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Bipartite Ramsey Numbers
and Zarankiewicz Numbers

Alex F. Collins

Abstract

The bipartite Ramsey number b(m,n) is the minimum b such that any 2-coloring of
Kb,b results in a monochromatic Km,m subgraph in the first color or a monochromatic
Kn,n subgraph in the second color. The Zarankiewicz number z(m,n; s, t) is the
maximum size among Ks,t-free subgraphs of Km,n. In this work, we discuss the
intimate relationship between the two numbers as well as propose a new method for
bounding the Zarankiewicz numbers. We use the better bounds to improve the upper
bound on b(2, 5), in addition we improve the lower bound of b(2, 5) by construction.
The new bounds are shown to be 17 ≤ b(2, 5) ≤ 18. Additionally, we apply the same
methods to the multicolor case b(2, 2, 3) which has previously not been studied and
determine bounds to be 16 ≤ b(2, 2, 3) ≤ 23.
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0 Introduction

Ramsey Theory can be broadly defined as the study of how order emerges from chaos
with respect to graph theory. This branch of extremal graph theory asks how large a
graph must be in order to gaurantee that it contains a certain subgraph in the graph
itself or in its complement.

To cite an overused and somewhat contrived example, suppose that we are throwing
a party. We want this party to be either a ‘gathering of friends’ in which at least four
people mutually know each other, or a ‘get to know each other party’ where there are
at least four mutual non-acquaintances, but we don’t particularly care which type of
party it ends up being. How many people do we need in order to guarantee that we
satisfy at least one of the above conditions?

If we state were to state this as a graph theory problem it would go as follows. Define
the graph where each person at the party is represented by a vertex. We will add
an edge between each vertex if the associated attendees are acquaintances. Then the
complement of our graph gives us the non-acquaintances in attendance. Our problem
is then equivalent to the Ramsey number R(4, 4) which asks how large does a graph
have to be such that it is quaranteed to contain a K4 subgraph itself (four mutual ac-
quaintances) or in its complement (four mutual non-acquaintances). R(4, 4) is known
to be 18.

So we need at least 18 people in order to have one of the two types of parties that
we want. Certainly we could have four mutual acquaintances or non-aquaintances at
a smaller party, but it is not guaranteed. We could also change our definitions of the
two types of parties, and then we would need to use a different Ramsey number to
solve our problem.

Solving for Ramsey numbers has proved to be a difficult problem, and R(4, 4) is the
largest diagonal case currently known. The next case is R(5, 5) with the current
bounds 43 ≤ R(5, 5) ≤ 49. The bounds on some small Ramsey numbers have not
been improved in 30 or 40 years due to the computational intractability of dealing
exhaustively with graphs of the required magnitude.

Bipartite Ramsey numbers are similarly defined for bipartite graphs. These numbers
ask how large does a bipartite graph have to be such that it contains a given bipar-
tite subgraph or that its bipartite complement contains another bipartite subgraph.
These numbers seem to be at least as difficult as the Ramsey numbers to calculate
exactly.

Due to the difficulty of calculating values exactly, many authors have studied the
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limiting behaviors of these types of numbers or attacked the numbers using probabal-
istic methods instead. In this work we attempt instead to calculate small bipartite
Ramsey numbers exactly, despite the difficulty. While we do not succeed in solving
any new numbers, we present improved bounds on b(2, 5) and new bounds on the
unstudied multicolor number b(2, 2, 3).

In Section 1 we discuss the level of graph theory knowledge that is assumed and intro-
duce the the terminology that is specific to Ramsey theory or this work. In Section 2
we discuss the work to date on a broad range of topics related to Ramsey theory in
general and bipartite Ramsey numbers in particular. In Section 3 we introduce a new
bounding method for the Zarankiewicz numbers. The Zarankiewicz numbers are used
to provide upper bounds on the bipartite Ramsey numbers, so the implications of the
new techniques with regard to b(2, 5) are explained in Section 4, which also discusses
the improvement of the lower bound of b(2, 5) and related work. Section 5 uses the
same methods to give bounds for the three color bipartite Ramsey number b(2, 2, 3),
which has not previously been studied as far as we are aware. Detailed explainations
of the computational techniques used throughout the project are located in Section 6.
Finally, we discuss additional directions and further possible avenues of research in
Section 7. Supporting materials, including graphs and Zarankiewicz tables can be
found in Appendices B and C respectively.
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1 Definitions

A basic knowledge of graph theory will be assumed of the reader. In order to under-
stand the definitions set forth below, the reader should be familiar with the common
types of graphs, including complete graphs, bipartite graphs, and cycles, as well as
some topics in graph theory such as edge colorings and complementation. Nonstan-
dard definitions and definitions specific to Ramsey theory are listed below. These
definitions are consistent with those given in Bollobás’ survey [Bol95].

• Bipartite Complement: if G is a bipartite graph with partitions X and Y ,
then the bipartite complement of G (which we will denote G̈) is a bipartite
graph whose vertex set is the vertex set of G and whose edge set consists of all
of the edges between X and Y which do not appear in G.

• Ramsey Number: R(m,n) is the minimum order of a complete graph such
that any 2-coloring of the edges must result in either a complete graph of order
m in the first color or a complete graph of order n in the second color. A simple
example is given in Figure 1.0. The multicolor Ramsey number R(n1, . . . , nc)
is the obvious generalization with c colors.

• Bipartite Ramsey Number: b(m,n) is the minimum b such that any 2-
coloring of the edges of Kb,b must result in either a subgraph of Km,m in the
first color of a subgraph of Kn,n in the second color. A simple example is given
in Figure 1.1. The multicolor bipartite Ramsey number b(n1, · · · , nc) is the
obvious generalization with c colors.

• Zarankiewicz Number: z(m,n; s, t) is the maximum size among Ks,t-free
subgraphs of Km,n. If m = n and s = t, we write z(m; s).

• Witness Graph: A graph G is a witness graph for the lower bound on a
Zarankiewicz number z1 ≤ z(m,n; s, t) if G is a Km,n subgraph with z1 edges
that does not contain any Ks,t subgraphs. G proves the lower bound by demon-
strating that such a graph exists. Similarly, G is a witness graph to the lower
bound on a bipartite Ramsey number b1 ≤ b(m,n) if G is a Kb1,b1 subgraph
that does not contain a Km,m subgraph and does not contain a Kn,n subgraph
in its bipartite complement. Again, G demonstrates that such a graph exists,
thus proving the lower bound. A similar definition can be stated for the witness
graph of the lower bound on a Ramsey number R(m,n).

6
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Figure 1.0: The image on the left is a 2-coloring of the edges of K5 without monochromatic
triangles. Thus R(3, 3) > 5. The image on the right shows that the edges of K6 cannot be
colored with two colors while avoiding monochromatic triangles (since at least three edges
from a single vertex v must have the same color by the pigeon-hole principle, without loss
of generality, let these edges be red, but then the edges between the vertices adjacent to v
by a red edges must be blue to avoid a red triangle, but this gives rise to a blue triangle).
Thus R(3, 3) = 6.

2 History and Background

2.0 Ramsey’s Theorem

In his 1930 paper [Rms30] on formal logic, Ramsey proved that if the r-combinations
of an infinite class Γ are colored in c distinct colors, then there exists a subclass
∆ ⊂ Γ such that all of the r-combinations of ∆ are the same color. For r = 2, this is
equivalent to saying that an infinite complete graph whose edges are colored in c col-
ors contains an infinite monochromatic complete subgraph. For r > 2, an equivalent
statement can be made in terms of hypergraph edge-colorings [Rms30].

He also proved a finite case of this theorem, which simply stated means that the
Ramsey number R(n, n) is finite [Rms30]. Clearly this implies that R(m,n) is finite
in general. This gave rise to the study of the Ramsey numbers.

The classical proof of Ramsey’s theorem is given in Gasarch’s survey along with a
summary of related results [Gsr98].

2.1 A Problem of Zarankiewicz

In 1951, Zarankiewicz asked how many ones could be fit into an n× n matrix while
avoiding a 3× 3 submatrix of ones (for n = 4, 5, 6) [Zkz51]. This can be stated as a
graph theory problem as follows: what is the maximum number of edges in a subgraph
of Kn,n that does not contain a K3,3 subgraph. The problem was soon generalized
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Figure 1.1: A 2-coloring of K4,4 without monochromatic 4-cycles (left), showing that
b(2, 2) > 4; the degree sequence 3, 3, 3, 2, 2 cannot be used in a 2-coloring of K5,5 (right), it
is easy to see that other degree sequences also cannot be used. Thus b(2, 2) = 5.

for graphs and subgraphs of arbitrary sizes. The resulting numbers became to be
known as the Zarankiewicz numbers, and a concise definition of the meaning of the
generalized case z(m,n; s, t) is given above.

By 1969, Guy had compiled tables of exact values for Zarankiewicz numbers with
small parameters, all of which had been computed by hand using combinatorial ar-
gument and other techniques. Guy also included a list of techniques and results that
had been discovered at that time, as well as a number of applications to other areas
of mathematics (such as the graph theory connection noted above) [Guy69].

While Guy’s work is extraordinarily useful and contains many useful insights, there
is at least one error in his tables of small Zarankiewicz numbers. It should be noted
that the error was in z(15; 2), the largest diagonal case attempted in the C4-free ta-
ble, and his value was only off by one. This discrepancy is significant because at
least one author (Héger) has reported the erroneous value as well as further values
based on it without having checked Guy’s tables sufficiently [Hgr13]. With the ad-
vent of computational techniques, we should be able to check and extend Guy’s tables.

A number of other authors have studied Zarankiewicz numbers, including Kövári,
Sós, and Turán [KvrET54], Balbuena et al. [BalbET07], Dutta and Radhakrish-
nan [DutRdh12], Nikiforov [Nkr10], and Reiman [Rmn58]. A good summary of
progress can be found in Bollobás [Bol95].

2.2 Relating the Problems

In 1975, Beineke and Schwenk defined the bipartite Ramsey number r(m,n) to be the
smallest number p such that any 2-coloring of the edges of Kp,p contains a monochro-
matic Km,n subgraph [BnkSwk75]. Note that this is different from the bipartite Ram-
sey number b(m,n) which we are interested in (and which is defined above). However,

8



2 3 4 5 6

2 5 9 14 ≤ 19 ≤ 25
3 17 ≤ 29 ≤ 41 ≤ 56
4 ≤ 48 ≤ 72 ≤ 101
5 ≤ 115 ≤ 168

Table 2.0: The upper bounds for small cases of the bipartite Ramsey numbers reported
by Goddard, Henning, and Oellermann. Several of these are their own improvements.
Although they did not calculate lower bounds for all cases, they did report a lower bound
of 16 for b(2, 5) [GdrET00].

it is clear that the values coincide in the diagonal case (i.e. b(n, n) = r(n, n)).

While Irving worked primarily with the definition by Beineke and Schwenk, his work
from 1978 [Irv78] nonetheless proved the following bound on bipartite Ramsey num-
bers as we know them:

z(b;m) + z(b;n) < b2 =⇒ b(m,n) ≤ b.

Thus the two problems are related in that Zarankiewicz numbers provide an upper
bound on the bipartite Ramsey numbers.

2.3 Recent Developments

In 2000, Goddard, Henning, and Oellermann used a linear programming algorithm
based on a lemma from Irving’s paper to bound small Zarankiewicz numbers. They
used these bounds in turn to bound small bipartite Ramsey numbers. The results
that they reported are repeated in Table 2.0. They also found a lower bound for
b(2, 5) > 15 [GdrET00].

In 2013, Dybizbański, Dzido, and Radziszowski proved theorems giving exact results
for Zarankiewicz numbers with s = t = 2 and m = n = k2 + k + 1− h for 0 ≤ h ≤ 3
and k a prime power. These results are useful for bounding bipartite Ramsey num-
bers with at least one parameter being 2 since there is no bound on the Zarankiewicz
parameters, just some restriction on k. They also used these results to find new mul-
ticolor bipartite Ramsey numbers (to be introduced and discussed below) [DybET13].

Additional notable work includes that of Hattingh and Henning [HttHnn98], Lazebnik
and Mubayi [LzbMub02], and Conlon [Cnl08]. The survey by Fürdei and Simonovits
[FrdSim13] contains a great deal of the recent developments on Zarankiewicz numbers
and bipartite Ramsey numbers.
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2.4 Multicolorings

Natural generalizations of Ramsey numbers and bipartite Ramsey numbers exist for
colorings with more than two colors. In the bipartite case only two such values are
known; b(2, 2, 2) = 11 [Exo91] and b(2, 2, 2, 2) = 19 [DybET13] (denoted b3(2), b4(2)
and bc(2) for c colors in general). It is also known that 26 ≤ b5(2) ≤ 28 [DybET13].
Although unbalanced cases have not previously been studied, the methods proposed
in this work can be used to bound them.

Fenner et al. [FnrET10] and Steinbach and Posthoff [StbPhf12] have also studied
multi-color cases using the grid coloring approaches presented below. Lazebnik and
Woldar [LzbWld00] have also studied multicolor cases.

2.5 Alternative Approaches

2.5.0 Purely Computational

Werner has proposed an algorithmic approach to determining the exact value of
maxrf(m,n) (maximal rectangle-free grids, analogous to z(m,n; 2, 2)) [Wrn12]. How-
ever the algorithm is too slow to check the relevant regions of Guy’s tables in any
reasonable ammoumt of time. Barring an exponential speed-up, it is unlikely that
this approach will prove to be fruitful.

McKay’s nauty software package includes graph generation scripts which use canoni-
cal labellings to generate non-isomorphic graphs with specified parameters [MKy13].
These programs are incredibly useful for finding witness graphs to lower bound im-
provements for small cases of bipartite Ramsey numbers.

2.5.1 Grid Colorings

A separate group of researchers has been working independently on grid coloring
problems, in which they attempt to color m × n grids with c colors while avoid-
ing monochromatic rectangles (their term for 2 × 2 subgrids). The connections to
Zarankiewicz numbers and multicolor bipartite Ramsey numbers are clear, but until
recently these researchers had been unaware of the theoretical background.

The authors most active in this branch include Fenner et al. [FnrET10] and Steinbach
and Posthoff [StbPhf12].

2.5.2 Projective Planes

A projective plane is a geometric structure consisting of lines and points such that
every pair of lines intersect at exactly one point and every pair of points are both
incident to exactly one line. These structures are useful because their bipartite graph
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representations (where one partition consists of lines and the other of points, with
edges representing incidence) cannot contain C4 subgraphs.

Many authors have used these structures in order to develop constructions for up-
per bounds on Zarankiewicz numbers and lower bounds on bipartite Ramsey num-
bers avoiding K2,2. Some of the most notable developments include those by Alm
and Manske [AlmMan12], Dybizbański, Dzido, and Radziszowski [DybET13], Erdős,
Rényi, and Sós [EReSos66], and Parsons [Prs76].

2.5.3 Asymptotics

Rather than focusing on small and potentially computable Zarankiewicz numbers and
bipartite Ramsey, some researchers have instead chosen to study the limiting cases.
The most significant known asymptotic bounds are due to Kővari, Sós, and Turán,
who showed that

lim
n→∞

z(n; 2)

n3/2
= 1. [KvrET54]

Other asymptotics work have been derived by Ball and Pepe [BllPpe12], Brown [Bwn66],
and Lin, and Li [LinLi09].
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3 4 5 6 7 8 9 10 11 12 13

3 8 10 12 14 16 18 20 22 24 26 28
4 13 16 18 21 24 26 28 30 32 34
5 20 22 25 28 30 33 36 38 41
6 26 29 32 36 39 42 45 48
7 33 37 40 44 47 50 53
8 42 45 50 53 57 60
9 49 54 59 64
10 60

Table 3.0: Guy’s table of Zarankiewicz numbers z(m,n; 3) [Guy69]. Note that in Guy’s
original table, he defined Zarankiewicz numbers as the minimum number of edges in a Km,n

subgraph to guarantee a Ks,t subgraph, which is equivalent, but all of his numbers are
increased by one. The numbers here are according to the definition given at the beginning
of this paper. Note also that Guy’s original table extends out 10 more columns to the right.
A duplicate of this table appears in Appendix C.

3 Zarankiewicz Numbers

3.0 New Upper Bounding Theorem

Theorem:
If z(m,n; s) = z1, (m > n) and z(m,n+ 1; s) = z2, then

z2 − z1 ≤ min

{⌊z1
n

⌋
,

⌊
z2

n+ 1

⌋}
.

Similarly, if z(m,n; s) = z1, (m ≥ n) and z(m+ 1, n; s) = z2, then

z2 − z1 ≤ min

{⌊z1
m

⌋
,

⌊
z2

m+ 1

⌋}
.

Proof:
We prove the first statement as follows:

Let z2 = z1 +
⌊
z1
n

⌋
+ 1. Let G be a subgraph of Km,n+1 with z2 edges that avoids Ks,s

12



subgraphs. Then G has a vertex v in its (n+ 1)-vertex partition with degree at most

deg(v) ≤

⌊⌊
z1
n

⌋
+ z1 + 1

n+ 1

⌋

=


⌊
(n+1)z1

n

⌋
+ 1

n+ 1


=

⌊
(n+ 1)

⌊
z1
n

⌋
+
⌊
(n+ 1)

(
z1
n
−
⌊
z1
n

⌋)⌋
+ 1

n+ 1

⌋

≤

⌊
(n+ 1)

⌊
z1
n

⌋
+
⌊
(n+ 1)

(
cn−1
n
−
⌊
cn−1
n

⌋)⌋
+ 1

n+ 1

⌋

=

⌊
(n+ 1)

⌊
z1
n

⌋
+ (n− 1) + 1

n+ 1

⌋

=

⌊⌊z1
n

⌋
+

n

n+ 1

⌋
=
⌊z1
n

⌋
But then G − v is a Km,n subgraph with z1 + 1 edges that avoids Ks,s subgraphs,
contradicting our assumption.

Alternatively, let z1 = z2 −
⌊

z2
n+1

⌋
− 1. Let H be a subgraph of Km,n+1 with z2 edges

that avoids Ks,s subgraphs. Then H has a vertex u in the (n + 1)-partition with
degree at most

⌊
z2
n+1

⌋
. But then H − u is a Km,n subgraph with z1 + 1 edges that

avoids a Ks,s subgraph, leading to another contradiction.

The second statement follows by a similar argument. QED.

3.1 Application of Bounding Theorem

Knowing smaller Zarankiewicz numbers (or even just upper bounds on such) can
now allow us to find nontrivial upper bounds on larger Zarankiewicz numbers. The
obvious approach uses dynamic programming to go row by row through a table of
Zarankiewicz numbers bounding those that are not already known using the bounds
from the numbers immediately above and to the left. In this way we can build up
to higher and more interesting numbers that can be used to bound bipartite Ramsey
numbers using Irving’s result.
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6 7 8 9 10 11 12 13 14 15

6 26 29 32 36 39 42 45 48 51 54
7 33 37 41 45 49 52 56 59 63
8 42 46 51 56 59 63 67 71
9 51 56 61 66 70 75 79
10 62 67 73 77 82 87
11 73 79 84 90 95
12 86 91 98 103
13 98 105 111
14 113 119
15 127

Table 3.1: An extended table of the Zarankiewicz numbers z(m,n; 3). While related to
Guy’s table (see Table C.1) this does not rely on Guy for accuracy; all exact values (shown
in bold) were independently checked using nauty. Upper bounds are shown are displayed
in plain font and were generated using the theorem in Section 3.0. A duplicate of this table
appears in Appendix C.

Table 3.1 shows exactly this extension for the z(m,n; 3) table. Note that while this
table includes some of the data from Guy’s table, only the values that were checked
using nauty were used to compute the new bounds. Similar tables for s = 2, 4, 5, and
6 are included in Appendix C, in addition to a duplicate of Table 3.1 for convenience.

3.2 Error Estimation for Upper Bound

An important question to ask about these new bounds are how tight they are. Using
theoretical results [DybET13] we can compute z(28; 2) = 156. The largest smaller
known Zarankiewicz number for quadrilaterals is z(21; 2) = 105 which comes from
the same paper. This suggests an excellent experiment to determine the tightness of
the new bounding technique.

We ran the dynamic programming extension code to generate a table of Zarankiewicz
bounds avoiding quadrilaterals up to z(30; 2) to see how far off the bounds would be.
Part of the results are shown in Table C.3, but the section relevant to this experiment
is shown in Table 3.2. Clearly this demonstrates that the new bounding technique is
not tight; the bound given by the program is z(28; 2) ≤ 165.

We suspect that this error snowballs the further we try to extend the bounds. In
addition, we believe that this snowballing error is the reason why these bounds do
not produce improved bounds for larger bipartite Ramsey numbers such as b(2, 6)

14



27 28 29 30

27 ≤ 155 ≤ 160 ≤ 165 ≤ 170
28 156 ≤ 161 ≤ 166
29 165 170
30 175

Table 3.2: The section of the z(m,n; 2) extension table relevant to an experiment to
determine the approximate error produced by the bounding technique. Exact values on the
diagonal were computed using theoretical results [DybET13]. From those known values it
can be seen by the theorem in this section that z(29, 30; 2) − z(29; 2) ≤ 5 and z(30; 2) −
z(29, 30; 2) ≤ 5, thus giving the equality z(29, 30; 2) = 170. Note that a similar reasoning
was attempted for other values but was unsuccessful. The other bounds were determined
using the dynamic programming approach discussed in this section.

and b(3, 4) (see Section 4.1).

3.3 Computational Details

The code used to extend Zarankiewicz tables is among the most simple of all the code
written for this project. For each table the known values had to be hard-coded into
an array, with all other elements being set to zero. Then we would iterate through
the above-diagonal elements of the array, with any zero elements being over-written
by the new bounds computed from the elements immediately above and to the left.
Obviously diagonal bounds were computed only from the element immediately above
them.

15



4 Bipartite Ramsey Numbers

4.0 b(2, 5)

Recall from Section 2.3 the bounds 16 ≤ b(2, 5) ≤ 19.

Theorem:
17 ≤ b(2, 5) ≤ 18.

Proof:
The lower bound is shown by constructing a witness graph. Namely a 2-coloring of
K16,16 that does not contain a K2,2 in the first color or a K5,5 in the second color.
Such a graph was found using nauty. The first color is shown in Figure B.0 with its
bipartite adjacency matrix in Table B.0. Note that Figure B.0 shows only the colored
edges that avoid K2,2 (the four colors are to show the structure of the graph), the
bipartite complement avoids K5,5. So 17 ≤ b(2, 5).

The upper bound is improved by a theoretical argument using Zarankiewicz num-
bers. In order for a 2-coloring of K18,18 avoiding K2,2 in the first color and K5,5 in the
second color to exist, we can have at most z(18; 2) = 81 [DybET13] edges in the first
color and at most z(18; 5) ≤ 243 (see Table C.6) edges in that second color. Thus
we have a total of at most 81 + 243 = 324 = 182, so a simple application of Irving’s
result does not suffice. Instead we must use the additional fact that the witness for
z(18; 2) = 81 is unique [DybET13] and that its bipartite complement contains a K5,5

subgraph. Thus if we are to avoid both forbidden subgraphs, we can only have at
most 80 edges in the first color, and at most 80 + 243 = 323 < 182 edges in the whole
graph. Thus, by Irving, b(2, 5) ≤ 18. QED.

4.1 Generalization of Upper Bounding Technique

While the upper bounding method in the above proof is theoretically generalizable
to any bipartite Ramsey problem, the bounding of the Zarankiewicz numbers is not
tight, and the small errors appear to snowball (see further discussion in Section 3).
It is because of this snowballing error that we make the following conjecture.

Conjecture: b(2, 5) = 17.

The current bound z(17, 17; 5) ≤ 221 need only be reduced to z(17, 17; 5) ≤ 214 in
order to prove the above conjecture by Irving’s technique. Given the error accumu-
lation discovered in bounding calculations with a similar number of iterations (see
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n z(n; 2) z(n; 6) z(n; 2) + z(n; 6) n2

18 81 264 345 324
19 88 293 381 361
20 96 324 420 400
21 105 357 462 441
22 114 387 501 484
23 123 422 545 529
24 130 459 589 576
25 138 494 632 625

Table 4.0: The current bounds on z(n; 2) and z(n; 6) for the relevant n necessary to improve
the bounds on b(2, 6). Exact values of z(n; 2) are shown in bold and are from [DybET13].
All other Zarankiewicz numbers listed are upper bounds only and are obtained from the
Zarankiewicz extension technique discussed in Section 3. The full tables for these numbers
can be found in Appendix C.

Section 3), it would not be surprising if this bound could be reduced as required.

Unfortunately, this same accumulation of errors prevents us from improving the bound
on other small bipartite Ramsey numbers. The next two smallest such numbers are
b(2, 6) ≤ 25 and b(3, 4) ≤ 29 [GdrET00]. Table 4.0 shows the current bounds on
z(n; 2) and z(n; 6) for the n that would be relevant to improve the bounds of b(2, 6)
and why they are not sufficient. Table 4.1 shows the same for b(3, 4).

4.2 Computational Details

As mentioned above, the lower bound was improved using nauty. To keep the com-
putation feasible, the following restrictions were used:

• Generate bipartite subgraphs of K16,16 that avoid K2,2 subgraphs,

• that have between 64 and 67 edges,

• and that have minimum degree 4.

The maximum size of the graph was chosen because z(16; 2) = 67 [DybET13], the
minimum size was chosen to enforce the minimum degree. A smaller minimum degree
was attempted, but did not appear to be computationally feasible.

nauty generated 32 graphs for the above computation. Somewhat surprisingly the
only one that avoided K5,5 in its bipartite complement had only 64 edges (and thus
had the most edges in its bipartite complement). We attempted to extend this graph
to a K17,17 subgraph in order to improve the lower bound further (see Section 6.1 for
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n z(n; 3) z(n; 4) z(n; 3) + z(n; 4) n2

18 177 220 397 324
19 196 242 436 361
20 215 267 482 400
21 236 294 530 441
22 257 320 577 484
23 280 349 629 529
24 301 377 678 576
25 326 408 734 625
26 348 439 787 676
27 371 471 842 729
28 398 506 904 784
29 422 538 960 841

Table 4.1: The current bounds on z(n; 3) and z(n; 4) for the relevant n necessary to
improve the bounds on b(3, 4). All of these numbers are upper bounds only; none are
known to be exact. These numbers go well beyond the tables in Appendix C, but the
methodology remains the same.

method) but this failed.
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n z(n; 2) z(n; 3) 2z(n; 2) + z(n; 3) n2

18 81 177 339 324
19 88 196 372 361
20 96 215 407 400
21 105 236 446 441
22 114 257 485 484
23 123 280 526 529

Table 5.0: The current bounds on z(n; 2) and z(n; 3) for the relevant n to prove the bound
b(2, 2, 3) ≤ 23. Exact values of z(n; 2) are shown in bold, all other Zarankiewicz numbers
listed are current upper bounds. Note that there was no known prior bound for b(2, 2, 3).

5 Multicolor Bipartite Ramsey Numbers

5.0 b(2, 2, 3)

Theorem:
16 ≤ b(2, 2, 3) ≤ 23.

Proof:
Irving’s result can be generalized to k colors as follows:

k∑
i=1

z(b;ni) < b2 =⇒ b(n1, n2, · · · , nk) ≤ b.

With Irving’s original argument easily sufficing for a proof. Thus we can improve the
upper bounds on multicolor Zarankiewicz numbers in the same way that was used for
the two color case. Table 5.0 demonstrates the use of the generalized Irving result to
prove the stated upper bound.

The lower bound must be shown by construction of a witness graph. There are 26
unique witnesses shown in Table B.1. These are trinary sequence representations of
cyclic K15,15 graphs which do note have C4s in the first two colors or K3,3s in the
third color. They can be converted from string representation to bipartite adjacency
matrices by allowing each rotation of the sequence to be one row of the matrix. An
example for the first listed witness in shown in Figure 5.0. None of these witnesses
were able to be extended. QED.
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0 0 1 0 1 2 2 0 2 2 2 2 1 1 2
0 0 1 0 1 2 2 0 2 2 2 2 1 1 2

0 0 1 0 1 2 2 0 2 2 2 2 1 1 2
etc.

Wrapping sequences around



0 0 1 0 1 2 2 0 2 2 2 2 1 1 2
2 0 0 1 0 1 2 2 0 2 2 2 2 1 1
1 2 0 0 1 0 1 2 2 0 2 2 2 2 1
1 1 2 0 0 1 0 1 2 2 0 2 2 2 2
2 1 1 2 0 0 1 0 1 2 2 0 2 2 2
2 2 1 1 2 0 0 1 0 1 2 2 0 2 2
2 2 2 1 1 2 0 0 1 0 1 2 2 0 2
2 2 2 2 1 1 2 0 0 1 0 1 2 2 0
0 2 2 2 2 1 1 2 0 0 1 0 1 2 2
2 0 2 2 2 2 1 1 2 0 0 1 0 1 2
2 2 0 2 2 2 2 1 1 2 0 0 1 0 1
1 2 2 0 2 2 2 2 1 1 2 0 0 1 0
0 1 2 2 0 2 2 2 2 1 1 2 0 0 1
1 0 1 2 2 0 2 2 2 2 1 1 2 0 0
0 1 0 1 2 2 0 2 2 2 2 1 1 2 0



Figure 5.0: An example showing how to convert one of the 26 trinary sequences listed
in Table B.1 into the associated bipartite adjacency matrix by using each of the possible
rotations as one line of the matrix.

5.1 Computational Details

The witness graphs for the lower bound were generated using the method discussed
in Section 6.0.1. As discussed in the example in that section, the parameters used
were (4, 4, 7) and (2, 2, 3), meaning that each vertex would be incident to four edges
in each of the first two colors (which avoid K2,2) and seven edges in the third (which
avoids K3,3).

The parameters (4, 4, 7) were chosen after some experimentation because they would
result in 60 edges of each of the first two colors and z(15; 2) = 61 while the edges in
the third color would also be less than the current bound on z(15; 3) ≤ 127. By the
same logic, the parameters (4, 4, 8) were attempted in hopes that a suitable K16,16

coloring could be found to improve the bound further, but none were generated.

It seems highly unlikely that this method would produce the best possible witness,
but a full exhaustive search was computationally infeasible. This method at least
produced a nontrivial lower bound to use as a starting point for further searches.
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6 Computational Details

6.0 Generating Graphs

6.0.0 nauty

The genbg function from nauty was used extensively to generate exhaustive witness
lists for Zarankiewicz numbers. For example, to generate such a list for z(m,n; s, t) =
z1 witnesses (knowing that z(m,n; s, t) ≤ z1), the following process was used:

• Run genbg with the appropriate parameters to generate all Km,n subgraphs
with exactly z1 edges. An example call of genbg is provided at the end of this
section.

• Check each generated graph to see if it contains a Ks,t subgraph (see Subgraph
Checking, below).

• Save the generated graphs that do not contain the forbidden subgraphs, this is
an exhaustive list of witnesses.

• If no such graphs exist, repeat process for using z1 − 1 edges.

This method is computationally infeasible for graphs with more than ≈ 20 vertices.
So to get witnesses for larger Zarankiewicz numbers, we must extend the witnesses of
prior Zarankiewicz numbers, using the methods discussed in Extending Graphs below.

Note that a parameter exists to enforce the generated graphs to be C4-free, so in the
case of s = t = 2 we can skip the subgraph checking step.

Example genbg call:
The call >genbg -u -l -Z1 -d4:4 -D7:7 16 16 64:67 produces the following output:

>A genbg n=16+16 e=64:67 d=4:4 D=7:7 Z1
>Z 32 graphs generated in 175.26 sec

This was the command used to generate the witness graph that improved the lower
bound of b(2, 5).

Note that the ‘-u’ option suppresses some of the output so that none of the generated
graphs are displayed. To see all of the graphs this option should be removed. To
store the graphs in a file simply add the filename to the end of the command.
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6.0.1 Cyclic graphs

In order to generate a cyclic graph coloring, we must first determine how many edges
of each color are incident to each vertex. This was typically done using educated
guesses based on the Zarankiewicz numbers. See Section 5 for a concrete example.

Then the following algorithm will generate all cyclic graph colorings with the given pa-
rameters that avoid the given complete bipartite subgraphs. The parameters needed
are:

• (n0, n1, . . . , nk−1): An array representing the number of edges incident to each
vertex for each color. For example (4, 4, 7) indicates that there are to be fifteen
vertices in each partition, with each vertex having four incident edges of the
first color, four of the second, and seven of the third.

• (a0, a1, . . . , ak−1): An array of the same size representing the subgraphs to avoid
in each color. To continue the above example (2, 2, 3) would indicate that the
first and second color must avoid K2,2 subgraphs, while the third must avoid
K3,3 subgraphs. These were the parameters used to generate 15 < b(2, 2, 3)
cyclic witness graphs as discussed in Section 5.

The algorithm is as follows:

• Generate all k-nary sequences with n0 elements being 0, n1 elements being 1,
etc.

• For each such sequence, generate the associated cyclic graph coloring by rotating
the sequence to form the rows of the bipartite adjacency matrix.

• Check to determine whether each such graph contains the forbidden subgraphs
(see below). Return the associated sequences for those that do not.

This method is obviously not exhaustive, nor is it likely to find the exact lower bound.
However it can be useful for finding a non-trivial lower bound and the resulting graphs
can sometimes be extended to improve the lower bound further (see below).

6.1 Extending Graphs

Graph extension is extremely useful for improving lower bounds. For example, if we
have a graph G witnessing that b(2, 5) > 16 (such as the one shown in Figure B.0),
we can attempt to find K17,17 colorings based off of G which improve the lower bound
of b(2, 5) further. We do this by finding all K17,17 2-colorings which have G as an
induced subgraph and then checking these new graphs for the forbidden subgraphs.
Note that the graph in Figure B.0 cannot be extended to further improve the lower
bound of b(2, 5). Furthermore, if we have an exhaustive list of graphs witnessing
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b(2, 5) > 16 (we do not) and none of them were extendable to K17,17 colorings that
avoid the forbidden subgraphs, then b(2, 5) would have to be equal to 17.

The algorithm for extending bipartite graphs is as follows:

• Take a binary bipartite adjacency n× n matrix as input

• Generate all binary binary sequences of length n, for each such sequence s:

– Append s to a copy of the matrix as a new column

– Check whether the new matrix contains a forbidden subgraph, store any
that do not

• For each new matrix that did not contain the forbidden subgraphs, repeat the
process, this time adding a new row consisting of all the possible n + 1 length
binary sequences

• Any that still do not contain the forbidden subgraphs are witnesses to a new
and improved lower bound.

Some notes:

• The algorithm can be modified in the obvious way to extend multi-color graphs
as well.

• Since the number of binary sequences grows exponentially with respect to the
length, this method can only be used for sufficiently small n.

6.2 Subgraph Checking

Subgraph checking is one of the most important tools, as we need to use it every time
we check for a forbidden subgraph.

The algorithm will be easiest to explain and understand through an example. Sup-
pose that we want to check whether a K16,16 subgraph contains a K2,2. Let M be the
bipartite adjacency matrix representing our graph. We would pass (M, 2, 2) as argu-
ments to the algorithm. It will then generate all binary strings of length 16 containing
exactly two ones. For each such string, it will extract the two columns cooresponding
to the ones and will perform a bitwise AND operation on the two columns. It will
count up all of the elements in the result that are still non-zero, if there are at least
two, then it will return ‘True’ indicating that at least one K2,2 was found. If the
algorithm gets through all such binary sequences without finding any two columns
which intersect in at least two elements, then it will return ‘False’ indicating that M
is K2,2-free.
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7 Further Directions

This section contains a detailed list of approaches to the various problems addressed in
this paper that did not pan out due to computational limits and/or time constraints.
Many of them deserve further study. Additionally, a list of concrete possibilities for
future research is given at the end.

7.0 Lower Bounding Zarankiewicz Numbers

Little success was had in the attempts to find non-trivial lower bounds for Zarankiewicz
numbers (based on other Zarankiewicz numbers, as was done for upper bounds). The
trivial bound is as follows, if z(m,n; s) ≥ z1 then both z(m+1, n; s) and z(m,n+1; s)
are at least z1 + s − 1. If a more interesting theoretical lower bound could be de-
termined, then we might have more success in finding exact values of Zarankiewicz
numbers further down the tables, which could in turn enable us to push down the
upper bounds of more bipartite Ramsey numbers.

By the theorem given in Section 3 if we have z(m,n−1; s) = z1 and z(m−1, n; s) = z2
then

z(m,n; s) ≤ z3 = min

{
z1 +

⌊
z1

n− 1

⌋
, z2 +

⌊
z2

m− 1

⌋}
.

It was noticed during the process of extending the Zarankiewicz tables that z3 − 1 ≤
z(m,n; s) ≤ z3 in all of the (admittedly few) cases that were computable. It is proba-
bly worth investigating whether there exists a bound on how far off the theorem can
be, and if such a bound exists whether it is constant, linear, quadratic etc. in any of
the terms (zk,m, n or s).

There is a result similar to the theorem given in Sections 3 for providing lower bounds
for Zarankiewicz numbers. It states that if z(m+ 1, n; s) ≥ z1 and z(m,n+ 1; s) ≥ z2
then

z(m,n; s) ≥ z3 = max

{
z1 −

⌈
z1

m+ 1

⌉
, z2 −

⌈
z2

n+ 1

⌉}
.

The proof is obvious, from a witness graph we can remove a vertex of maximal degree
from either partition to form a witness graph for the smaller desired Zarankiewicz
number. Unfortunately this is not generally useful since we rarely know z(m+1, n; s)
or z(m,n + 1; s) without first knowing z(m,n; s). We do not expect this result to
be useful, nor do we suggest further study on this front. But it is worth noting this
result in a discussion about lower bounding theorems for Zarankiewicz numbers.

One additional approach was attempted which did not yeild any results before it had
to be dropped due to time constraints. The best way to explain this method is through
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an example. It goes as follows: knowing that z(13, 17; 2) = 59 and z(13, 18; 2) ≤ 61
(see Tables C.3). In the most equitable distribution of edges to vertices in the larger
partition, there are eight vertices of degree 4 and nine of degree 3. This covers

8×
(

4

2

)
+ 9×

(
3

2

)
= 75 <

(
13

2

)
= 78

of the vertex pairs in the small partition. Then there a clearly pairs of vertices which
are currently at distance greater than 2 in the smaller partition and a new vertex can
be added to the larger partition with an edge to two of these vertices producing a
graph with exactly 61 edges.

The problem is that no such witness can exist (otherwise we could add a vertex of
degree 3 to the larger partition by a similar argument, but this violates out upper
bound). Furthermore, what if the only witnesses that exist have a degree sequence
for the larger partition that consists of eleven vertices of degree 4, three of degree 3,
and three of degree 2? Then the same computation as done above yeilds

11×
(

4

2

)
+ 3×

(
3

2

)
+ 3×

(
2

2

)
=

(
13

2

)
.

Meaning that there as no pairs of vertices in the smaller partition which we could
add a new vertex connecting in the larger partition.

In general this method does not work because we need to know something about
the degree sequences of the partitions. As such we were unable to derive a general
result in the time allotted. It may be possible to prove something about the degree
sequences required of a witness graph that can be used to prove a general result. This
approach merits additional investigation.

7.1 Exhaustive Search to Solve b(2, 5)

Here the goal is to generate all K17,17 subgraphs G with 68 ≤ E(G) ≤ 74 (172 −
z(17; 5) ≥ 68, z(17; 2) = 74; see Table C.6 and Table C.3 respectively). Since nauty
can only generate graphs with up to 32 vertices, we cannot generate these graphs
directly. Instead we must generate all K16,16 subgraphs with between 60 and 67 edges
(inclusive; bounds obtained in the same manor as above) and extend them to K17,17

subgraphs by adding a vertex to each partition and some number of edges from the
new vertices.

For obvious reasons, it would be computationally infeasible to exhaustively find all of
these subgraphs without sufficiently stringent limiting conditions to reduce the size
of the necessary search. The most obvious such conditions are bounds on the degrees
of the vertices (this has the additional benefit of being extremely easy to implement
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using nauty). Two types of arguments can be used to give an upper bound on the
degrees of the vertices.

The first argument is a simple one using off-diagonal Zarankiewicz numbers. For
example, suppose in the 60 edge case that we have a vertex of degree 5. This vertex
has 11 non-edges, which implies that the K16,15 subgraph obtained by deleting the
vertex of degree 5 has 196 − 11 = 185 non-edges, but since z(16, 15; 5) ≤ 184 (see
Table C.6), there must be a K5,5 subgraph in the bipartite complement. Thus the
maximum degree of vertices in a suitable K16,16 subgraph is at most 4 (by the pigeon-
hole principle, it must be exactly 4). The same argument can be used for the lower
bound of some of the larger cases as follows. Suppose in the 67 edge case that we
have a vertex of degree 3, then there are 64 edges in the K15,16 subgraph obtained by
deleting that vertex, but z(16, 15; 2) = 63 [Guy69] (Table C.0), so a K2,2 must exist.
Thus the minimum degree in this case is 4.

The second argument is a more complex counting argument. Suppose that we have
a vertex v of degree 6 in the right partition (we do not need to specify the number
of edges for this argument). There are 10 vertices in the left partition which do not
share an edge with v, call this set C. There are

(
10
2

)
= 45 2-set subsets of C. The

most efficient distribution of 2-sets to edges in the right partition (excluding v) is 3
sets per vertex. Since 3 edges make 3 2-sets in the neighborhood of each such vertex
there can be at most 3 × 15 = 45 edges incident to C. We can add at most one
edge from each vertex from the vertices in the right partition (other than v) into v’s
neighborhood, for 15 more edges. Finally we add the 6 edges incident to v for a total
of 45 + 15 + 6 = 66 edges. Thus we cannot have more than 66 edges and a vertex of
degree 6, so in the case of the 67 edges, our maximum degree is at most 5 (by the
pigeonhole principle it is exactly 5). If we use the same argument supposing a vertex
of degree 7, we determine that at most 62 edges are possible.

The full results of both arguments are summarized in Table 7.0. Despite these bounds,
only the E(G) = 67 case was computationally feasible. Each of the three graphs gen-
erated by nauty for this case contained a K5,5 subgraph in the bipartite complement,
so none would have been extendable. For the other cases, either better bounds, ad-
ditional restrictions, or more computing power is needed.

7.2 Heuristic Search to Solve b(2, 5)

Using the only known witness for 16 < b(2, 5) as a starting point, a heuristic search
was attempted. The method used was was to randomly delete edges and vertices
and then add back an equal number of vertices and edges generated randomly. This
method did not produce any additional witnesses for 16 < b(2, 5).
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E(G) δ(G) ∆(G)
60 4
61 ≤ 5
62 ≤ 6
63 ≤ 6
64 ≥ 1 ≤ 6
65 ≥ 2 ≤ 6
66 ≥ 3 ≤ 6
67 4 5

Table 7.0: The conditions on the degrees of the vertices in K16,16 subgraphs which might
theoretically be extendable to K17,17 subgraphs that avoid K2,2 and avoid K5,5 in the
bipartite complement.

7.3 Future Work

These are a list of concrete goals that could be used as the starting point for future
research projects.

• Study the Zarankiewicz bounding technique to determine criterion for when the
bounds are tight and when they are not. Attempt to improve the theoretical
bounds when they are not tight. Further study the error that accumulates due
to the occasions when the bound is not tight.

• Attempt to find more additional bounds on Zarankiewicz numbers. A nontrivial
bound for extending lower bounds would be useful. An additional approach
could involve attempting to bound z(m,n; s+ 1, t) given z(m,n; s, t). If such a
bound could be found, it might explain the cases where the current theorem’s
bound is not tight.

• Perform a more thorough heuristic search of K17,17 subgraphs in an attempt to
further improve the lower bound of b(2, 5) if possible.

• Search for better witnesses to further improve the b(2, 2, 3) lower bound using
non-cyclic graphs.
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B Graphs

B.0 Witness for 16 < b(2, 5)

Figure B.0 shows the single witness showing that 16 < b(2, 5). Table B.0 shows the
bipartite adjacency matrix.

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

Table B.0: The bipartite adjacency matrix for the b(2, 5) > 16 witness.

B.1 Cyclic Witnesses for 15 < b(2, 2, 3)

Table B.1 shows the 26 trinary sequences that correspond to the unique witness
graphs for 15 < b(2, 2, 3). To arrive at a witness graph, simply construct the bipartite
adjacency matrix using each of the 15 rotations of the chosen sequence.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure B.0: The graph witnessing b(2, 5) > 16. First the full graph is shown, then four
subgraphs, as color-coded in the original, so that the structure of the graph can be seen
more-easily. Clearly there are no C4s in the graph. In addition, there are no K5,5s in the
bipartite complement.
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0 0 1 0 1 2 2 0 2 2 2 2 1 1 2
0 0 1 0 2 2 1 0 2 1 2 1 2 2 2
0 0 1 0 2 2 1 0 2 2 2 2 1 2 1
0 0 1 0 2 2 1 1 2 1 2 0 2 2 2
0 0 1 0 2 2 1 2 1 1 2 0 2 2 2
0 0 1 0 2 2 1 2 2 2 2 0 1 2 1
0 0 1 0 2 2 2 0 2 1 2 1 1 2 2
0 0 1 1 0 2 1 2 2 0 2 1 2 2 2
0 0 1 1 2 1 2 0 2 1 2 2 0 2 2
0 0 1 1 2 1 2 2 2 0 2 0 1 2 2
0 0 1 1 2 1 2 2 2 1 0 2 0 2 2
0 0 1 1 2 2 1 2 1 0 2 0 2 2 2
0 0 1 2 0 2 2 2 2 0 1 2 1 1 2

0 0 1 2 1 0 2 0 2 2 2 2 1 1 2
0 0 1 2 1 0 2 1 1 2 2 2 2 0 2
0 0 1 2 1 1 0 2 2 2 1 2 2 0 2
0 0 1 2 1 1 2 0 2 2 2 2 0 1 2
0 0 1 2 1 1 2 2 2 0 1 2 2 0 2
0 0 1 2 1 1 2 2 2 2 0 2 0 1 2
0 0 1 2 1 2 2 1 1 2 0 2 0 2 2
0 0 2 0 1 2 1 0 2 2 1 1 2 2 2
0 0 2 0 1 2 1 1 2 2 0 1 2 2 2
0 0 2 0 2 1 2 0 2 1 1 2 1 2 2
0 0 2 1 2 0 2 0 2 1 1 2 2 1 2
0 0 2 1 2 2 2 1 2 0 1 0 1 2 2
0 1 0 1 2 0 1 2 2 0 1 2 2 2 2

Table B.1: The 26 trinary sequences representing the 15 < b(2, 2, 3) witness graphs.

C Zarankiewicz Tables

C.0 Guy’s Tables

Table C.0 is a version of Guy’s z(m,n; 2) table. Table C.1 is the same for z(m,n; 3).
Table C.2 is for z(m,n; 4). Each is slightly modified from Guy’s original tables, as
explained in each caption. Guy also included off-diagonal tables (s 6= t), but they are
not included here. [Guy69]

C.1 Extended Tables

Table C.3 is an extended version of the Guy table for z(m,n; 2). Table C.4 is the same
for z(m,n; 3), and Table C.5 is for z(m,n; 4). Table C.6 is a new table of z(m,n; 5)
values. Table C.7 is a new table of z(m,n; 6) values. All exact values were checked
using nauty, while bounds are from the new theorem introduced in Section 3.0 except
where noted.
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 9 10 12 13 14 15 16 17 18 19 20 21 22 23
5 12 14 15 17 18 20 21 22 23 24 25 26 27
6 16 18 19 21 22 24 25 17 28 30 31 32
7 21 22 24 25 27 28 30 31 33 34 36
8 24 26 28 30 32 33 35 36 38 39
9 29 31 33 36 37 39 40 42 43
10 34 36 39 40 42 44 46 47
11 39 42 44 45 47 50 51
12 45 48 49 51 53 55
13 52 53 55 57 59
14 56 58 60 63
15 61 63 66

Table C.0: Guy’s table of Zarankiewicz numbers z(m,n; 2) [Guy69]. Note that in Guy’s
original table, he defined Zarankiewicz numbers as the minimum number of edges in a Km,n

subgraph to guarantee a Ks,t subgraph, which is equivalent, but all of his numbers are
increased by one. The numbers here are according to the definition given at the beginning
of this paper. Note also that Guy listed z(15; 2) = 60. This was shown to be a slight
miscalculation; z(16; 2) was recently shown to be 61 [DybET13]. Given that Guy was
working with pen and paper in the 1960’s, this small error is excusable. The correct value
is given. Finally, note that Guy’s original table extended 11 more columns to the right, but
we have stopped at 17 for brevity.

3 4 5 6 7 8 9 10 11 12 13

3 8 10 12 14 16 18 20 22 24 26 28
4 13 16 18 21 24 26 28 30 32 34
5 20 22 25 28 30 33 36 38 41
6 26 29 32 36 39 42 45 48
7 33 37 40 44 47 50 53
8 42 45 50 53 57 60
9 49 54 59 64
10 60

Table C.1: Guy’s table of Zarankiewicz numbers z(m,n; 3) [Guy69]. Note that in Guy’s
original table, he defined Zarankiewicz numbers as the minimum number of edges in a Km,n

subgraph to guarantee a Ks,t subgraph, which is equivalent, but all of his numbers are
increased by one. The numbers here are according to the definition given at the beginning
of this paper. Note also that Guy’s original table extends out 10 more columns to the right.
This is a duplicate of Table 3.0.
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4 5 6 7 8 9 10 11

4 15 18 21 24 27 30 33 36
5 22 26 30 33 37 41 45
6 31 36 39 43 47 51
7 42 45 49 54 58
8 51 55 60

Table C.2: Guy’s table of Zarankiewicz numbers z(m,n; 4) [Guy69]. Note that in Guy’s
original table, he defined Zarankiewicz numbers as the minimum number of edges in a Km,n

subgraph to guarantee a Ks,t subgraph, which is equivalent, but all of his numbers are
increased by one. The numbers here are according to the definition given at the beginning
of this paper. Note also that Guy’s original table extends out 10 more columns to the right.

13 14 15 16 17 18 19 20 21 22

13 52 53 55 57 59 61 64 67 69 71
14 56 58 60 63 65 68 71 74 76
15 61 63 66 69 72 75 78 81
16 67 70 73 76 80 83 86
17 74 77 80 84 88 91
18 81 84 88 92 96
19 88 92 96 100
20 96 100 104
21 105 109
22 114

Table C.3: An extended table of the Zarankiewicz numbers z(m,n; 2). Exact values
are shown in bold, all other values are upper bounds. Off-diagonal exact values were
checked using nauty. Those on the diagonal come from Dybizbański, Dzido, and Radzis-
zowski [DybET13]. Upper bounds were generated using the theorem in Section 3.0.
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6 7 8 9 10 11 12 13 14 15

6 26 29 32 36 39 42 45 48 51 54
7 33 37 41 45 49 52 56 59 63
8 42 46 51 56 59 63 67 71
9 51 56 61 66 70 75 79
10 62 67 73 77 82 87
11 73 79 84 90 95
12 86 91 98 103
13 98 105 111
14 113 119
15 127

Table C.4: An extended table of the Zarankiewicz numbers z(m,n; 3). Exact values are
shown in bold, all other numbers are upper bounds. While related to Guy’s table (see
Table C.1) this does not rely on Guy for accuracy; all exact values were independently
checked using nauty. Upper bounds were generated using the theorem in Section 3.0. This
is a duplicate of Table 3.1.

6 7 8 9 10 11 12 13 14 15

6 31 36 39 43 47 51 55 59 63 67
7 42 45 49 54 59 64 68 73 78
8 51 56 61 67 73 77 82 87
9 63 68 74 80 86 92 97
10 75 82 88 95 102 107
11 90 96 104 112 117
12 104 112 120 127
13 121 130 137
14 140 147
15 157

Table C.5: An extended version of the Zarankiewicz table for z(m,n; 4). Exact values are
shown in bold, all other values are upper bounds. While related to Table C.2 (Guy’s table),
it is not based on this table for accuracy; all exact values were independently checked using
nauty. Upper bounds were generated using the theorem in Section 3.0.
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8 9 10 11 12 13 14 15 16 17 18

6 43 48 52 57 62 67 72 76 81 86 91
7 50 56 60 66 72 78 84 88 93 98 103
8 57 64 68 74 80 86 92 98 104 110 116
9 72 76 82 89 96 103 110 117 123 130
10 84 91 98 106 111 118 125 132 139
11 100 107 115 122 129 137 145 152
12 116 125 133 140 149 158 165
13 135 144 151 161 171 178
14 155 162 172 182 191
15 173 184 195 204
16 196 208 217
17 221 230
18 243

Table C.6: An extended table of the Zarankiewicz numbers z(m,n; 5). Exact values are
shown in bold and were checked using nauty. All other values are upper bounds that were
generated using the theorem given in Section 3.0, except in the case of z(10, 14; 5) ≤ 111
which was determined using a case-by-case argument. If only the bounding technique had
been used, z(10, 14; 5) could only be bounded above by 114, a testament to the innacurracy
of the new bounding method.

6 7 8 9 10 11 12 13 14 15 16 17

6 35 40 45 50 55 60 65 70 75 80 85 90
7 46 52 58 64 70 75 81 87 93 99 105
8 59 66 73 80 85 92 99 106 113 120
9 74 82 90 95 102 109 116 123 130
10 91 100 105 112 120 128 136 144
11 110 115 123 132 140 149 158
12 125 134 144 152 162 172
13 145 156 164 174 184
14 168 176 187 198
15 188 200 212
16 213 226
17 240

Table C.7: An extended table of the Zarankiewicz numbers z(m,n; 6). Exact values are
shown in bold and were checked using nauty. All other values are upper bounds that were
generated using the theorem given in Section 3.0.
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