 

Energy Storage 

Technology 

Cost per 

kWh 

Lead-Acid Batteries $160 

Lithium-Ion Batteries $600
a 

Sodium-Sulphur Batteries $450
b 

Flywheels $600
c 

Table 4. Cost, in $/kWh of various energy storage systems 

Data sources: a - (Matteson and Williams 2014; International Energy Agency 2013), b - (Díaz-

González et al. 2012), c - (Hadjipaschalis et al. 2009) 
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The two primary uses for lead-acid batteries are in automobiles and uninterruptible 

power supplies (UPS) (Haas and Cairns 1999).  The size of both the automobile and UPS 

markets have led to massive deployment of lead-acid batteries, causing further reductions in 

cost due to technological learning and economies of scale.  The main result of this growth has 

been a strong hold of lead-acid on the battery market for decades. However, due to the recent 

growth of electric vehicles, which are expected to primarily utilize lithium-ion battery 

chemistries, and the development of new back-up energy storage technologies, it remains to be 

seen whether lead-acid batteries can maintain their hold on the electrical energy storage market.  

Future costs of energy storage technologies are particularly critical given the increasing drive to 

integrate intermittent renewable energy production into the electrical grid. 

The relative cost of lead-acid versus emerging storage technologies is an important 

factor in determining what storage technology will be successful. It is typically (often 

implicitly) assumed that learning in lead-acid battery production is finished. The literature 

analyzing the price-point goal for emerging energy storage technologies refers to a static value 

of current lead-acid battery prices (Bayunov et al. 2010; Department of Energy 2013; Gyuk et 

al. 2013; Haas and Cairns 1999; Howell 2012). If, however, lead-acid battery prices can be 

expected to fall in the future, the competitive price point for emerging technologies is a moving 

target, as opposed to a stationary one. A moving target could have radical effects on energy 

storage markets. If a venture firm developing a storage alternative must beat a future reduced 

cost for lead-acid, this could imply much higher capital and time required to reach cost parity. 

The firm could face bankruptcy if not prepared for such dynamic market conditions.  

Given this context, historical price and production data are analyzed to develop a 

retrospective forecasting model for future reductions in the cost of lead-acid batteries. The 
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analysis begins by using the standard experience curve that describes total costs decline as a 

power law function of cumulative production (Neij et al. 2003). As will be seen, the standard 

experience curve does not reliably reproduce historical costs, leading to the need for an 

alternative model. A modified experience curve is proposed that separates total cost into 

material and residual portions, and fits a power law to the residual costs. This model is 

motivated by the observation that the materials content of lead-acid batteries has been nearly 

constant for decades and that volatility in materials prices has significantly affected prices of 

lead-acid batteries. The minimum theoretical cost of the batteries, called the asymptotic cost, is 

also calculated based on the maximum potential energy density of the primary lead-acid battery 

chemistry.  This value allows for the determination of how far current technology is from its 

theoretical potential, and also begins a discussion on the practical capabilities of a technology 

to achieve its maximum potential.  

Having constructed a model that reasonably describes historical costs for lead-acid 

batteries, the results are extrapolated to the future to explore the implications of cost reductions 

on markets for alternative storage technologies. Drawing on recent work on experience curves 

for lithium-ion batteries (Matteson and Williams 2014), the effect of future cost reductions in 

lead-acid batteries on the investment and progress needed for lithium batteries to be price 

competitive to lead-acid for bulk storage is estimated.  The implications of these results are 

analyzed, specifically regarding policy that aims to develop new technologies in energy 

storage.   

 This research provides the following contributions to the literature. By proposing a 

modified form of the experience curve, the first documented experience curve for lead-acid 

batteries is defined. This method will find applications for other technologies as well. 
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Combining the forecast of cost reductions for lead-acid with prior work on lithium batteries 

provides a concrete example of how learning in an incumbent technology could influence the 

development of an emerging one. The results have specific implications for energy storage and 

also illustrate a general phenomenon for technology emergence in energy systems.  

 To comment on the scope of the analysis, only price (in $/kWh) of a storage technology 

is considered. While price is a critical indicator of success in the energy storage market, other 

characteristics of a technology are also important.  Performance characteristics such as energy 

density, power, and cycle life affect what batteries can be used for what application. Also, the 

environmental impact of energy storage technologies has been an area of concern in recent 

years as countries attempt to move toward a more sustainable energy system.  As a result, some 

studies have analyzed the environmental impact of various energy storage technologies, such as 

(McKenna et al. 2013; Notter et al. 2010; Rydh 1999), while others have assessed the impact of 

environmental policies on energy storage technology development (Ainley 1995; M. C. 

McManus 2012). While these considerations are important, to reasonably bound the analysis, 

this chapter focuses only on the price factor. 

 

3.2 Methodology 

3.2.1 Residual Experience Curve 

This analysis utilizes equation 1 and equation 2 described in chapter 2 to construct the 

experience curve and learning rate for lead-acid batteries respectively. However, the simple 

experience curve equation, equation (1), will not robustly reproduce historical battery costs. To 

address this, lead-acid battery material costs are disaggregated from the experience curve to 

analyze whether the experience curve fit improves when volatile materials cost data is 
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removed.  This method of disaggregation is called forming the residual experience curve. The 

residual experience curve represents all the technology production costs leftover once materials 

costs are removed.  This also allows us to identify the portions of the technology that are 

learning. The same methods are used to construct this curve as the previous lithium-ion battery 

experience curve, with a slightly altered formula, shown in equation 3. 

CR (P) = CR0 * (P/P0)
-α 

                  (3) 

Where 

CR (P) = Residual Costs = Total Battery Price – Materials Costs  (4) 

and 

CR0 = Initial Residual Cost = Initial Total Battery Price – Initial Materials Costs (5)  

 

 Once the residual experience curve has been constructed and the residual learning rate 

is found, equation 6, as recreated from (Herron and Williams 2013), is used to create an 

improved total battery experience curve that accounts for material costs and residual learning 

separately.  

C (P) = CM + (C0 – CM)*(P/P0)
-α 

                  (6) 

Where CM is the materials costs (the non-learning component), α is the residual learning rate 

(found using equation 3), and all other variables are the same as equation 1.  The new 

experience curves form a better fit with the data and allow us to account for the incompressible 

materials costs in battery production. The results from equation 6 will be presented later, and 

are used to project lead-acid battery costs into the future as compared to lithium-ion batteries, 

as shown in Figure 13. 
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3.2.2 Learning in an Incumbent Technology 

Using lithium-ion batteries as an example, this section will determine how learning in lead-

acid batteries, the incumbent technology in the energy storage market, may influence the 

development of an emerging technology.  This is done utilizing a gap-to-parity approach, 

which is essentially calculating the area between the experience curves for new (lithium-ion) 

and incumbent (lead-acid) technologies.  The larger the area between the curves, the greater 

investment is needed in the new technology for it to reach parity with the incumbent. Equation 

7 shows the formula for the gap-to-parity calculation. 

 

                ∫    ( )      ( )  
 

 
    (7) 

 

where a is the initial level of production, b is the level of production where the experience 

curves intersect, and CLI(P) and CLA(P) are the disaggregated experience curve formulas (from 

equation 6) for lithium-ion and lead-acid batteries respectively. 

3.2.3 Assessing Future Development Potential 

Asymptotic cost assessment methods are used to quantify the potential for future cost 

development in lead-acid batteries.  The maximum theoretical energy density for the most 

common lead-acid battery chemistry is taken as a way to assess the minimum material input 

requirement for the batteries.  The higher the theoretical energy density, in watt-hours per 

kilogram, the less material inputs required to meet a given energy output. Using current cost 

trends and the previously mentioned bill of materials, it is possible to calculate the minimum 

theoretical production cost (materials only) of lead-acid batteries.  For example, if the 



 42 

theoretical energy density of the battery chemistry is twice the current energy density, only half 

the quantity of material inputs will be required to produce the same energy output. 

 The distance the current technology is away from this result is one way to determine the 

potential for further technological and cost improvement for lead-acid batteries.  However, this 

does not comment on the practical capabilities of producers to reach the theoretical cost targets.  

As with many mature technologies, lead-acid batteries have seen little improvement in energy 

density over the years, consistently remaining around 30-40 Wh/kg (Huggins 2010; Linden 

2010). This fact, along with the consideration that improvements may not be cost-effective for 

producers, mean that lead-acid batteries may have a lower probability of reaching the 

theoretical maximum energy density.   

3.2.4 Cost and cumulative production data 

The analysis is performed on lead-acid batteries using data for two size separate size 

groups: 1) small batteries up to the size of an automotive battery – classified as BCI (Battery 

Council International) dimensional group 8D and smaller – and 2) large batteries, which 

include heavy-duty batteries, UPS batteries, etc. – classified as batteries larger than BCI 

dimensional group 8D.  These two size groups cover the most popular applications for lead-

acid batteries and allow trends in learning for batteries of different sizes to be viewed 

separately.  

 In order to produce an experience curve model and determine the learning rate of an 

energy technology, two types of data are necessary.  First, historical data on the cost of the 

technology must be found for a significant amount of time, usually on the order of decades.  

Second, data must be collected on the production of the energy technology. Regardless if the 
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production data collected is on a per year or cumulative basis, the data must be converted into 

cumulative production values in order to be used within the model given by equation 1. 

 Data from the United States Geological Survey (Wilburn and Buckingham 2006) shows 

that U.S. production accounts for over 80% of the lead-acid batteries consumed in the U.S. by 

weight. The geographical bounds of the analysis are set as costs and production in the United 

States. Price data for the experience curve model was found using historical data from the 

Producer Price Index (PPI) (Producer Price Index 2013; Producer Price Index 2014), and can 

be found in Table A1 of Section 6.2 of the Appendix. This data was collected for lead-acid 

batteries both larger than automotive batteries, and of equal or smaller size than automotive 

batteries. The PPI data follows cost trends in a technology relative to a base year, in this case 

1984.  The data initially presents cost in each year as a percentage of the base year cost.  For 

example, the base year PPI cost will always be 100, and should the nominal price of the 

technology increase, the PPI cost will show a value of over 100 and vice versa.  

 Once the price data was collected from the PPI, it was transferred from 1984 terms into 

a real 2012 dollars cost index using year-by-year inflation data (Inflation Calculator 2013).  

With the $/kWh price in 2012 as the reference year, the real dollar cost in each year is 

calculated from the literature (Moseley 1998; Schoenung and Hassenzahl 2003).  The resulting 

cost calculations are shown by figures 8a and 8b, for use in equation 1. 
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Figure 8a and 8b. Prices of lead-acid batteries in the U.S., 1985-2012 for a) smaller size (e.g. 

automotive) and b) larger size (e.g. uninterruptible power supply) 

 

 Data was taken from references (Wilburn and Buckingham 2006) and (United States 

Geological Survey 2005) regarding the amount of lead, in kilograms, contained in lead-acid 

batteries. Linden (2010) calculates that lead makes up about 60% of the battery by weight, 

allowing us to divide the weight of lead in lead-acid batteries by 0.6 to find the total weight, in 

kilograms, of lead-acid batteries produced in a given year.  This quantity is then multiplied by 

0.035 kWh/kg, the average energy density of lead-acid batteries over this period (Linden 2010), 

to find the total quantity, in kilowatt-hours, of lead-acid batteries produced. Figure 9 shows the 

results of this calculation over the period from 1975-2012. When these tasks have been 

completed the price and production data are in the necessary form to make use of equation 1.   
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Figure 9. Cumulative production, in Gigawatt-hours, of lead-acid batteries in the United States, 

from 1975-2012, reconstructed from (EPA 1987; Wilburn and Buckingham 2006; United States 

Geological Survey 2005) 

 
3.2.5 Materials Cost  

 The next step in the analysis is to disaggregate the cost data input into the experience 

curve model so that this section may assess how materials prices may affect overall 

technological learning.  The first step is to identify the materials that form the lead-acid battery.  

This information was found in reference (Rydh 1999), and shows the list of material inputs for 

lead-acid battery production.  Table 5 shows the material inputs for lead-acid battery 

production, along with the relative quantities per kilowatt-hour, and the reference used to 

calculate materials costs. In addition to the inputs shown in Table 5, additional inputs of 

undisclosed materials, representing 3% of the battery weight per kilowatt-hour were omitted 

from the analysis due to lack of sufficient data. 
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Material Input 
Quantity (in 

kg/kWh) 
Cost Reference 

Lead 17.5 (“Lead Prices” 2014) 

Water 3.8 Assumed to be 0 

Sulphuric Acid 2.7 (Sell 2012; Weatherlake 2014) 

Polypropylene 2.3 (“Polypropylene” 2014) 

Sb, Sn, As 0.6 
(“Tin Prices” 2014), (“Pricing” 

2013; “Arsenic Prices” 2014) 

Polyethylene 0.6 (“Polyethylene” 2014) 

Polyester 0.1 (“Polyester” 2014) 

Copper 0.1 (“Copper Prices” 2014) 

Total 27.7 Sum of the Above 

Table 5. Material inputs (Rydh 1999), in kilograms, and costs required for each equivalent 

kilowatt-hour of lead-acid battery 

 

 Historical cost trends are found in the literature for each input and used to construct a 

materials cost trends for lead acid batteries.  This trend curve may then be compared to the 

experience curve as a preliminary assessment of how materials costs may influence 

technological learning models.  Particularly in the material intensive battery industry, materials 

cost volatility may be expected to influence technology prices, negatively affecting the 

statistical fit of an experience curve model to the cost curve.  This observation may be even 

more important due to the recent cost volatility in many material inputs for lead-acid battery 

manufacturing. 
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3.3 Results 

3.3.1 Fitting data to the traditional experience curve  

Following the methods described above, this sections tests empirically if the traditional 

experience model, equation 1, is suitable to describe historical trends. The data and empirical 

fit for lead-acid batteries is shown as a log-log plot in Figures 10a and 10b below. The resulting 

curve shows a volatile progression of costs relative to cumulative production. For small lead-

acid batteries, the value for the learning coefficient, α, is given by the slope of the trendline, 

which, is -0.159.  Using equation 2, the average learning rate for small lead-acid batteries from 

1985-2012 is calculated to be 10%.  However, due to the initial volatility of the experience 

curve, the resulting R-squared value of the trendline is 0.17.  This provides very little 

confidence or certainty in the learning rate calculated through this experience curve. 

 To show the degree to which the 2007 spike alters the R-squared value of the small 

battery trendline fit, the experience curve for the years before 2007 has been calculated. When 

the volatile data from 2007 onward is removed from the model, the R-squared value improves 

from 0.17 to 0.91.  Also, α improves from -0.159 to -0.307, representing a change in learning 

rate from 10% to 19%, respectively. 
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Figure 10a and 10b. Price and cumulative production data fit to traditional experience curve, 

equation (1), from 1985-2012, for a) smaller size (e.g. automotive) and b) larger size (e.g. 

uninterruptible power supply) 

  

 Next, analyzing larger lead-acid batteries, BCI dimensional group 8D, figure 10b shows 

the results for fitting the traditional experience curve to historical data. Similar to the results for 

smaller batteries, significant price oscillations cause a very poor fit to the learning curve model.  

The value for α in Figure 10b, 0.065, results in an average learning rate of 4%, although this 

time the R-squared value is calculated to be 0.05, even lower than Figure 10a.  However, 

removing the years after 2007 once again results in a much better fit to the curve, showing 

more consistent learning from 1985-2006. This new experience curve results in a value of 0.19 

for α, representing a learning rate of 13%. The R-squared value has also improved to 0.68 from 

0.05 in Figure 10b.  Unfortunately, in the case of both small and large lead-acid batteries, when 

constructing an experience curve, one cannot simply remove segments of data in order to clean 

up the results.  However, this exercise has shown that a majority of the data collected for this 
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study provides clear technological learning in lead-acid batteries. The following sections work 

to explain the disruption of the learning curve. 

3.3.2 Materials Costs 

In Figures 10a and 10b the primary culprit responsible for the poor fit is a spike in the 

cost parameters at the end of the curve, which is visible over the value of 9.4 on the x-axis.  

When considering this spike in the data, it is noted that it occurs around 2007, and prices still 

have not recovered to the original levels shown on the curve. One explanation for the volatility 

in the experience curve is fluctuations in materials price that cause unpredicted increases in 

production cost.  In order to address this issue and improve the fit of the experience curve to the 

data the effects of material costs will now be analyzed by calculating material cost trends for all 

of the primary material components of lead-acid batteries, as described in Table 5.  If this 

hypothesis is successful, the effect should be a large spike in materials costs around 2007.  This 

spike would cause volatility in the experience curve, and the poor fit to our model shown 

above. 

 Using a variety of data sources, shown in Table 5, cost trends for the material 

components of lead-acid batteries are quantified.  By identifying key inflection points, this 

information will lend insight to the drivers of the battery cost curve, and potentially help us 

solve the issue of volatility in the experience curve.  Due to data constraints, only materials 

costs back to 1989 were considered.  Figure 11 shows the trends in materials costs for lead-acid 

batteries, separated into Lead Cost, and Other Materials Costs. 

 



 50 

 

Figure 11. Materials Costs per kWh of lead-acid batteries, 1989-2012, separated into Lead 

cost, all other materials, and total materials costs. 

 

 There are two primary conclusions to be drawn from Figure 11.  First, the chart shows 

relatively consistent decreases in non-lead materials costs up until the beginning of the cost 

spike in 2004.  This observation is consistent with the previously determined experience curve.  

The second, and more obvious conclusion is that there were drastic increases in materials cost, 

potentially solving the issue of volatility in the experience curve.  However, there is uncertainty 

as to what degree material costs influenced technological progress unless the material costs are 

incorporated into the learning model itself.  As previously mentioned, this analysis seeks to do 

this by subtracting materials costs (Figure 11) from overall battery costs (Figures 8a and 8b) 

and fit this residual cost to the learning curve model (equation 1). 

3.3.3 Residual Experience Curve   

In addition to pulling out residual from material costs, this assessment considers various 
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were averaged together to determine each individual year’s value. Figures 12a and 12b show 

the results of constructing the residual experience curve, equation (3), for small lead-acid 

batteries from 1989-2012.  

 The primary concern is with how Figures 12a and 12b (residual experience curves) 

behave as compared to Figures 10a and 10b (original experience curves) respectively.  The 

residual experience curve shows a better fit to the trendline, with an R-squared value of 0.779 

in figure 12a compared to a value of 0.17 in Figure 10a.  Also, removing the volatile material 

costs improves the learning rate observed in the residual curve as compared to the total-battery 

learning rate shown in Figure 10a. The value for α in Figure 12a, 0.3901, results in a learning 

rate of around 24% for the residual costs in lead-acid battery production. 

 The remaining volatility in the residual learning curve can be explained by material 

price shock.  From 2004 to 2007, lead-acid battery materials costs increased by 400%.  The 

effects on total battery costs were subdued to an increase of only 20%, due to the reactive 30% 

decrease in residual costs (the downward spike above 9.4 in Figures 12a and 12b).  Essentially, 

residual prices were forcibly held down in order to keep lead-acid battery costs to a minimum 

during the material price shocks.  Since that point, Figures 12a and 12b show some continued 

oscillation around the experience curve as material costs (from Figure 11), and thus the residual 

costs, begin to retract to pre-2007 values. 

 Figure 12b shows the residual experience curve for large lead-acid batteries, from 1989 

to 2007.  In comparison to Figure 10b, this curve shows both a better fit to the data as well as a 

larger learning rate.  The R-squared value improves from 0.05 in Figure 10b, to 0.736 in Figure 

12b, an even larger improvement than was shown in the case of small lead-acid batteries.  Also, 

the new learning rate is calculated to be 19%, up from 4% previously. 
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Figures 12a and 12b. The residual experience curve (experience in total costs – material costs) 

for small and large lead-acid batteries, for 1989-2012, with a 4-year time averaging. 

 

 Removing material costs from the experience curve has a significant effect on the 

observed learning trends in large lead-acid batteries.  These results show that removing volatile 

material costs from the lead-acid battery experience curve improves the model’s fit to the 

available cost and production data.  While overall volatility in the experience curve is less than 

ideal, an improved fit may offer more opportunities for future analysis. 

3.3.4 Comparing traditional and residual cost experience curve models  

 Table 6 compares the results of traditional and residual cost learning for small and large 

lead-acid batteries.  To keep all the results on an even field, each scenario is analyzed over the 

same time period, which, due to material cost data availability, has been chosen to be 1989-

2012. Included in the table are the aggregation level of the battery that is analyzed (i.e. total 

battery or residual), time step used when constructing the experience curve, R-squared value of 

the model fit, improvement of the model fit when using the residual experience curve, and the 
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resulting learning rates.  The time step tells the number of years used in each case to form the 

moving average curve of the cost data.  For instance, a time step of two means the results being 

presented are for a two-year moving average assessment of the given technology.  The moving 

average presentation is another way to mitigate variability in the year-to-year data set. 

 

Battery 

Size 

Time Step 

(Years) 

Aggregation 

level 
R

2 Learning 

Rate 

Small 

1 
Total Battery 0.17 7.6% 

Residual 0.51 22% 

2 
Total Battery 0.26 9.5% 

Residual 0.63 23% 

4 
Total Battery 0.44 12% 

Residual 0.78 24% 

Large 

1 
Total Battery 0.05 4.2% 

Residual 0.41 18% 

2 
Total Battery 0.09 5.5% 

Residual 0.57 19% 

4 
Total Battery 0.18 6.9% 

Residual 0.74 19% 

Table 6. Complete results of the learning assessment for all lead-acid batteries including 

residual cost learning. All results are for the time period 1989-2012. 

 

 In each instance, using moving averages to reduce year-to-year data variability 

increased both the R-squared value and the learning rate.  In both small and large lead-acid 

batteries, the learning rates experienced in residual costs far exceed those found at the battery 

level. For small lead-acid batteries, residual learning occurs about twice as fast as total battery 

learning, while for large lead-acid batteries, residual learning occurs around four times faster 

than total battery learning.  
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 On the whole, small lead-acid batteries seem to have experienced learning at a higher 

rate than large batteries from 1989-2012. Learning rates in large batteries are less than half of 

their small battery counterparts, though when calculating residual learning effects, this gap 

closes significantly, resulting in residual learning rates within 20% of those calculated for small 

batteries.  Overall, learning rates for the entire lead-acid battery market should lie somewhere 

between these two cases, since the market is made up of some combination (e.g. 50-50 or 60-

40) of small and large lead-acid batteries. 

3.3.5 Asymptotic Cost Assessment 

 The maximum theoretical energy density of a typical lead-acid battery is 175 Wh/kg 

(Huggins 2010).  This value is five times the current energy density, meaning that if lead-acid 

batteries were to reach this potential, battery production would require 80% less material inputs 

than are used in current battery production.  Using current materials cost data from Table 5, the 

minimum potential cost, called the asymptotic cost, of lead-acid battery production is 

calculated. 

 At current price points, the asymptotic cost of a lead-acid battery is found to be 

$11/kWh.  The current materials cost, as shown in Figure 11, is around $53/kWh.  This means 

that, learning effects aside, energy density improvements have the ability to reduce materials 

costs by around 79%.  This seems an encouraging result, although since lead-acid battery 

energy density has long been stagnant, the practical potential for improvement may be 

significantly less than is shown by the asymptotic cost assessment. 
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3.4 Discussion 

3.4.1 Lead-Acid Battery Learning Compared to Other Energy Technologies 

In this section, the results are applied to a broader assessment of the energy storage market, 

including a comparison with lithium-ion batteries.  This allows us to better grasp the market 

implications of our new information, and how emerging technologies may be affected. The 

results outline our calculations for how lead-acid batteries have experienced technological 

learning over the past few decades. While this may be the first experience curve assessment 

completed for lead-acid batteries, many other studies have been conducted on other energy 

technologies.  In order to place lead-acid battery learning in perspective, Table 7 has been 

constructed to show how learning rates in lead-acid batteries compare to other energy 

technologies. 

 

Energy Technology Learning Rate 

Lead-Acid Batteries, Small (Residual) 23% 

Lead-Acid Batteries, Large (Residual) 19% 

Lithium-Ion Batteries 22%
a 

Natural Gas 12%
b 

Nuclear 9.0%
b 

Photovoltaics 22%
b 

Wind 12%
b 

Table 7. Learning rates of various energy technologies; a - (Matteson and Williams 2014) b - 

(Weiss et al. 2010) 

 

 The learning rates for lead-acid batteries are comparable to learning rates in other 

energy technologies.  When volatile material costs are removed, the residual learning rate 

calculated for lead-acid batteries resembles those for other fast-learning technologies like 
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lithium-ion batteries and photovoltaics.  However, when material costs and learning are 

considered as a whole, lead-acid batteries rank near the bottom in terms of learning rates. 

 As other energy storage technologies are developed, lead-acid batteries will have a 

growing number of competitors in the marketplace.  Learning studies such as this one will be 

important to inform policy and forecast potential winners and losers in the competition for 

economically viable energy storage technologies.  If material cost volatility continues to hinder 

lead-acid batteries and other technologies, such as lithium-ion batteries, continue to progress 

down their learning curves, lead-acid batteries’ hold on the market may begin to diminish.  

However, if materials costs stabilize and residual learning continues, lead-acid batteries will 

continue to dominate the energy storage market for years to come. 

3.4.2 Materials Costs in Lead-Acid Batteries 

 Recently, lead-acid battery material costs have spiked and as a result have become the 

primary determinant of battery costs. The price shocks of 2007 have also impacted 

technological learning, creating additional difficulties in assessing the learning potential of 

lead-acid batteries.  Within the scope of this chapter three potential reasons have been 

identified for why materials costs may have such an impact on learning results. 

 First, future assessment may need to find a way to expand the learning assessment of 

lead-acid batteries to include more potential cost influences by utilizing one of the many multi-

factor experience curve models.  Adding additional factors may help identify and incorporate 

material price volatility into the model to give a learning curve that stays more true to actual 

events. 

 The second possibility is that the price volatility was so significant that it has caused 

changes in production costs and methods, thereby affecting the modeled learning rate in lead-
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acid batteries.  This is a likely result, since materials prices increased 400% from 2004 to 2007. 

It should be noted that there are many potential explanations for the spike, such as rising costs 

in other related industries or the overall economic downturn. It is also possible that other 

products, such as lithium-ion batteries could experience similar spikes, due to materials scarcity 

and other economic factors. In this case, procedures such as ours, which attempt to mute 

material cost affects by constructing a residual experience curve, are one option for completing 

a technological learning assessment. 

 The final potential explanation is that learning in lead-acid batteries is over, and from 

this point on any technological learning is a figment of variations in material costs.  If this 

explanation were true, the inflection point in 2007 would signify the “end” of lead-acid battery 

learning.  With no more learning effects a close correlation would exist between material costs 

and total costs of lead-acid batteries, with each staying stable or increasing at close to inflation 

rates.  It is not possible to tell currently whether this explanation is true, as much more data, 

including future cost data, would be required to determine whether there are any additional 

learning effects influencing lead-acid battery costs. 

The future outlook of the lead-acid battery market remains dependent on material costs 

and future developments in other energy storage technologies. One other factor that may have a 

significant impact in this area is the introduction of new materials or processes for lead-acid 

battery production.  The maturity of the market and the relatively low price point of lead-acid 

batteries could mean great success for chemistries with similar production requirements and 

higher energy densities.  Moving forward, new lead-acid battery chemistries may be the key to 

the market’s future success against newer battery technologies.  Organizations such as the 
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Advanced Lead-Acid Battery Consortium are already moving in this direction in the hopes of 

extending the potential for lead-acid batteries in the energy storage market. 

3.4.3 The Potential for Future Developments 

 Section 3.3.5 used an asymptotic cost assessment to show the potential for an 80% 

improvement in energy density and materials costs.  However, due to the long history of lead-

acid battery production, use, and development, and the comparatively low current energy 

density, much of the growth potential may never be reached.  Even if lead-acid batteries close 

in on the maximum theoretical energy density, uncertainties in learning and material costs may 

still hinder lead-acid batteries in the marketplace.  For example, lithium-ion batteries have 

experienced rapid technological growth and cost reductions in recent years.  If these trends 

continue, and lithium-ion batteries also approach their maximum theoretical energy density of 

456 Wh/kg (Haas and Cairns 1999) (for lithium-manganite spinel), lead-acid battery 

technology may lose control of the energy storage market, both in automotive batteries and 

UPS batteries.   

Figure 13 illustrates the comparison between the learning potential of lead-acid batteries 

and lithium-ion batteries.  Prices for lithium-ion batteries are currently around $600/kWh 

(International Energy Agency 2013; Matteson and Williams 2014), compared to around $150-

200/kWh for lead-acid batteries.  However, high materials prices in lead-acid batteries put a cap 

on the potential for future improvement.  As a result, lithium-ion batteries have the ability to 

catch lead-acid batteries in price, as long as production and technological learning continue at 

historical rates, and lithium-ion batteries avoid material price spikes similar to those in lead-

acid batteries. To predict when this crossover point may occur, the analysis proceeds by 

bounding lithium-ion and lead-acid battery learning. 
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The experience curves for lithium-ion batteries were constructed based on data from 

(Matteson and Williams 2014), using $600/kWh as the current price, 15% and 22% learning 

rates, and 7.8x10
7
 kWh of cumulative production.  The lead-acid battery experience curves 

utilized the PPI price data, as well as the production data from figure 6, in the experience curve 

model shown by equation 6 with residual learning rates of 18% in the low scenario and 24% in 

the high. Each has a current asymptotic cost of $50/kWh representing the materials costs shown 

in Figure 11.  Due to their higher energy density, lithium-ion batteries have a much lower 

current asymptotic cost, which is around $11/kWh in 2013 USD (Matteson and Williams 

2014). Using the model given by equation 6, equations 8–11 show the experience curves 

illustrated in Figure 13 for lithium-ion, large lead-acid, and small lead-acid batteries 

respectively. 
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Figure 13. Projected experience curves for Lithium-Ion and Lead-Acid Batteries 

 
3.4.4 Gap-to-Parity Analysis 

The developments illustrated in Figure 13 are important not only to lead-acid battery 

producers, but also to the producers of other energy storage technologies and the government as 

well.  Costs and learning in these important energy technologies must be monitored in order to 

develop new applications for these technologies, and also to inform future policy on the usage 

and incentivizing of energy storage technologies. The goal of achieving “price parity” with an 

entrenched technology is embedded in the discourse on R&D and subsidy policy for new 

energy technologies. Focusing on batteries, lead-acid has been the cheap and reliable standard, 

thus establishing itself as the entrenched technology for emerging ones to beat.  Future cost 

reductions in lead-acid batteries, even only in residual components and processes, implies 

advanced energy storage technologies must meet a lower price parity.   

Considering lithium-ion batteries as an example, if the trends in technological learning 

continue and lead-acid prices stagnate, lithium-ion batteries will catch up with current lead-acid 
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battery prices at $150/kWh after 4.1x10
9
 kWh of cumulative production. At current growth 

rates in cumulative lithium-ion battery production, around 25% annually, and lead-acid 

production, around 5% annually, lithium-ion batteries could surpass this value in 17 years.  

This would be distressing for lead-acid battery producers and a huge success for proponents of 

lithium-ion batteries, since this represents a time where lithium-ion batteries would be viable to 

supplant lead-acid batteries in all applications.  However, this study has shown that there is 

potential for additional learning in the residual components and processes in lead-acid battery 

production. 

Figure 13 shows battery progress accounting for residual learning rates using equation 

6. Table 8 details the specific findings of the gap to parity analysis for lithium-ion batteries. 

The results show that if lithium-ion batteries experience learning rates below the 15% used in 

the low learning scenario and lead-acid batteries experience any more progress, lithium-ion 

batteries may never reach parity, simply due to the financial investment required to bridge the 

gap. Additionally, if improvements are made in lead-acid battery energy density or materials 

costs, or if lithium-ion batteries fail to perform as expected, the cost parity point may be pushed 

off further even in the high learning scenario for lithium-ion batteries.  

    

Crossover 

Point        

(Total kWhs) 

Production 

Gap 

(kWhs) 

Gap to 

Parity 

Years to 

Parity 

High LI Learning 

No LA Learning 4.1E+09 - - 17 

Low LA Learning 6.2E+09 2.10E+09 $7 Billion 19 

High LA Learning 1.0E+10 6.80E+09 $18 Billion 21 

Low LI Learning 

No LA Learning 3.1E+10 - - 27 

Low LA Learning 1.4E+12 1.4E+12 $1.1 Trillion 42 

High LA Learning 4.0E+12 3.9E+12 $2.5 Trillion 48 

 

Table 8. Gap to parity analysis for lithium-ion batteries using lead-acid batteries as the 

incumbent technology and various combinations of learning rates for each technology 



 62 

 

This new information suggests that lead-acid batteries are likely to maintain a cost 

advantage over lithium-ion batteries for up to an additional two decades compared to the 

constant lead-acid battery price scenario. Using equation 7, it is found that this increase in 

production required to reach parity could result in an additional $7 – $18 billion of investment, 

in the form of battery purchases, needed for lithium-ion batteries to become competitive with 

lead-acid batteries in the high learning rate scenario.  The results from Figure 13 indicate that in 

competitive markets, lithium-ion batteries must depend on high learning rates, or very low 

learning rates in lead-acid batteries, to reach parity within three decades and less than $100 

billion in total additional investment.  Otherwise, investment in the development of lithium-ion 

batteries to displace lead-acid would not be recommended. 

These results may seem like an ultimatum on lithium-ion battery development, however 

the primary use and growth in lithium-ion batteries has been primarily in the small mobile 

battery and plug-in vehicle battery markets.  Due to operational constraints, lead-acid batteries 

do not compete with lithium-ion in these markets, and those batteries that do compete with 

lithium-ion are more expensive than lead-acid batteries.  This relaxes the constraints for 

lithium-ion batteries in terms of target cost, improving the outlook in the primary sectors. 

However, should lithium-ion battery manufacturers look to expand their markets to internal 

combustion vehicles or backup energy storage for UPS systems, they will face difficult 

competition as outlined in Figure 13 and Table 8.  This analysis serves as an example of the 

consequences of technological progress, residual or otherwise, within incumbent technologies. 
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3.5 Conclusions and Recommendations 

 This information is critical to policymakers, investors, and producers concerned with 

energy storage technologies.  For policymakers, successful use of incentives for emerging 

energy technologies hinges on accurate price tracking and forecasting. Unexpected changes in 

the distance to parity could result in a failed subsidy program, or require additional funds 

before institutional goals are met. Investors choose to support growing technologies in the hope 

of widespread adoption and accompanying profits. Extended timelines to reach parity could 

result in investors discontinuing support of a technology. Producers rely on technological 

learning advancements to close the gap between emerging and incumbent technologies.  If this 

gap widens, or closes slower than expected, price parity and widespread adoption of a 

technology may be pushed into the future, costing additional large sum investments and 

threatening the viability of crucial future energy technologies. 

 The idea that cost reductions in an incumbent technology affect the market feasibility of 

an emerging one is important well beyond the energy storage domain. For example, goal setting 

for alternatives to the internal combustion engine are typically framed as if no further progress 

will occur (Plotkin and Singh 2009; van Vliet et al. 2010). There are no doubt cases where 

assuming a constant incumbent is safe, but our analysis indicates the importance of checking 

this assumption with quantitative analysis. This chapter argues that analyses such as the one 

completed here are needed to mitigate risk for research and development and subsidy policies 

for energy technologies.  
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IV. Cascading Diffusion and Energy Technology Subsidies: The Case of 

Plug-in Hybrid Electric Vehicles 

4.1 Introduction 

Every year, governments around the world spend billions of dollars on subsidies for 

energy technologies, with the hope of increasing cost-competitiveness in emerging 

technologies. Through a variety of policy initiatives, the United States spent over $100 billion 

between 2006 and 2012 to support energy technologies (Dinan and Webre 2012).  The 

magnitude of this public investment proves the importance of evaluating the policies to ensure 

the funds are not being wasted. However, when these policies are evaluated, a cost-benefit 

analysis of the items directly subsidized will generally neglect technological progress. Previous 

assessments of energy technology subsidies, such as Michalek et al. (2011) and Gecan (2012), 

do not consider technological progress in their evaluations, leading to an underestimation of 

total social benefits of the policy in question.  Other studies consider progress when quantifying 

costs and benefits, but only over the life of the policy in question (del Rio 2012; Klein et al. 

2010; Wand and Leuthold 2011; Ragwitz and Huber 2005), still neglecting to account for one 

of the primary motivations behind subsidy policy: subsidies are intended to drive consumer 

adoption, which increases production levels, stimulating technological progress and reducing 

costs.  As the costs continue to drop, subsidies may be adjusted accordingly until market 

activation occurs and economic incentives are no longer necessary. Once the market for the 

emerging technology has been activated, diffusion continues until the market reaches 

saturation. This free, post-subsidy diffusion should be quantified and credited to the subsidy 

program’s economic benefits. Accounting for post-activation diffusion, as well as incorporating 
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technological learning into subsidy formation, can significantly reduce the perceived subsidy 

cost per unit, as is shown in the proceeding analysis.  

This phenomenon is illustrated clearly in the evaluation of the Plug-in Hybrid Electric 

Vehicles (PHEV) tax credit. Based on the current costs and environmental benefits of the tax 

credit, Michalek et al. (2011) conclude that the $7,500 per vehicle credit is more than ten times 

the current net benefits of PHEVs and should therefore be redirected elsewhere.  However, this 

assessment does not consider the environmental benefits of the policy after the tax credit has 

been removed.  Accounting for technological learning and heterogeneous markets for PHEVs 

allows benefits extending beyond the life of the policy to be quantified through a cascading 

diffusion assessment. 
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Figure 14. Combining experience curves and market curves for subsidy policy analysis. The 

area between the experience curve (purple) and the market curve (red) up to point A represents 

the cost of the subsidy. After market activation at point A, there is “free” cascading diffusion 

until market saturation at point B. 

 

The literature surrounding PHEVs is primarily split into three categories: studies of PHEV 

environmental impacts, markets, and subsidies. Studies assessing and predicting the 

environmental impact of PHEVs include (Bradley and Frank 2009; Mui 2007; Musti and 

Kockelman 2011; Notter et al. 2010; Samaras and Meisterling 2008; Sioshansi and Denholm 

2009; Stephan and Sullivan 2008), while (Michalek et al. 2011; Shiau et al. 2009; Shinoda et al. 

2008) analyze the environmental benefits associated with PHEV adoption. The environmental 
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studies assessing the impacts and benefits of PHEVs have shown the potential for vehicle 

electrification to save on overall fleet emissions.  The characterization of this social benefit is a 

primary consideration in identifying technologies to subsidize. Without the discovery of 

positive environmental benefits, the technology would rely on other factors to influence the 

argument for financial incentives, such as reduced oil dependence and the accompanying 

military and energy security savings, and improved energy efficiency (Waller et al. 2014), 

which may be a key determinant in economic growth potential (Laitner et al. 2012). 

The next category includes articles on consumer purchasing decisions and responses to 

market growth (Graham-Rowe et al. 2012; Hidrue et al. 2011; Lin and Greene 2011; W. 

McManus and Senter, Jr. 2009; Ozaki and Sevastyanova 2011; Pellon et al. 2010), and studies 

assessing the future outlook of the PHEV market (AEA: The Committee on Climate Change 

2009; Al-Alawi and Bradley 2013; Cleary 2010; Sovacool and Hirsh 2009; Tal and Nicholas 

2013). These studies are important to grasp the potential effects of incentives, and to identify 

possible barriers to adoption.  Outlining the growth trends can also help assess the technology’s 

ability to diffuse through the population of consumers under different conditions. For example, 

the environmental benefits of PHEV adoption could increase with higher penetration levels of 

renewable energy in the electricity grid, leading to increased adoption levels in later time 

periods. Including technological progress and energy forecasting into growth models can 

improve the accuracy of market projections. 

Finally, studies that analyze the formation and effect of incentives for PHEVs include 

(Crist 2012; Diamond 2009; Kihm et al. 2010; Skerlos and Winebrake 2010). Similar to the 

second category of sources, these references include discussions of the market for PHEVs, 

albeit through the lens of policy development and the impact of incentives on PHEV market. 
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While utilizing information from the first two categories, these sources stand as the current 

reference for policymakers.  However, all of these sources fail to account for technological 

learning and the influence on subsidy levels.  This chapter addresses this issue while 

incorporating high-resolution data on PHEV submarkets to provide clear recommendations to 

policymakers regarding subsidy development for PHEVs and other emerging technologies.  

Tsuchiya (1989) combines market and experience curves for photovoltaics in order to 

calculate the subsidy required to bring the technology to price parity. However, this analysis 

does not construct empirical heterogeneous market curves and only quantifies program costs 

and benefits up to the conclusion of the policy. Similarly, Duke and Kammen (1999) utilize 

experience curves to complete a cost benefit analysis of three separate policy programs, based 

on the difference between the forecasted experience curve value and the environmental benefit 

of a given technology.  This study also neglects program benefits after the subsidy is removed 

and does not deal in heterogeneous markets. Considering the heterogeneity of markets by 

analyzing distinct submarkets unmasks trends that would otherwise be hidden by market 

aggregation. 

 

4.2 Methodology 

4.2.1 The Concept of a Subsidy 

For a consumer to decide to purchase a new technology requires that the purchase be 

economically viable and that any non-economic market barriers can be overcome. Economic 

viability is taken to mean that the purchase is financially beneficial compared to a benchmark 

product of similar utility (e.g., using Net Present Value to compare a PHEV and a conventional 

gasoline car). New technologies often face market barriers such as limited product selection, 
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consumer ignorance, or concerns about reliability (Zhai and Williams 2012). Government 

interventions to promote a socially desirable technology might aim to address economic 

feasibility, market barriers or both. One approach to overcoming market barriers is to increase a 

subsidy beyond economic viability to provide an incentive, but there are other possibilities. For 

example, the special credits given to alternative fuel vehicles in U.S. CAFE Standards act to 

overcome market barriers by encouraging auto manufacturers to broaden the selection of 

electric vehicles (NHTSA 2014). The variability and inconsistency of noneconomic market 

barriers make designing a government subsidy program infeasible, and a government program 

should therefore focus on empirical economic information to minimize wastefulness in a 

subsidy.   

4.2.2 The PHEV Experience Curve 

 Treating the cost of PHEV as the gap to parity, technological progress of different 

components of PHEVs is factored in to the analysis, resulting in equation 12 for the PHEV 

experience curve. A report from Argonne National Laboratory (Plotkin and Singh 2009) shows 

that PHEVs experience an $11,000 total price difference as compared to ICVs, and non-battery, 

electric drive-specific components make up approximately 14% of the PHEV cost. Within this 

$11,000 difference, there is a $4,000 incompressible, non-learning, cost in the difference 

between ICVs and PHEVs, comprised of additional machinery required for the hybrid drive, as 

well as electric-drive components that are presumed to have reached the conclusion of their 

learning potential. More specifically, this $4,000 is composed of increases to glider (49%) and 

transmission cost (8%) for utilization in a hybrid drivetrain, and the addition of electric motor 

(25%) and controller costs (18%). The remaining $7,000 of the $11,000 total price difference is 

attributed to the battery system and represents the primary learning capacity in PHEVs.  
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Segmenting the experience curve formula to account for this information results in the 

asymptotic experience curve in equation 12. 

    (12) 

 Without the benefit of extensive historical data on learning rates for PHEVs a bounding 

approach for potential learning rates is utilized. For the upper bound or optimistic case, a rate of 

22% is used, corresponding to a value for α of 0.3536.  This value was taken from (Matteson 

and Williams 2014) and is calculated as the historical learning rate for lithium-ion batteries, the 

most common form of battery in PHEVs.  The pessimistic case used a learning rate of 9.5%, 

and a value for α of 0.1440.  A review of the literature found that this rate from the 

International Energy Agency (2013) is a conservative estimate and is therefore used as a lower 

bound.  

The value for initial production also comes from the analysis within (International 

Energy Agency 2013) and represents the cumulative international adoption of plug-in vehicles 

to 2012.  International data is used to account for the expected spillover effects across the 

international vehicle manufacturing industry.  This signifies that our model treats technological 

progress in PHEVs as an international phenomenon, while applying the model to the situation 

within the United States. Additional learning factors, such as the effect of mobile and storage 

battery production on vehicle battery development, have not been included in this analysis. 

4.2.3 Incompressible Cost 

As stated above, and shown by equation 12, the current manufacture of PHEVs results in an 

incompressible cost of $4,000 above the cost of manufacturing an ICV.  This phenomenon 

plays an important role in determining the viability of a PHEV subsidy program in different 

submarkets.  This additional cost means that a consumer’s willingness to pay for a PHEV must 
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be at least $4,000 for the decision to make sense economically (i.e. for net present value to be 

greater than zero).  

 This incompressible cost is also not affected by the learning rate.  Changes in the 

learning rate will only affect how quickly, measured in number of vehicles adopted, the 

experience curve nears the incompressible cost asymptote.  For a willingness to pay above 

$4,000, the learning rate is essential to determining whether or not the decision will be 

economical for most submarkets. 

4.2.4 PHEV Market Curves 

Calculating the subsidy gap then requires determination of the price parity target: the cost 

that represents economic competitiveness with incumbent technologies.  In some cases, the 

price parity target is homogeneous throughout the population of potential consumers, although 

the target has the potential to fluctuate significantly based on variability in the economic 

situation of consumers in different geographic locations. In an effort to mitigate this variability, 

the price parity target is treated as a heterogeneous value based on the economic willingness to 

pay of individual consumers. Economic willingness to pay refers to the potential improvement 

in the economic standing of an individual given the choice to adopt a new technology as 

opposed to an incumbent. This is calculated by determining the difference in lifetime cost of an 

emerging technology relative to the cost of the incumbent. If adopting the emerging technology 

results in a lower lifetime cost, the consumer is said to have a positive willingness to pay equal 

to the magnitude of the cost savings. Taking it one step farther, combining the willingness to 

pay of multiple consumers creates a market curve for the emerging technology. 

A consumer’s willingness to pay for a PHEV is taken to be the total lifetime cost 

savings as compared to equivalent ICVs. Several different factors determine cost savings for 
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PHEVs, including annual vehicle miles traveled, gas prices, electricity prices, and the fuel 

efficiency of the incumbent.  Over a ten-year lifetime, and assuming a 10% discount rate, the 

lifetime savings is quantified as the net present value of the total cost savings, given by the 

difference between driving an ICV versus driving a PHEV. The ICV is assumed to have an 

EPA combined fuel efficiency of 30 miles per gallon, which is the average for the top 20 

selling cars in the US (Department of Energy 2014), and is significantly above the average fuel 

efficiency of the current vehicle fleet in the US, nearing the CAFE standards for new vehicles. 

The PHEV is assumed to have a fuel efficiency of 40 miles per gallon of gasoline and a 

conservative estimate of 3 miles per kWh of electricity, which is lower than the average 

performance even during cold winter months when PHEVs are least efficient (Patten et al. 

2011). These assumptions correspond to a conservative estimate of consumer willingness to 

pay for PHEVs in the US. 

Proceeding with the analysis, three variations of the PHEV market curves are 

formulated.  First, market curves are developed using data corresponding to nation-level 

averages of vehicle miles traveled, electricity price, and gasoline price (Energy Information 

Administration 2014a; Energy Information Administration 2014b; Department of 

Transportation 2012). Based on the above data, the national average consumer has a 

willingness to pay of $3,844, which is less than the incompressible cost. Unless a new 

technology or production method is introduced to change this cost, and create a new experience 

curve with a lower asymptote, the national average, as well as a significant portion of states 

(Figure 15) and individual consumers (Figure 16) will never find PHEVs attractive 

economically. 
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The second method is augmented to include state-specific average vehicle miles 

traveled, electricity price, and gas price (Energy Information Administration 2014a; Energy 

Information Administration 2014b; Baxandall 2013). This approach produces the state-level 

average consumer willingness to pay, which may be organized in decreasing order to be 

utilized in the subsidy analysis. The second set of market curves also divulge the ranking of 

States that find PHEVs most economically attractive, information that is useful when 

determining optimal diffusion paths for technology adoption. 

Finally, the resolution is increased further to take into account the travel characteristics 

of individual consumers. This third variation of the PHEV market curves utilizes data from the 

most recent National Household Transportation Survey (NHTS) (Department of Transportation 

2011), in which over 300,000 respondents were surveyed regarding various characteristics of 

their personal transportation behavior.  Specifically, data indicating the individual’s travel 

patterns, annual vehicles miles traveled, and State of residence was paired with geographically 

specific electricity prices (Energy Information Administration 2014a) and gasoline prices 

(Energy Information Administration 2014b) and fuel efficiency data for PHEVs (Silverman 

2010; Department of Energy 2014) and ICVs (Cain 2014; Department of Energy 2014; 

Department of Transportation 2012) to determine the lifetime fuel costs for each technology.  

Figure A8 in Section 6.3 of the Appendix shows a visualization of the microdata for 

annual vehicle miles travelled from the NHTS fit to a normal distribution, while Figure A9 

does the same for current state-level gas price data.  The annual vehicle miles travelled 

distribution shows that the majority of Americans travel less than 20,000 miles per year, with a 

mean of around 11,000 miles per year.  Driving 11,000 miles per year is equivalent to a 

weekday commute of 42 round trip miles.  Given that many PHEVs are designed to travel 
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around 40 miles in electric drive, an average commuter with a PHEV will use little gasoline 

whether there is a vehicle charger at the place of work or not.  There is obviously variability in 

charger locations, personal travel distances, and even PHEV electric drive efficiency, but the 

typical commuter driving patterns seem to align well with the operational constraints of 

PHEVs. The visualizations in the appendix are simplifications of the full data to aid in the 

visualization of the analysis, however, the results are calculated from the full dataset provided 

in the NHTS. 

The difference between the lifetime fuel cost of ICVs and PHEVs represents the 

individual’s economic willingness to pay for PHEVs.  This data was then weighted by each 

State’s population, and extrapolated to the set of all potential consumers in the United States 

(United States Census 2013), defined as the number of licensed drivers not currently 

incarcerated. While a driver may choose to adopt multiple vehicles at a time, this model is 

constructed to give each driver the choice to replace their primary vehicle with a PHEV. In 

order to assess willingness to pay in terms of manageable submarkets, individuals were binned 

into 50 cohorts of equal population and the cohorts were ordered from highest willingness to 

pay to lowest, as shown by Figure 16. 

Market curves for this analysis were formed through the calculation of the economic 

willingness to pay of U.S. consumers using various levels of data resolution.  This method is 

utilized assuming that the vehicle purchase decision is an economic one, which stands as a 

necessary condition of subsidy policies. Behavioral considerations, while important, have not 

been included in this study, although Figure A10 in the Appendix shows the potential for non-

economic considerations to negatively affect PHEV adoption. Essentially, non-economic 

factors such as range anxiety and unfamiliarity will shrink the market for PHEVs, since many 
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consumers will choose not to adopt a new technology even if it makes economic sense. On the 

other hand, certain consumers may have a desire to lower their overall emissions and choose to 

adopt regardless of WTP, growing the total market. 

4.2.5 Cascading Diffusion and PHEV Subsidy Cost  

Once individual-level willingness to pay has been calculated and individuals have been 

placed into bins the market curve is complete.  At any given point, the difference between the 

experience curve and this empirical market curve represents an economically efficient subsidy 

level for programs intended to increase adoption of PHEVs. However, as the program proceeds 

and adoption increases, the curves will intersect and the experience curve will drop below the 

market curve, signaling economic viability of the technology, at which point the subsidy may 

be removed. This transition may not occur for some emerging technologies, which indicates 

that no subsidy program will succeed in market activation. The “free” adoption occurring 

through the period over which the market curve exceeds the experience curve is termed 

cascading diffusion, and is one indication of a successful subsidy program. This adoption will 

continue until full market saturation is reached, or until the curves intersect again and cost 

surpasses the willingness to pay of the remaining consumers. 

The total cost of the subsidy program is calculated as the area between the curves over 

the period that the subsidy occurs: when the experience curve is greater than the market curve 

before cascading diffusion.  The benefits of the subsidy include adoption that takes place both 

during the subsidy program and throughout the period of cascading diffusion, resulting in a 

significant improvement to societal benefit through reducing the subsidy cost per unit adopted. 

Following these guidelines the market situation for PHEVs is analyzed.  
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This mathematical formulation allows for a simple and telling quantification of subsidy 

program benefits. However, in reality some adoption of PHEVs will likely occur regardless of 

the existence of a subsidy. Ideally, only the benefits that would not have occurred without the 

subsidy should be attributed to the subsidy program, but this would require knowledge of the 

future outcome of two mutually exclusive events: the diffusion of PHEVs with and without 

subsidies.  This information clearly does not currently exist, and no forecasts have been 

undertaken in this analysis. The proceeding analysis therefore follows the guidelines presented 

in the previous paragraph with the qualifier that it effectively stands as an upper bound to the 

subsidy program’s total benefits. 

 

4.3 Results and Discussion 

4.3.1 Nation and State Level Cascading Diffusion Assessment 

Combining the PHEV experience curves with market curves allows us to calculate the total 

subsidy program cost and the accompanying market potential for PHEVs in each scenario. The 

general trend revealed through the analysis is this: as higher resolution data are included in the 

analysis, the calculated benefits of a PHEV subsidy increase. The first case, which utilized 

nation-level data, offers a bleak outlook for any potential PHEV subsidy program. In fact, the 

national averages produce a willingness to pay that is below the current incompressible cost of 

PHEVs, meaning that no amount of subsidy or adoption will activate the market. 
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Figure 15: State- (blue) and Nation-level (red) market curves for the U.S. paired with 

pessimistic (gray) and optimistic (black) experience curves for PHEVs in a cascading diffusion 

analysis of vehicle subsidies.  No crossover points exist where market curves exceed 

experience curves, meaning no subsidy will successfully activate the PHEV in these scenarios. 

 

The situation is altered only slightly when the state level market curves are calculated. 

Based on their combination of gasoline price, electricity price, and vehicle miles traveled, the 

average consumers in some states are calculated to have a willingness to pay of more than 

double the national average. Figure 15 illustrates a change in the style of market curve from the 

national average, revealing 51 distinct submarkets, one for each of the states and the District of 

Colombia. Each submarket is as wide as the population of potential consumers in that state, and 

a willingness to pay corresponding to the states’ average value. Table A2 in Section 6.3 of the 
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Appendix lists the average willingness to pay for each state in descending order, as it appears in 

Figure 15. 

Figure 15 also shows that considering heterogeneity in state markets still reaches the same 

result as disregarding submarkets in the nation-level assessment.  In both the nation-level and 

state-level analysis, the model shows that no potential subsidy program would result in any 

market activation, which would seem to call any attempt to incentivize adoption of PHEVs into 

question. However, the third and final case reverses the conclusion entirely. 

4.3.2 Person Level Cascading Diffusion 

The results of the cascading diffusion analysis in the third scenario are far more 

optimistic for a PHEV subsidy program. Including higher resolution data returns a completely 

different outcome. Heterogeneity of the sub-markets is magnified further when considering the 

willingness to pay of individual consumers, and the market curves improve and exceed the 

PHEV experience curves, signifying a point of market activation in figure 16. Table 9 outlines 

the specific results for the third case, while Figure A11 in Section 6.3 of the Appendix shows 

the comparison between the market curves constructed in the three scenarios.  Clearly, market 

heterogeneity and the data resolution that allows heterogeneity to be analyzed are critical to 

accurately assessing the diffusion potential of PHEVs.  The person-level market curve varies by 

100% at times and has an average difference of over 50% as compared to the nation-level 

curve. 
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Figure 16: Person-level market curve (blue) with pessimistic (gray) and optimistic (black) 

experience curves for PHEVs in a cascading diffusion analysis of vehicle subsidies. In both 

scenarios, the person-level curve surpasses the experience curve for PHEVs, showing that 

short-term subsidies activate a larger market and result in the potential for robust incentive 

programs. 

 

In a pessimistic learning scenario, and under current pricing conditions, a subsidy of 

$1.3 billion for 2.1 million PHEVs activates the diffusion of another 31 million PHEVs, 

resulting in an average cost per vehicle adopted of $42. In the optimistic learning rate scenario, 

only 220,000 PHEVs must be subsidized to activate a market of 68 million vehicles.  The 

average cost per vehicle adopted in this case is only $3. Disregarding cascading diffusion 

results in average costs fifteen times higher for pessimistic learning rates, and costs are more 

than 300 times higher when doing the same in optimistic learning scenarios. 



 80 

 

 
Low Learning High Learning 

Total Subsidy $1.3 Billion $210 Million 

Market Activation 2.1 Million 220,000 

Cascading Diffusion 29 Million 68 Million 

Cost per Vehicle $42 $3 

Table 9. Results of the cascading diffusion assessment of a plug-in hybrid electric vehicle 

subsidy considering person-level sub-markets 

 

4.3.2 Net Benefits of a PHEV Subsidy 

Combining the results from table 8 and the current valuation of PHEV benefits from 

Michalek et al. (2011) an upper bound for the net benefits of the PHEV subsidy, formulated 

above with equation 13, may be calculated. 

 

Net Benefits = Total Environmental Benefits – Total Costs   (13) 

 

The Total Environmental Benefits of PHEVs over ICVs is $656 per vehicle (Michalek 

et al. 2011), and the Total Costs of the subsidy program under current conditions are $42 per 

PHEV in the pessimistic case and $3 per PHEV in the optimistic scenario. With total adoption 

ranging from 31 million vehicles in the pessimistic case to 68 million vehicles in the optimistic 

case, the Net Benefits range from $19 billion to $44 billion.  The fact that the results are 

positive indicates that the policy is in the public interest.  

In addition to these benefits, a growing market for PHEVs directly influences the future 

viability and diffusion of all-electric vehicles (AEVs).  A large market for PHEVs necessarily 

corresponds to an increase in the development of plug-in vehicle infrastructure, which should 
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likely help mitigate range anxiety in AEVs due to increased charger availability. Higher PHEV 

adoption will also push electric vehicle batteries down the experience curve and propagate a 

sense of familiarity with plug-in vehicle technology.  Each of these factors improves the market 

outlook for AEVs, and lays the groundwork for a transformation of the personal transportation 

industry. 

 

4.4 Sensitivity Analysis 

4.4.1 Variability in Gas Prices 

To this point the analysis has focused on the present state of affairs in the US. Moving 

forward the viability of the PHEV subsidy is assessed at a variety of potential gas price 

scenarios to account for the historic volatility in gas prices. Using the same experience curves 

as before, the gasoline price is now allowed to vary by plus or minus $1.50, which is equivalent 

to considering average gasoline prices between $2.00 and $5.00 per gallon. The results are 

illustrated in Figure 17, and the cascading diffusion analysis is displayed in Table 10. 
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Figure 17. The effect of gas price variability on market curves for PHEVs. Higher gas prices 

result in higher economic willingness to pay for PHEVs relative to conventional vehicles. 

 

 Figure 17 clearly shows a strong relationship between gas price and PHEV subsidy 

viability.  At gas prices at or above a national average of $3.50, a subsidy for PHEVs will 

activate a larger market and result in the total adoption of between 31 and 99 Million PHEVs.  

Below current gas prices, however, a PHEV subsidy is likely to fail in activating larger 

markets, especially in scenarios with gas prices below a national average of $2.75.  In these 

cases, the PHEV market would rely on high learning rates to drive adoption, and a subsidy 

program would be unproductive. 
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Low Learning High Learning 

Gas price Subsidy Activation 
Total 

Diffusion 
$/PHEV Subsidy Activation 

Total 

Diffusion 
$/PHEV 

+$1.50 0 0 7.9E+07 $0.00 0 0 9.9E+07 $0.00 

+$0.75 $10 Million 4.6E+04 6.2E+07 $0.16 $3.7 Million 1.6E+04 8.7E+07 $0.04 

Current $1.3 Billion 2.1E+06 3.1E+07 $41.92 $210 Million 2.2E+05 6.8E+07 $3.04 

-$0.75 - - - - $2.0 Billion 2.3E+06 3.4E+07 $58.82 

-$1.50 - - - - - - - - 

Table 10. Cascading diffusion assessment of a PHEV subsidy at current electricity prices and various gas prices relative to current 

levels. 
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 Table 10 and Figure 17 show another case in which a subsidy program would be 

unproductive: if gas prices increase $1.00 per gallon or more above current levels.  In these 

scenarios, a subsidy is unnecessary to drive adoption since consumer willingness to pay for 

PHEVs would be so high relative to internal combustion vehicles.  Improvements to the fuel 

efficiency of ICVs could cut into the willingness to pay values, though some of the 

improvements would be passed along into the hybrid engine of the PHEV. An expansion of this 

analysis, including an examination of the subsidy’s sensitivity to electricity price, is available 

in the coming sections. 

4.4.2 Sensitivity of Total Adoption to Electricity and Gas Prices 

This section will present the results to show the model’s sensitivity to both electricity prices 

and gas prices. Building on the information in Figure 17, a third dimension is added to the 

analysis and solve for the total adoption of PHEVs driven by a subsidy program given various 

combinations of gas and electricity prices.  Figures 18 and 19 show the results for the low 

learning rate scenario and high learning rate scenario respectively. 
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Figure 18. Sensitivity analysis of total PHEV adoption driven by a subsidy program at various 

electricity and gas price combinations and a low learning rate of 9.5%. 

 

 In the low learning scenario, the analysis shows that there will be no activation point, 

and thus no worthwhile subsidy program, for situations with gas prices below current values. 

On the other hand, even with high electricity prices and a low learning rate, a subsidy program 

could result in PHEV adoption reaching 30-60 million vehicles with high gas prices. The 

outlook for a subsidy program improves when considering adoption in the high learning rate 

scenario.  There are still no successful programs at very low gas prices, equating to a national 

average of $2.00 per gallon, but some adoption does occur at gas prices within -$0.75 of 

current values.  Once again the model shows a significant sensitivity to gas price, resulting in 

the adoption of up to 87 million PHEVs even at extremely high electricity prices. 
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Figure 19. Sensitivity analysis of total PHEV adoption driven by a subsidy program at various 

electricity and gas price combinations and a high learning rate of 22%. 

 

 The most optimistic combination possible for PHEVs in this analysis is shown in Figure 

19 and considers the total adoption of PHEVs at low electricity prices, high gas prices, and a 

high learning rate.  In this case, total adoption reaches a saturation point at 91% of all potential 

consumers in the US. However, this result is highly unlikely for two primary reasons.  First is 

the fact that this analysis neglects non-economic decision factors such as digging in with 

current ICV technology, information disconnects, and availability. These and other factors will 

lead to a lower value for total adoption than is projected by Figures 18 and 19.  The second 

reason is that as PHEV adoption increases, plug-in vehicle charging infrastructure will develop 

in kind.  While these developments can help PHEV adoption in the short-term, the availability 

of chargers and increased familiarity with electrified transportation may accelerate the adoption 
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of all-electric vehicles (AEVs). Growth in PHEVs will also drive down electric vehicle battery 

costs, improving the cost-effectiveness of AEVs, which contain a lower incompressible cost 

than PHEVs due to the absence of the combustion engine. This lower incompressible cost 

allows the AEV experience curve to drop lower than that of the PHEV, causing it to become 

more attractive to a wider collection of submarkets in the long-term. 

 This analysis has discussed program developments in terms of relative timing (i.e. 

short-term vs. long term) because the PHEV market is still in the early stages of growth and 

plug-in vehicles account for less than a percentage point of the national vehicle fleet. The 

markets and subsidy programs have been assessed in terms of vehicles adopted, due to the fact 

that the timeline for these events is highly uncertain based on the emerging nature of the PHEV 

market. As the market matures, more data will become available that will decrease the 

significant variability in market growth rates and allow for future assessments to include a time 

component. 

4.4.3 Sensitivity Analysis of PHEV Subsidy Net Benefits 

The next step in the sensitivity analysis is to quantify the net benefits of the subsidy 

program with the same variety of initial conditions for learning rates, gas price, and electricity 

price.  The net benefits were calculated according to equation 13; the difference between Total 

Environmental Benefits and Total Program costs.  The total environmental benefits are 

calculated as the net benefit per PHEV, $656, taken from Michalek et al. (2011), multiplied by 

the total adoption attributed to the subsidy, including cascading diffusion. The total program 

cost is calculated by taking the area between the experience curve and the market curve up to 

the market activation point. Varying the input parameters within the low and high learning rate 

scenarios resulted in Figures 20 and 21 respectively. 
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Figure 20. Sensitivity analysis of subsidy program net benefits at various electricity and gas 

price combinations and a low learning rate of 9.5%. 

 

 At the low learning rate of 9.5%, a subsidy program will only result in positive net 

benefits if gas prices stay at or above current levels.  Based on Figure 18, no subsidy program is 

productive below current gas prices if the learning rate is low, and these results are omitted 

from Figure 20. However, even at low learning and current gas and electricity prices and 

especially in more optimistic scenarios, the model shows significant social benefits to 

subsidizing PHEVs.  The net benefits range from $19 billion to $52 billion at current electricity 

costs, and from $40 billion to $55 billion if gas prices approach $5.00 per gallon. 
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Figure 21. Sensitivity analysis of subsidy program net benefits at various electricity and gas 

price combinations and a high learning rate of 22%. 

 

 When examining the high learning rate scenario, a larger assortment of initial 

conditions are found to result in beneficial subsidy programs.  For instance, even with gas 

prices up to $0.50 below current levels a subsidy program will result in a net benefit to society. 

Figure 21 clearly shows that the subsidy program benefits are more sensitive to changes in 

gasoline price, causing net benefits to vary from $20 billion to $65 billion at current electricity 

costs, while net benefits range from $23 billion to $54 billion at current gasoline prices. 
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4.5 Discussion and Conclusions 

4.5.1 Gas Price as a Determinant of Subsidy Program Viability 

Figures 17-21 have shown dependence between gasoline price and the viability of PHEV 

subsidy programs.  This is only natural since PHEVs, as an emerging technology, are forced to 

compete with the incumbent ICVs in the marketplace.  As gasoline prices increase ceteris 

paribus, the variable cost of owning ICVs increases relative to the more efficient PHEVs.  

However, this does not necessarily mean that additional taxation or penalties should be utilized 

to improve the relative economic state of PHEVs. While leveraging these mechanisms does 

improve the relative standing of PHEVs, they hinder the absolute economic impact of PHEVs.  

 A long-term solution that may help to avoid some of the short-term economic penalties 

of increased gasoline taxes is to increase the amount of clean renewable energy on the 

electricity grid.  Simultaneously incentivizing the development of cleaner and more efficient 

energy options on the grid will increase the net social benefits accrued with each PHEV 

adopted by improving the environmental performance of PHEVs relative to fully gasoline-

powered vehicles.  In this way, both the national energy system and the transportation system 

may benefit from lower emissions and higher energy efficiency, and PHEVs improve both 

relatively and absolutely as compared to ICVs. 

4.5.2 Considering Program Administration 

To this point the analysis has assumed that the subsidy level at any given point is the 

difference between the experience curve and the market curve (i.e. the total amount of money 

required to make the decision economical for the given consumer).  Inherent to this assumption 

is the fact that experience curves are calculated as continuous functions, meaning even 

fractional or infinitesimal increases in cumulative adoption result in reductions in technology 
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cost. In reality, technological progress occurs in discrete segments according to improvements 

in materials, processes, or experience. The result of this phenomenon would be to change the 

experience curve into a sort of decreasing step function.  The step function consideration is also 

more conducive to the management and administration of the subsidy program. Not only is 

learning unlikely to occur at such small intervals, but it is also impractical to assume that the 

necessary data will be available on a continuous basis to administer the subsidy as quantified 

above. 

 To assess the impact that the assumption of continuous learning has on the model the 

net benefits of a fixed subsidy program are considered. Under this type of policy, the subsidy is 

set at the initial cost gap and stays at the fixed amount until market activation is projected to 

occur according to the technology’s progress down the experience curve, at which point the 

subsidy is removed.  Figure 22 illustrates this program style and represents the upper bound for 

the program cost, because the fixed subsidy essentially overpays all but the first, or first few, 

cohorts. However, the stability of this policy style is beneficial to producers, since they are able 

to plan budgets and production around the fixed subsidy. 
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Figure 22. A comparison of a continuous subsidy function (black), subsidy programs that taper 

at discrete intervals (blue and green), and a fixed subsidy program (red). The area under each 

curve represents the total cost of the subsidy program. 

 

 Stability in program administration can result in the benefits mentioned above, though a 

tapered subsidy that is dependent on technological progress may have benefits as well.  For 

example, regular reductions in the subsidy amount per vehicle may incentivize early adoption 

as consumers race to receive higher subsidies.  Tapered subsidies also save significant amounts 

of public funds, as shown by Figure 22. This multi-criteria decision process should be dealt 

with on a case-by-case basis, and must begin by incorporating technological progress 

assessments into the policymaking process. 
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Figure 23. Sensitivity analysis of a fixed subsidy program’s net benefits at various electricity 

and gas price combinations and a low learning rate of 9.5%. 

 

 Figure 23 quantifies the net benefits of a fixed subsidy program in the low learning rate 

scenario. Fixing the price of the subsidy increases program costs and reduces net benefits, but 

still results in positive net social impacts over the same combination of initial conditions, since 

the subsidy is still removed at the market activation point and experiences the same amount of 

cascading diffusion as in the previous scenarios. The reduction in total economic benefits is 

more drastic at lower gas prices, since more funds are required to make PHEVs viable in these 

scenarios. At high gas prices, corresponding to national averages over $4.50, there is no impact 

on program benefits since no financial incentives are necessary for PHEVs in these cases. 

Using a fixed subsidy model as opposed to an iterative model shown by Figure 20 reduces the 

total program benefits by an average of 8%. 
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Figure 24. Sensitivity analysis of a fixed subsidy program’s net benefits at various electricity 

and gas price combinations and a low learning rate of 22%. 

 

 At the high learning rate, the average reduction in total program benefits increases to 

10% relative to previous scenarios.  This value is higher than in the low learning rate fixed 

subsidy scenario because the reduction in technology costs, and correspondingly the reduction 

in subsidy required, occurs at a faster rate, which increases the distance between the fixed 

subsidy and continuous subsidy curves. This means that the fixed subsidy will overpay by more 

in the high learning rate scenario than in the low. Figure 24 shows the full results of this 

analysis for an array of initial conditions. 

4.5.3 Conclusions 

Technological progress and the consideration of learning rates are essential to the formation 

of more beneficial and lower cost subsidy programs.  Continuously tracking the progress of a 

technology over the life of a subsidy program could save billions of dollars in public funds and 
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allow governments to identify market activation and saturation points in order to take 

advantage of cascading diffusion. Incorporating learning rates at a smaller scale by predicting 

market activation in fixed subsidy programs can result in savings as well, while driving 

adoption of a socially beneficial technology. From an administrative standpoint, structures must 

be put in place in policymaking organizations and organizations involved in policy analysis to 

assess technological progress of emerging technologies.  These considerations could save 

public funds in current policy programs, and could also be a key determinant in whether or not 

to subsidize an emerging technology in future programs. 
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V. Conclusions 

5.1 Discussion of Uncertainty in This Research 

A range of uncertainty considerations accompanies the quantitative modeling presented 

in this dissertation. The three primary types of uncertainty that exist within this research are 

scenario, model, and parameter uncertainties. Scenario uncertainty pertains to the assumed 

scope that is analyzed in each chapter and how inputs are presumed to be related. For example, 

in Chapter 3, the future cost of lead and other battery materials is a source of scenario 

uncertainty. Figure 13 assumes an asymptotic cost for lithium-ion and lead-acid batteries using 

current materials pricing. The model could be altered to reflect some long-term growth in 

materials prices since prices will likely increase over time, however, the purpose of the Figure 

is to provide a lower bound on the experience curves, and since current costs are likely to be 

lower than future material costs, this scenario uncertainty was acceptable. This was also the 

case with gas prices in Chapter 4. While the analysis bounds gas prices between average costs 

of $2-$5 per gallon, gas prices outside this bounding could still exist, in which case the model 

would necessarily have to change the scenarios being considered. 

The largest scenario uncertainty in this dissertation is the fact that each Chapter 

quantifies only the economic basis for energy policy decision-making. While important 

behavioral aspects do exist, this research has been prepared under the assumption that 

government incentive programs must first and foremost, if not only, satisfy the necessary 

economic conditions for consumer choice. Whether behavioral considerations are to be dealt 

with by the government is a matter of debate, but regardless of the entity in charge of 

considering consumer behavior, this information is critical to the success of future programs 

and should be incorporated in government decision-making. 
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Model uncertainty arises in the choice of which quantitative methods to utilize in an 

analysis. This dissertation has relied solely on a single factor experience curve for ease of 

calculation and because this model satisfies Ockham’s razor; it is the simplest model that still 

performs well enough to complete a robust analysis. If the scope of this dissertation was to 

solely develop the most realistic experience curve for a technology, a new approach utilizing 

multi-factor experience curves may have been chosen. In that case, the model would be able to 

account for uncertainties in technological progress that exists outside of the learning rate, such 

as major advances in research and development. If a major advance were to happen in a 

technology discussed in this research, such as a discovery that reduces lithium-ion battery costs 

by 50%, the current single-factor model would simply have to alter the input parameter for 

initial cost of the technology, and repeat the calculation of the experience curve from that new 

starting point. A multi-factor model may be able to incorporate these advances into the 

modeling structure, so that the analysis would not have to start over to reflect the new 

conditions. 

Another example of model uncertainty exists in the assumption in this dissertation that 

the government would want to cash in on externality benefits alone by utilizing a least-cost 

model for subsidy program development like those presented in Chapters 2, 3, and 4. If, for 

example, the government’s goal was to replace all gas vehicles with EVs as soon as possible, 

then they could potentially give EVs away to replace all registered vehicles. In that case, the 

analysis presented in Chapter 4, and particularly Figures 15, 16, and 17 would have to be 

altered so that the x-axis value for cumulative adoption increased from 150 million to nearly 

300 million, so that the model assessed total vehicles replaced, rather than licensed drivers who 

have chosen to adopt PHEVs. 
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The final type of uncertainty in this research is the most commonly discussed form, 

which is parameter uncertainty. As with most quantitative assessments using secondary data, 

the values used throughout this dissertation have been found in the literature and utilized in the 

models and scenarios presented previously. In some cases, such as the learning rate for lithium-

ion batteries in Chapter 2, or gas prices and PHEV learning rates in Chapter 4, bounds have 

been used to account for uncertainty and variability in the input parameters. In other cases, a 

best value has been found from a trusted source and utilized as-is so that the analysis may 

proceed. While this may introduce some uncertainty into the analysis, the author argues that the 

value of the quantitative and qualitative results is far greater than the cost of introducing 

incremental uncertainties to certain portions of the analysis. 

 

5.2 Summary and Key Points 

This dissertation has presented three new methods, each with a case study, in the field 

of technological progress.  The key finding in this project has been the importance of 

considering technological progress and learning rates throughout the policymaking process. In 

each case, utilizing technological progress assessments as a primary component of subsidy 

policies for energy technologies has the potential to save billions of dollars in public 

investment, while enabling the coordination of efficient incentives for socially beneficial 

technologies.  The specific contributions made by each chapter are outlined below. 

Chapter II developed a model for creating learning-dependent tapered subsidy programs 

for emerging technologies. The tapering was assessed at various intervals to show the 

difference in total program costs at alternate tapering schedules.  Using a range of learning rate 

inputs, the sensitivity of net public investment to learning rate was also tested using the first 
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publicly available experience curve constructed for lithium-ion batteries.  The results showed 

that when developing learning-dependent subsidy programs, the tapering interval must be 

chosen carefully in the interest of cost savings and administrative practicality. The fact that 

total program cost is highly dependent on the technology’s learning rate is also a key result, 

implying that learning rates must be considered in the policymaking process. 

 Chapter III introduces the idea of residual learning rates, which represent the learning 

experienced by a technology when materials costs have been disaggregated from a 

technology’s experience curve.  The residual learning rates allow us to assess progress in a 

technology, in this case lead-acid batteries, despite volatile materials cost data.  Learning in 

lead-acid batteries is particularly important, as the batteries currently represent the incumbent 

technology in the arena of both small automotive and large backup power battery systems.  The 

construction of an experience curve for lead-acid batteries allowed for a gap to parity analysis 

of lithium-ion batteries, showing that the existence of learning in an incumbent technology, 

which essentially results in a moving cost target, can drastically effect the total time and 

investment required for an emerging technology to reach parity.  Since many emerging 

technologies qualify for subsidies or other financial incentives, consideration of learning rates 

in existing technologies is also important within the policymaking process to ensure efficient 

allocation of public funds. 

 Chapter IV outlines the methods required to assess fractional, heterogeneous markets 

for energy technologies.  By examining data on the individual consumer level, market curves 

can be constructed based on each consumer’s willingness to pay for the technology.  The use of 

high-resolution data also revealed that the assessment of energy policies, and specifically 

subsidies, is highly dependent on the level of resolution in the input data (i.e. consumer level 
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versus state or nation level). This chapter also distinguishes the purpose of a subsidy into 

distinct segments, concluding that the diffusion of a socially beneficial technology is the 

primary goal and is therefore the necessary determinant when setting subsidy levels.  When 

applied to a case study of PHEVs, the result is a robust cascading diffusion assessment of 

PHEV subsidy policy. 

  

5.3 The Path Forward for Sustainability Research 

Each chapter provides new insights for the utilization of technological progress models 

for energy technology policies.  The methods outlined above are presented through specific 

case studies, although they may also be applied to a range of technologies and situations. By 

furthering the use of technological progress modeling in subsidy policies, more efficient 

policies may be constructed for technologies in order to accelerate progress up the diffusion s-

curve and improve overall sustainability. More specifically, the benefit of technological 

progress modeling is that it not only informs a necessary condition of economic viability of 

government programs, but the accompanying learning rate values and scenario analyses lead to 

clear go/no-go recommendations for decision-makers.  

To increase the potential impact of technological progress modeling, learning rate 

studies and experience curves must become central components of the policymaking process. 

These models help inform the benefit-cost assessments of government energy programs, and 

allow researchers to move away from traditional retrospective policy analysis towards 

prospective policy analysis and development. This process would allow better, more 

economical program to be developed for emerging energy technologies. To make this process a 

reality, increased collaboration at the research-government-industry nexus must be encouraged 
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to ensure researchers have the best available data to provide decision-makers with the valuable 

tools they need to design the next generation of energy policies. While this represents only one 

piece of sustainable development for the energy industry, promoting sustainable technologies 

will have a key role in a future sustainable energy system. 
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VI. Appendices 
 

6.1 Appendix to Chapter II 
 
 

 

Figure A1. The experience curve (black) and cost target for lithium-ion electric vehicle 

batteries, where the cost target is $300/kWh (red) and $270/kWh (green) and the learning rate 

is 9.5%. 

 
 
The experience curve minus the cost target line in Figure A1 would produce the red subsidy 

curve found in Figure A2. When the cost target is $300, lithium-ion batteries reach the target 

after 450 GWh of cumulative production and just $5 billion of total public investment.  When 

the target is moved down, the technology must experience deeper cost reductions, 950 GWh of 

production, and receive $20 billion extra in subsidies to reach the crossover point.   
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Figure A2. Subsidy required per kWh as cumulative production increases at various learning 

rates.   

 
 

Price reductions, and therefore subsidy requirements, occur far more rapidly at higher learning 

rates.  Following the subsidy curve is equivalent to assuming a continuous taper for a subsidy 

program.  The area under each curve represents the total cost of the subsidy program. 
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Figure A3. Annual (blue) and cumulative (red plus blue) investment for a subsidy program 

tapered annually over a 15-year timeline given a 9.5% learning rate. 

 

Figure A3 shows that a longer timeline on the subsidy program due to lower growth rates in 

electric vehicle production can actually help reduce total program costs by allowing more 

annual tapers than in the 10-year timeline shown in Figure 6.  This result may be slightly better 

for policymakers, though expanding the timeline by 5 years pushes the potential environmental 

benefits of higher adoption out into the future. These benefits must then be discounted, which 

may negate any potential savings in the subsidy program.  Extending program timelines may 

hurt growth rates, which defeats the purpose of attempting to speed adoption and market 

growth through financial incentives. 
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Figure A4. Annual (blue) and cumulative (red plus blue) investment for a subsidy program 

tapered annually over a 10-year timeline given a 7.5% learning rate. 

 
 
Reducing the learning rate for lithium-ion batteries over the same 10-year time frame 

drastically increases total program costs, resulting in a more than tripling of total cost.  This is 

due to the higher growth rates required to bring electric vehicle costs down the experience 

curve, which results in a higher adoption level required, and therefore a higher total amount of 

subsidies. 
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Figure A5. Annual (blue) and cumulative (red plus blue) investment for a subsidy program 

tapered annually over a 10-year timeline given a 22% learning rate. 

 

Using a higher learning rate, 2.3 times that in Figure 6, results in a 90% reduction in total 

program costs.  In this case, far fewer electric vehicles must be purchased to reach the cost 

target, meaning fewer vehicles are subsidized, and total program costs are greatly reduced. 
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Figure A6. Percentage of total investment in electric vehicles provided by the government 

subsidy program. 

 
 
As the subsidy program is tapered more frequently, two changes take place. First, and as 

previously illustrated in Figure 4, the total cost of the subsidy program decreases. The second 

change that occurs is that the total fraction of the investment in the technology provided by the 

government program decreases.  This is because a more frequent taper reduces the amount of 

cases in which the program overpays the consumer(s).  A higher frequency taper therefore 

results in an emerging technology becoming less dependence on public funds to succeed in the 

marketplace. 
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6.2 Appendix to Chapter III 
 

Year Small Large 

1984 100 100 

1985 100 100 

1986 98 99 

1987 103 100 

1988 114 116 

1989 108 120 

1990 110 121 

1991 110 125 

1992 107 121 

1993 103 123 

1994 100 118 

1995 105 123 

1996 111 114 

1997 112 117 

1998 110 116 

1999 109 115 

2000 110 129 

2001 111 127 

2002 111 136 

2003 111 134 

2004 112 131 

2005 120 137 

2006 123 149 

2007 135 159 

2008 179 224 

2009 174 214 

2010 182 201 

2011 185 216 

2012 192 222 

Table A1. Producer Price Index (PPI) values for small and large lead-acid batteries according 

to (Producer Price Index 2013; Producer Price Index 2014). 
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6.3 Appendix to Chapter IV 
 
 

 

Figure A7. Annual vehicle miles travelled microdata from the National Household 

Transportation Survey (“National Household Transportation Survey” 2011) fit to a normal 

distribution. 

 
 
Figure A7 shows that 80% of individuals drive less than 20,000 miles per year.  Those 

individuals driving over 20,000 miles per year will be unlikely to purchase a PHEV, since they 

drive an equivalent of nearly 80 miles per work-day, requiring them to use significant amounts 

of gasoline even after having paid a premium for a PHEV.  Individuals driving less than 5,000 

miles per year will also be unlikely to adopt PHEVs, since they do not spend enough on 

gasoline to incentivize the adoption of a more efficient vehicle. 
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Figure A8. State-level gas price data (Energy Information Administration 2014b) fit to a 

normal distribution 

 
 
The gas price distribution shows the average price of gasoline in the US to be $3.50.  Some 

states experience gas prices above $3.50 and therefore, ceteris paribus, consumers in those 

states have a higher willingness to pay for PHEVs, due to the reduction in gasoline 

expenditures. 

 
  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 

0.5 

1 

1.5 

2 

2.5 

$2.90 $3.10 $3.30 $3.50 $3.70 $3.90 $4.10 

C
u

m
u

la
ti

v
e 

D
is

tr
ib

u
ti

o
n

 

P
ro

b
a
b

il
it

y
 D

e
n

si
ty

 

Gas Price 



 111 

State 
Willingness 

to Pay 
State 

Willingness 

to Pay 

WY 6694 OR 4094 

ND 6168 VA 4075 

IN 5488 WI 3993 

OK 5383 VT 3991 

KY 5337 UT 3951 

MS 5252 AL 3850 

NM 5027 ME 3843 

AR 4836 CO 3843 

SD 4832 IL 3730 

MO 4818 NV 3718 

WV 4756 CA 3615 

NE 4736 TX 3598 

MT 4674 DE 3573 

GA 4669 AZ 3525 

IA 4638 MD 3418 

NC 4566 PA 3179 

MN 4527 AK 2986 

TN 4501 NH 2848 

ID 4454 MA 2611 

KS 4405 CT 2518 

LA 4276 RI 2450 

MI 4167 NJ 2289 

SC 4161 DC 2156 

WA 4143 NY 2017 

OH 4128 HI 1594 

FL 4125 
  

Table A2. State-level willingness to pay accounting for heterogeneity in gas price, electricity 

price, and annual vehicle miles travelled. 

 

Table A2 shows that accounting for submarkets and increasing data resolution drastically 

affects the results for consumer economic willingness to pay.  Now 42 States have an average 

willingness to pay above the national average. 



 112 

 

Figure A9.  The potential effect of introducing non-economic constraints into the PHEV 

market curve. The green line shows the original curve while the purple and orange curve 

represent market curves with 50% and 75% of consumers being removed for non-economic 

reasons, respectively. 

 
 
Figure A9 shows that removing a percentage of consumers from the market due to non-

economic constraints will decrease the size of each submarket, resulting in a sort of clockwise 

rotation of the market curve.  Reducing the potential consumer base by a high proportion could 

eliminate market activation and any cascading diffusion for PHEVs, as shown by the fact that 

the orange market curve no longer intersects the gray experience curve.  A more complex way 

to assess non-economic consideration would be to study the implicit discount rates used by 

individual consumers.  This method would also shift the market curve down if consumers were 

resistant to the new technology.  
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Figure A10. Variation in market curves for plug-in hybrid electric vehicle based on differences 

in data resolution. 

 
 
Analyzing the economic willingness to pay for PHEVs of different consumers requires the use 

of higher resolution data to account for heterogeneity in the market.  Figures A7 and A8 clearly 

show a wide variety of initial conditions for individual consumers that are neglected by a 

national average, or state average assessment of PHEV market potential. 
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