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Abstract 
In this thesis, a novel method for control of over- or under-actuated dynamic systems is 
developed. The primary control method considered here is Sliding Mode Control which requires 
an inversion of the control input influence matrix. However, on many systems this matrix is non-
square, requiring alternate methods in order to obtain the control solution. Some existing 
solutions for this class of problems include pseudo-inversion such as the Moore-Penrose (which 
does not allow the design engineer to select the desired state to be controlled), dynamic extension 
(which is difficult to implement on large systems), and pseudo-inverse squaring transform 
methods. While the squaring transform method solves the key issue in the Moore-Penrose 
method of not being able to select the desired control state, it still has been limited to systems 
with only one input. The current effort seeks to extend this squaring transformation method to 
multiple input systems and demonstrate the control allocation properties of the technique. By 
extending this method to multiple-input systems the technique becomes applicable to a wider 
range of real world problems, allowing designers to select and optimally control any desired state 
on multi-input-multi-output systems. This thesis examines the existing solutions for squaring of 
input influence matrices such as Moore-Penrose and dynamic extension, the transform method 
developed in previous work, and derives a multi-input extension to that method and also 
considers control allocation in the solution process. Simulations are then developed on a two-
input, four mass-spring-damper system, and a multi-input longitudinal aircraft model to 
demonstrate the technique and characterize its performance in both sterile and noisy 
environments. The results of these simulations demonstrate the significant performance gains in 
tracking performance, reduced control effort, and noise rejection compared to the legacy Moore-
Penrose pseudo-inverse technique. In addition the ease of configuration for both desired state 
tracking and control allocation is demonstrated.  
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Nomenclature 
A System Dynamic Matrix 
B Input Influence Matrix 
B† Moore-Penrose pseudo-inverse of B 
C Output Matrix 
x State Vector 
T Transformation Matrix 
T* Alternate form of Transformation Matrix 
Q State Weighting Matrix 
R Input Weighting Matrix 
s Sliding Surface 
α Positive Constant 
γ Positive Constant 
λ Positive Constant 
u Control Input 
y Transformed State Vector 
J Cost Function 
K(t) Solution to Linear Quadratic Regulator 
K Steady-State Solution to Linear Quadratic Regulator 
Vt True Velocity 
A Angle of Attack 
p Roll Rate 
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r Yaw Rate 
f Roll/Bank Angle 
θ Pitch Angle 
ψ Yaw/Heading Angle 
V(x) Lyapunov Function (of variable x) 
xd Subscript (d) denotes desired value (i.e. desired value of x) 
𝒙� Difference between x and xd (i.e. state error, x - xd) 
n System Order/Number of States 
m Number of Inputs 
p Number of Outputs 
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Note: Typical matrix notation is employed. A lowercase, italic variable indicates a scalar. A 
lowercase, bold variable indicates a vector. An uppercase, bold variable indicates a matrix. 
  



 Introduction 1

1.1 Background 

1.1.1 Classical Control Theory and Methods 
While classical control algorithms are widespread in industry today, they suffer from several 
drawbacks. Most are intended to be applied to only a Single Input and Single Output (SISO), and 
are unable to provide an optimal solution for many systems, since they don’t incorporate a model 
of the plant. The shortfall can sometimes be improved through gain scheduling, but requires 
significant development and tuning on the designer’s part.  In addition to being limited to SISO 
systems, classical type controllers (of which PID is a common implementation) have 
performance drawbacks with non-linear systems since they ignore orders above 2 in the system 
response, and performance may be sensitive to modeling inaccuracies. 

1.1.2 Modern Control Theory and Methods 
Modern control theory has been progressing rapidly since the 1960’s. It is characterized 
primarily by Multi Input and Multi Output (MIMO) systems, and operations in the time domain. 
Some advances in this area of research that are key components of this current effort include, the 
state-space modeling approach, Lyapunov’s direct method, and sliding mode control.  

1.1.2.1 State-Space Models 
State space modeling provides a method to model a system in terms of a set of first-order 
differential equations. By replacing the higher order equations found in, for example, transfer 
function representations, with a set of first order equations, complex systems can be represented 
in a more compact form, as is most advantageous for systems with multiple inputs and outputs 
represented by a simple set of four matrices. [1] The generalized representation is usually of the 
form shown below: 

𝒙̇(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩(𝑡)𝒖(𝑡) (1) 

𝒚(𝑡) = 𝑪(𝑡)𝒙(𝑡) + 𝑫(𝑡)𝒖(𝑡) (2) 
 

Where: 

𝒙(𝑡) = 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 
𝒚(𝑡) = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 
𝒖(𝑡) = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟  
𝑨(𝑡) = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
𝑩(𝑡) = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 
𝑪(𝑡) = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 
𝑫(𝑡) = 𝑓𝑒𝑒𝑑𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 
𝒙̇(𝑡) = 𝑑

𝑑𝑡� 𝒙(𝑡) 



And: 

𝑨 ∈ ℝ𝑛 𝑥 𝑛 (3) 

𝑩 ∈ ℝ𝑛 𝑥 𝑚 (4) 

𝑪 ∈ ℝ𝑟 𝑥 𝑛 (5) 

𝑫 ∈ ℝ𝑟 𝑥 𝑚 (6) 
 

With n equal to the number of states, m equal to the number of inputs, and r equal to the number 
of outputs. 

In continuous time-invariant systems the A(t), B(t), C(t), and D(t) notation, simplifies to become 
just A, B, C, and D respectively. 

By representing the system model in the compact state space form, the designer can more easily 
manage and manipulate the system. In addition, the system is less difficult to solve using 
numerical analysis tools since several numerical techniques existing for solving systems of first 
order differential equations. 

As an example, a simple mass-spring-damper shown in Figure 1 is represented by its state space 
model in Equations (7) and (8). While the system in this example is simple, and so is the 
resulting state space model, complex models benefit immensely from the simple representation 
of first order differential equations during analysis and control design. 

 

Figure 1: Example Mass-Spring-Damper System (image courtesy Aaron Yoon) 

𝐴 = � 0 1
−𝑘/𝑚 1/𝑚� (7) 

𝐵 = � 0
1/𝑚� (8) 

 

 



1.1.2.2 Lyapunov Stability 
Aleksander Lyapunov developed a theory to determine stability of non-linear systems and 
published it in 1892. The theory found little use until the mid-1950’s when the technique was 
applied to non-linear control systems (specifically Sliding Mode Controllers discussed below) 
[2]. The theory can be broken into several components or definitions which are shown below. 

Definition 1: The equilibrium state x = 0 is said to be stable if, for any R > 0, there exists r > 0, 
such that if ‖𝑥(0)‖ < r, then ‖𝑥(𝑡)‖ < R for all of t ≥ 0. Otherwise the equilibrium point is 
unstable. 

Definition 1 is the broadest in terms of limiting a system. It states that if a state trajectory is 
started at a point located within a radius r of an equilibrium point and the state remains within the 
radius R of the equilibrium point for all of t > 0 it is stable. 

Definition 2: An equilibrium point 0 is asymptotically stable if it is stable, and if in addition 
there exists some r > 0 such that ‖𝑥(0)‖ < r implies that x(t)  0 as t∞. 

Definition 2 adds an additional restriction by defining the idea of asymptotic stability of a state. 
In this case if x(t)  0 as t∞, the equilibrium point is said to be asymptotically stable. 

Definition 3: An equilibrium point 0 is exponentially stable if there exists two strictly positive 
numbers α and λ such that  

∀𝑡 > 0, ‖𝑥(𝑡)‖ ≤ 𝛼‖𝑥(0)‖𝑒−𝜆𝑡 (9) 
 

Definition 3 once again tightens the restrictions and states that for all times t > 0, that x(t) must 
not only approach zero, but that it must do it in an exponential fashion (its trajectory being 
bounded by 𝑒−𝜆𝑡 where λ is the rate of convergence). 

Definition 4: A function, V(x), is said to be locally positive definite if V(0) = 0 and in a ball BR0 
x ≠ 0 V(x) > 0. If V(0) = 0 and the above property holds over the entire state space, then V(x) 
is said to be globally positive definite. 

Definition 5: If in a region defined by a ball BR0, the function V(x) is positive definite and has 
continuous partial derivatives, and if its time derivative along any state trajectory of the system is 
negative semi-definite (𝑉̇(x) ≤ 0) then V(x) is said to be a Lyapunov function for the given 
system. 

Definition 4 accounted for the requirement that energy always be positive unless the state is 0, 
and Definition 5 accounts for the second requirement that energy always be decreasing. Stability 
is thus guaranteed since the functions are positive, and their derivatives are always moving 
towards the origin. These concepts will be applied during the development of example 
controllers. 



1.1.2.3 Sliding Mode Control 
Sliding Mode Control was developed in the former USSR by several researchers [Aizerman and 
Gantmacher (1957), Emelyanov (1957), and Filippov (1960)] [2] during the 1950’s and 60’s and 
has continued to be an active area of research across several fields. [3] Some of its benefits 
include ease of application to a wide variety of typically difficult problems in controls such as 
nonlinear, MIMO, and large scale systems. Additionally, the method exhibits limited sensitivity 
to uncertainties (both intentionally un-modeled as a simplification, and un-known), and external 
disturbances assuming the bounds of these uncertainties are known.  Along with these superior 
noise rejection capabilities, it also lends itself to state-space models providing the designer with a 
straightforward integration path. [3] 

Drawbacks include the difficulty of inverting a non-square input influence matrix (also known as 
the B matrix). If the number system inputs do not match the system order, the matrix will be non-
square. Non-square input influence matrices occur often in real world systems, especially in 
aircraft which commonly include redundant actuators and control paths. An additional drawback 
is the tendency of the controller to chatter, switching at a high rate, and potentially exciting 
undesired responses in the system under control. Chattering can be minimized, however, through 
various techniques such as a low pass filter on the output. [2] 

As an example of a sliding mode controller consider the simple rotational system shown below: 
[3] 

𝐽𝜃̈(𝑡) = 𝑢(𝑡) (10) 
 

Where: 

𝐽 = 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑚𝑜𝑚𝑒𝑛𝑡 
𝜃̈(𝑡) = 𝑎𝑛𝑔𝑙𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 
𝑢(𝑡) = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑝𝑢𝑡 

(11) 

 

The sliding surface is defined as: 

𝑠(𝑡) = 𝑐𝑥(𝑡) + 𝑥̇(𝑡) (12) 
 

Where: 

𝑐 > 0 (13) 

𝑥(𝑡), 𝑥̇(𝑡) = 𝑠𝑡𝑎𝑡𝑒,𝑎𝑛𝑑 𝑖𝑡𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑎 𝑝ℎ𝑎𝑠𝑒 𝑝𝑙𝑎𝑛𝑒  (14) 
 



The tracking error function and the related derivatives are defined as: 

𝑥(𝑡) = 𝜃(𝑡) − 𝜃𝑑(𝑡) (15) 

𝑥̇(𝑡) = 𝜃̇(𝑡) − 𝜃̇𝑑(𝑡) (16) 

𝑥̈(𝑡) = 𝜃̈(𝑡) − 𝜃̈𝑑(𝑡) (17) 
 

Where θ, θd, and their related derivatives are the actual and desired angular positions, velocities, 
and accelerations. 

Taking the derivative of the sliding function (ensuring no movement of the state error trajectories 
is allowed once the trajectories reach the sliding surface) and substituting the error functions 
yield: 

𝑠̇(𝑡) = 𝑐𝑥̇(𝑡) + 𝑥̈(𝑡) (18) 

𝑠̇(𝑡) = 𝑐𝑥̇(𝑡) + 𝜃̈(𝑡) − 𝜃̈𝑑(𝑡) (19) 

𝑠̇(𝑡) = 𝑐 �𝜃̇(𝑡) − 𝜃̇𝑑(𝑡)� + 𝜃̈(𝑡) − 𝜃̈𝑑(𝑡) (20) 

𝑠̇(𝑡) = 𝑐 �𝜃̇(𝑡) − 𝜃̇𝑑(𝑡)� +
1
𝐽
𝑢(𝑡) − 𝜃̈𝑑(𝑡) (21) 

 

To ensure the Lyapunov stability (discussed in Section 1.1.2.2) of the function being positive, 
and the derivatives being negative, the following criteria must be met: 

𝑠𝑠̇ < 0 (22) 
1
2
𝑠2 ≥ 0 (23) 

 

By substitution of the previous equations: 

𝑠𝑠̇ = 𝑠 �𝑐�𝜃̇ − 𝜃̇𝑑� +
1
𝐽
𝑢 − 𝜃̈𝑑� (24) 

 

Solving for u(t), the controller becomes: 

𝒖(𝑡) = 𝐽�𝑐�𝜃̇ − 𝜃̇𝑑� + 𝜃̈𝑑 − 𝜂𝑠𝑖𝑔𝑛(𝑠)� (25) 

 

Where: 



𝑠𝑖𝑔𝑛(𝑠) = �
1, 𝑠 > 0
0, 𝑠 = 0
−1, 𝑠 < 0

 (26) 

 
  



 Background work 2
Combining state space models with sliding mode controllers provides the unique opportunity to 
handle MIMO control cases and achieve near perfect tracking of the selected states. Typically, 
however, the requirement exists that the input influence matrix be square (where the number of 
inputs is equal to the number of system states). Literature on the topic of dynamic inversion is 
available in a broad array of application areas, however, none make the novel leap to include 
control effort, MIMO systems, and control allocation in the derivation of the solution.  

An example of aircraft applications include a dynamic inversion paper by Enns et al in 1994 [4] 
where the technique was applied to an F18 with the authors even noting the fact that the input 
influence matrix could be badly conditioned for the technique. The issue was avoided by not 
solving that case. Over time techniques have appeared expanding the range of problems and 
methods used such as in the more recent paper by Hameduddin in 2011 [5] which applied the 
method to aircraft trajectory tracking. Hameduddin et al relied on the Moore-Penrose (discussed 
in Section 3.1.1) inverse to address the non-square input influence matrix of a MIMO system, 
and was thus unable to take into account control effort or state tracking selection. Aside from the 
papers of [6] [7] who themselves expressed the lack of documented work in using a technique 
such as this, there is little references in the transformation matrix technique discussed herein.  

2.1 Non-Square Systems 
In real world systems it is exceedingly rare to find a system in which the number of system 
inputs matches the system order. As mentioned previously, systems such as aircraft (both high 
performance and commercial) typically include redundant control actuators. The situation alone 
can create a case where the number of system states exceeds the number of system inputs. In 
these types of scenarios (and others, as both under- and over-actuated systems exhibit this issue) 
an inversion of a non-square B matrix to derive the Sliding Mode Control solution is required.  

2.1.1 Moore-Penrose Pseudo-inverse 
Mathematical solutions for inverting non-square matrices do exist in common practice and 
domain specific literature, however none address all of the desired requirements when inverting 
to implement a Sliding Mode Controller. The most common solution used in literature is the 
Moore-Penrose pseudo-inverse. [8] [9] While this solution does share some of the properties of a 
true inverse and can be used in the implementation of a Sliding Mode Controller, the suboptimal 
technique does not provide a method to target desired states for tracking purposes, and/or 
minimize cost in terms of controller effort. In fact its tracking ability is limited to the actuated 
states only. [7]  

2.1.2 Dynamic Extension 
Dynamic extension is another technique capable of modifying a system such that the input 
influence B matrix is squared through a transformation. While the method is capable of 
generating a square B matrix and thus allowing perfect tracking via SMC, the level of effort for 



calculating the dynamic extension becomes impractical for systems exceeding 2 or 3 states and 
likely explains its rarity in published literature [2] . 

2.1.3 Current Effort – Squaring Transformation Matrix 
Most recent solutions in the development of a squaring transformation matrix technique were 
developed by Schkoda, DiFiore, and Crassidis; with extension to MIMO systems. Schkoda’s 
research was concerned with the development of a controller for non-square SISO under actuated 
systems. DiFiore’s work used the case of actuators being equal to the number of states to 
collapse the problem to a SISO solution. While these developments were progressions towards 
applications on some real world systems (leaving behind pseudo-inverse techniques and applying 
it to fuel cell control problem) the existing solutions did not address the case of multiple system 
inputs where actuators do not match the state count. This limits the applicability of this technique 
on real world systems (e.g. aircraft which implement redundant actuators) until the extension is 
made. Both Schkoda and DiFiore proposed future efforts in developing the extension attempted 
herein. 

To develop and demonstrate the extension to MIMIO systems the following steps were taken: 

1. Research existing methods to understand the theoretical fundamentals of the square and 
under-actuated dynamic inversion solutions  

2. Examine the theoretical solution for under-actuated systems by mathematically extending 
existing techniques to MIMO problems while retaining the control allocation and effort 
considerations 

3. Simulate the dynamic response of various example systems operating under the proposed 
control law. (A multiple input mass spring damper and longitudinal aircraft model) 

  



 Theoretical Development 3

3.1  Squaring Transformation Matrix for Under Actuated Systems 
None of above techniques includes a cost function into their computations making them difficult 
to implement directly in real world applications allowing for control allocation and tracking of 
selectable state. For example the current solutions do not take into account the range of an 
actuator, control surface loading, and available power; nor do current solutions attempt to 
minimize the control displacement and its impact on rate and position saturation. [6] 
Additionally, the Moore-Penrose pseudo inverse does not allow for control allocation of system 
actuators at all.  

Schkoda, whose paper and thesis were the inspiration for this research, developed a method to 
compute a transformation matrix to ‘square up’ the input influence matrix for the purposes of 
solving the sliding mode controller equations. The initial derivation is briefly summarized below. 
[6] 

Given a system defined by: 

𝑥̇ = 𝑨𝒙 + 𝑩𝒖 (27) 
 

Where: 

𝑨 ∈ ℝ𝑛 𝑥 𝑛 (28) 

𝑩 ∈ ℝ𝑛 𝑥 1 (29) 
Note that B is non-square in the case of an under- or over-actuated system. 

Define the sliding surface as: 

𝑠 = 𝒙 − 𝒙𝒅 + γ� (𝒙 − 𝒙𝒅)𝑑𝑟
𝑡

0
 (30) 

 

Take the derivative and set the result equal to 0: 

𝑠̇ = 𝒙̇ − 𝒙𝒅̇ + γ𝒙� = 0 (31) 
 

Substituting the original state space model into this equation yields: 

0 = 𝐴𝒙 + 𝐵𝒖 − 𝒙̇𝒅 + γ𝒙� (32) 

−𝑨𝑥 + 𝑥̇𝑑 − γ𝑥� = 𝑩𝒖 (33) 



𝒖 = 𝑩−1[𝑥̇𝑑 − 𝑨𝒙 − γ𝑥�] (34) 
 

Therefore the input influence matrix (or B matrix) must be inverted to solve for the control 
effort. Schkoda [6] proposed a coordinate transformation such that the transformed system would 
result in a square (and thus invertible) system by defining the following transformation: 

𝑦 = 𝑻𝑥 (35) 
 

Where: 

𝑻 ∈ ℝ1 𝑥 𝑛 (36) 
 

Note that the dimensions of T are the transpose of B. 

Differentiating the transformation and substituting it into the original state space equation yields: 

𝒚̇ = 𝑻𝒙̇ → 𝒙̇ = 𝑨𝑥 + 𝑩𝑢 (37) 

𝒚̇ = 𝑻[𝑨𝒙 + 𝑩𝒖] = 𝑻𝑨𝒙 + 𝑻𝑩𝒖 (38) 
 

A new sliding surface is defined as: 

𝒔 = 𝒚 − 𝒚𝒅 + γ� (𝒚 − 𝒚𝒅)𝑑𝑟
𝑡

0
 (39) 

 

Differentiating the sliding surface and setting it equal to zero once again (utilizing Leibniz’s Rule 
[10]  which allows us to move the differential through the integral insert the limits): 

𝒔̇ = 𝒚̇ − 𝒚𝒅̇ + γ𝒚� = 0 (40) 
 

Substituting our updated state space equation into our sliding surface equation yields: 

𝑻𝑨𝒙 + 𝑻𝑩𝒖 − 𝒚𝒅̇ + γ𝒚� = 0 (41) 

𝑻𝑩𝑢 = 𝒚𝒅̇ − 𝑻𝑨𝑥 − γ𝒚� = 0 (42) 

𝒖 = (𝑻𝑩)−1[𝒚̇𝒅 − 𝑻𝑨𝑥 − γ𝒚�] (43) 
 



Note again that the choice of T will result in TB being square, thus as mentioned above: 

𝑻 ∈ ℝ𝑚 𝑥 𝑛 (44) 
 

The problem now reduces to finding T such that its dimensions are the transpose of B’s, where 
the tracking of selectable states is possible, and minimization of the control effort required. A 
possible solution is to employ a Linear Quadratic Regulator (LQR) cost function used 
extensively in optimal control problems to find an “optimal” T for the selection of desirable 
tracking states and including allocation of the control effort: 

𝐽 =
1
2
𝒙𝑇�𝑡𝑓�𝑆𝒙�𝑡𝑓� +

1
2
� (𝑥𝑇𝑸𝑥 + 𝑢𝑇𝑹𝒖)𝑑𝑡
𝑡𝑓

𝑡0
 (45) 

 

Q is chosen to weight the states the designer desires to track, and R is used to allocate the control 
effort. The standard LQR solution in optimal control has the following control feedback form for 
the control effort: 

𝒖 = −𝑲𝒙 (46) 
 

Substitute the previous equation into the following and solve for T: 

𝒖 = −(𝑻𝑩)−1𝑻[𝑨 + γ𝑰]𝒙 (47) 

𝑲 = (𝑻𝑩)−1𝑻[𝑨 + γ𝑰] (48) 

𝑻 = (𝑻∗𝑩)𝑲(𝑨+ γ𝑰)−1 (49) 
 

Where: 

𝑻∗ = 𝑩𝑇 (50) 
 

Substituting T back into our control law equation yields: 

𝒖 = (𝑻∗𝑩)−1𝑻[𝒙̇𝒅 − 𝑨𝒙 − γ𝒙�] (51) 
 

While this technique does solve the non-square matrix problem, and allows tracking of specific 
states, it was only derived for one input to the system. DiFiore started to extend the method to 
multiple inputs however the number of actuators matched the number of states and thus the 



problem reduced to a SISO type system once again. [7] As demonstrated in the example below, 
the proposed technique can be extended to under-actuated systems with multiple inputs while 
maintaining the control allocation and effort benefits. 

3.2 MIMO Derivation 
Below is the re-derivation of the above technique to address MIMO systems.  

Given a system defined by: 

 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 (52) 
 

Where: 

𝑨 ∈ ℝ𝑛 𝑥 𝑛 (53) 

𝑩 ∈ ℝ𝑛 𝑥 𝑚 (54) 
 

Note B is defined to be non-square as in the case of an under- or over-actuated system and in this 
case m is greater than 1. 

Define the sliding surface as before: 

𝑠 = 𝒙 − 𝒙𝒅 + γ� (𝒙 − 𝒙𝒅)𝑑𝑟
𝑡

0
 (55) 

 

Take the derivative and setting the result equal to zero ensures no movement of the state tracking 
error dynamics once the trajectories reach the sliding surface and yields: 

𝒔̇ = 𝒙̇ − 𝒙𝒅̇ + γ𝒙� = 0 (56) 
 

Inputting the state space model into the SMC equations yields: 

0 = 𝑨𝒙 + 𝑩𝒖 − 𝒙̇𝒅 + γ𝒙� (57) 

−𝑨𝒙 + 𝒙̇𝒅 − γ𝒙� = 𝑩𝒖 (58) 

𝒖 = 𝑩−1[𝒙̇𝒅 − 𝐴𝒙 − γ𝒙�] (59) 
 



Once again, as anticipated; the inversion of the input influence B matrix is required. Defining a 
coordinate transformation as follows: 

𝒚 = 𝑻𝒙 (60) 
 

Where: 

𝑻 ∈ ℝ𝑚 𝑥 𝑛 (61) 
 

Noting that the dimensions of T are the transpose of B, and m is greater than 1. 

Differentiating T and substituting it into the original state space equation yields: 

𝒚̇ = 𝑻𝒙̇ → 𝒙̇ = 𝑨𝒙 + 𝑩𝒖 (62) 

𝒚̇ = 𝑻[𝑨𝒙 + 𝑩𝒖] = 𝑻𝑨𝒙 + 𝑻𝑩𝒖 (63) 
 

A new sliding surface can be defined as: 

𝒔 = 𝒚 − 𝒚𝒅 + γ� (𝒚 − 𝒚𝒅)𝑑𝑟
𝑡

0
 (64) 

 

Differentiating Eq. (64) and setting it equal to zero once again (utilizing Leibniz’s Rule [10]): 

𝒔̇ = 𝒚̇ − 𝒚𝒅̇ + γ𝒚� = 0 (65) 
 

Finally, inserting the new state space equation into the sliding surface equation yields: 

𝑻𝑨𝒙 + 𝑻𝑩𝒖 − 𝒚𝒅̇ + γ𝒚� = 0 (66) 

𝑻𝑩𝑢 = 𝒚𝒅̇ − 𝑻𝑨𝒙 − γ𝒚� = 0 (67) 

𝒖 = (𝑻𝑩)−1[𝒚̇𝒅 − 𝑻𝑨𝒙 − γ𝒚�] (68) 
 

Note: With B having m greater than 1, the product of TB will remain square due to the selection 
of T as the transpose of B: 

𝑻 ∈ ℝ𝑚 𝑥 𝑛 (69) 
 



The problem now reduces to finding a T such that the dimensions of T are the transpose of B’s, 
near perfect tracking at desired selectable states is achieved, and control effort is minimized 
through control allocation. Choosing T such that the LRQ cost function is minimized (assuming 
a linearized plant): 

𝐽 =
1
2
𝑥𝑇�𝑡𝑓�𝑆𝑥�𝑡𝑓� +

1
2
� (𝑥𝑇𝑸𝑥 + 𝑢𝑇𝑹𝑢)𝑑𝑡
𝑡𝑓

𝑡0
 (70) 

 

Choosing Q in such that the desired states to track are weighted, and R to allocate the control 
effort, the standard LQR problem can be solved for the feedback gain matrix K: 

𝒖 = −𝑲𝒙 (71) 
 

Substituting into our control equation and solving for T: 

𝒖 = −(𝑻𝑩)−1𝑻[𝑨 + γ𝑰]𝒙 (72) 

𝑲 = (𝑻𝑩)−1𝑻[𝑨 + γ𝑰] (73) 

𝑻 = (𝑻∗𝑩)𝑲(𝑨+ γ𝑰)−1 (74) 
 

Where: 

𝑻∗ = 𝑩𝑇 (75) 
 

Substituting T back into our original control law equation: 

𝒖 = (𝑻∗𝑩)−1𝑻[𝒙̇𝒅 − 𝑨𝒙 − γ𝒙�] (76) 
 

The resulting control law has the properties of a sliding mode controller (noise rejection, and 
stability assurance) with the addition control allocation and the minimization of control effort.  

  



 Results 4
To demonstrate the effectiveness of the newly derived control technique, several simulations 
were developed to model the system responses, and quantify the resulting performance. The 
Moore-Penrose inverse was used as the baseline or legacy technique. These simulations were 
performed on a four-mass-spring-damper problem and a longitudinal aircraft model. The primary 
control objective undertaken in these simulations was, given a set of desired states; track one of 
the non-directly actuated states, with the minimum control effort.  

4.1 Under-Actuated System Example 
To demonstrate the technique a derivation and results of the technique discussed previously the 
method is applied to a basic 4 mass-spring-damper system with two force inputs. A diagram 
showing the system is presented in Figure 2 below. 

 

 

Figure 2: Four Mass-Spring-Damper System (image courtesy Markus Kottmann) 

4.1.1 System Assumptions 
Input forces: 

𝒖 = [𝑢1𝑢2] (77) 
 

Four positions and four velocities as outputs (which match the internal states below): 

𝒚 = [𝑦1 𝑦2 𝑦3 𝑦4 𝑦1̇  𝑦2 ̇ 𝑦3̇ 𝑦4̇] (78) 
 

State variables are assumed to be: 

𝑥1 = 𝑦1 
𝑥2 = 𝑦2 
𝑥3 = 𝑦3 
𝑥4 = 𝑦4 
𝑥5 = 𝑦1̇ 
𝑥6 = 𝑦2̇ 

(79) 



𝑥7 = 𝑦3̇ 
𝑥8 = 𝑦4̇ 

 

Physical constants are given as: 

𝑚 = 1𝑘𝑔 

𝑘 = 36
𝑁
𝑚

 

𝑏 = 0.6
𝑁 ∙ 𝑠
𝑚

 

(80) 

 

4.1.2 State Space Model Derivation 
Starting from the system model shown in Figure 2 above, the state space model was derived in 
the process shown below.  

For reference the system’s free body diagrams are shown in Figure 3: 

 

 

 

 

 



 

Figure 3: Free-body diagrams for four mass-spring-damper system 

Using Lagrange’s energy method to compute the equations of motion the system is described via 
a set of energy equations [11].  

With the kinetic energy elements of the system represented by T: 

𝑇 =
1
2
𝑚𝑦̇12 +

1
2
𝑚𝑦̇22 +

1
2
𝑚𝑦̇32 +

1
2
𝑚𝑦̇42 (81) 

 

And the potential energy elements represented by V: 

𝑉 =
1
2
𝑘(𝑦2 − 𝑦1)2 +

1
2
𝑘(𝑦3 − 𝑦2)2 +

1
2
𝑘(𝑦4 − 𝑦3)2 (82) 

 

Solving for the Lagrangian representation, denoted by L: 

𝐿 = 𝑇 − 𝑉 (83) 

𝐿 =  
1
2
𝑚𝑦̇12 +

1
2
𝑚𝑦̇22 +

1
2
𝑚𝑦̇32 +

1
2
𝑚𝑦̇42 (84) 



−
1
2
𝑘(𝑦2 − 𝑦1)2 −

1
2
𝑘(𝑦3 − 𝑦2)2 −

1
2
𝑘(𝑦4 − 𝑦3)2 

 

Computing the Rayleigh dissipation elements, denoted by R: 

𝑅 =
1
2
𝑏(𝑦̇2 − 𝑦̇1)2 +

1
2
𝑏(𝑦̇3 − 𝑦̇2)2 +

1
2
𝑏(𝑦̇4 − 𝑦̇3)2 (85) 

 

Given the Lagrange equation below: 

𝐹𝑞𝑖 =
𝑑
𝑑𝑡
�
𝜕𝐿
𝜕𝑞𝚤̇

� −
𝜕𝐿
𝜕𝑞𝑖

+
𝜕𝑅
𝜕𝑞𝚤̇

 (86) 

 

By substitution and differentiation, the four equations of motion are found to be: 

𝑚𝑦1̈ − 𝑘(𝑦2 − 𝑦1) − 𝑏(𝑦2̇ − 𝑦1̇) = 𝑢1 (87) 

𝑚𝑦2̈ + 𝑘(𝑦2 − 𝑦1) − 𝑘(𝑦3 − 𝑦2) + 𝑏(𝑦2̇ − 𝑦1̇) − 𝑏(𝑦3̇ − 𝑦2̇) = 0 (88) 

𝑚𝑦3̈ + 𝑘(𝑦3 − 𝑦2) − 𝑘(𝑦4 − 𝑦3) + 𝑏(𝑦3̇ − 𝑦2̇) − 𝑏(𝑦4̇ − 𝑦3̇) = 0 (89) 

𝑚𝑦4̈ + 𝑘(𝑦4 − 𝑦3) + 𝑏(𝑦4̇ − 𝑦3̇) = 𝑢2 (90) 
 

Solve for the eight state equations: 

𝑥1̇ = 𝑦1̇ = 𝑥5 (91) 

𝑥2̇ = 𝑦2̇ = 𝑥6 (92) 

𝑥3̇ = 𝑦3̇ = 𝑥7 (93) 

𝑥4̇ = 𝑦4̇ = 𝑥8 (94) 

𝑥5̇ = 𝑦1̈ = −
𝑏
𝑚

(𝑦1̇ − 𝑦2̇) −
𝑘
𝑚

(𝑦1 − 𝑦2) +
𝑢1
𝑚

 (95) 

𝑥6̇ = 𝑦2̈ = −
𝑘
𝑚

(𝑦2 − 𝑦1) −
𝑏
𝑚

(𝑦2̇ − 𝑦1̇) −
𝑘
𝑚

(𝑦2 − 𝑦3) −
𝑏
𝑚

(𝑦2̇ − 𝑦3̇) (96) 

𝑥7̇ = 𝑦3̈ = −
𝑏
𝑚

(𝑦3̇ − 𝑦2̇) −
𝑘
𝑚

(𝑦3 − 𝑦2) −
𝑏
𝑚

(𝑦3̇ − 𝑦4̇) −
𝑘
𝑚

(𝑦3 − 𝑦4) (97) 

𝑥8̇ = 𝑦4̈ = −
𝑏
𝑚

(𝑦4̇ − 𝑦3̇) −
𝑘
𝑚

(𝑦4 − 𝑦3) +
𝑢2
𝑚

 (98) 

 



Rearranging yields: 

𝑥5̇ =
1
𝑚

[−𝑘𝑥1 + 𝑘𝑥2 − 𝑏𝑥5 + 𝑏𝑥6 + 𝑢1] (99) 

𝑥6̇ =
1
𝑚

[𝑘𝑥1 − 𝑘𝑥2 − 𝑘𝑥2 + 𝑘𝑥3 + 𝑏𝑥5 − 𝑏𝑥6 − 𝑏𝑥6 + 𝑏𝑥7] (100) 

𝑥7̇ =
1
𝑚

[𝑘𝑥2 − 𝑘𝑥3 − 𝑘𝑥3 + 𝑘𝑥4 + 𝑏𝑥6 − 𝑏𝑥7 − 𝑏𝑥7 + 𝑏𝑥8] (101) 

𝑥8̇ =
1
𝑚

[𝑘𝑥3 − 𝑘𝑥4 + 𝑏𝑥7 − 𝑏𝑥8 + 𝑢2] (102) 

 
Formatting the above state equations into standard state space matrix format yields: 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−
𝑘
𝑚

𝑘
𝑚

0 0 −
𝑏
𝑚

𝑏
𝑚

0 0

𝑘
𝑚

−2 ∗
𝑘
𝑚

𝑘
𝑚

0
𝑏
𝑚

−2 ∗
𝑏
𝑚

𝑏
𝑚

0

0
𝑘
𝑚

−2 ∗
𝑘
𝑚

𝑘
𝑚

0
𝑏
𝑚

−2 ∗
𝑏
𝑚

𝑏
𝑚

0 0
𝑘
𝑚

−
𝑘
𝑚

0 0
𝑏
𝑚

−
𝑏
𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (103) 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0 0
0 0
1
𝑚

0

0 0
0 0

0
1
𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (104) 

𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (105) 



𝑫 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (106) 

 

4.1.3 Pseudo-Inverse Controller 
Given the state space system defined previously in Equations (103) – (106) of the form: 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 (107) 
 

Where: 

𝑨 ∈ ℝ8 𝑥 8 (108) 

𝑩 ∈ ℝ8 𝑥 2 (109) 
 

Note: B is defined to be non-square as in the case of an under- or over-actuated system and in 
this case m is 2. 

Define the sliding surface as before (see Equation (30)): 

𝑠 = 𝒙 − 𝒙𝒅 + γ� (𝒙 − 𝒙𝒅)𝑑𝑟
𝑡

0
 (110) 

 

Take the derivative and setting the result equal to zero yields: 

𝒔̇ = 𝒙̇ − 𝒙𝒅̇ + γ𝒙� = 0 (111) 
 

Inputting the state space model into the SMC equations yields: 

0 = 𝑨𝒙 + 𝑩𝒖 − 𝒙̇𝒅 + γ𝒙� (112) 

−𝑨𝒙 + 𝒙̇𝒅 − γ𝒙� = 𝑩𝒖 (113) 

𝒖 = 𝑩−1[𝒙̇𝒅 − 𝑨𝒙 − γ𝒙�] (114) 
 

Solving our final control law seen in Equation (114) now requires the inverse of B. B is of 
dimensions 8 x 2. 



The MATLAB implementation of the controller is formed as shown in Equation (115): 

𝒖 =  −𝑝𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑩) ∗ [(𝑨 + γ ∗ 𝑰)𝒙 − (𝛾 ∗ 𝒙𝒅) − 𝒙𝒅̇] (115) 
 

The controller is then realized in the Simulink model as shown in Figure 4: 

 

Figure 4: Four Mass Spring Damper Simulink Pseudo-Inverse Controller Model 

4.1.4 Transformed Matrix Controller 
Where: 

𝑻∗ = 𝑩𝑇 (116) 
 

Solving for T based on the derivation shown in Section 3.2 above. K is the gain matrix found by 
solving the standard LQR problem with the following inputs. Parameter gamma and matrix R are 
selected by starting with values used in previous research papers in this area, in combination 
order of magnitude LQR parameter selection techniques. Q is selected such that the desired 
control allocation state is several orders of magnitude above the remaining states. In the current 
example, it can be seen that to track Cart 3’s position Q[3,3] is set to 1,000,000,000, while the 
remainder of the matrix is the identity matrix. To track Cart 2’s position, Q[2,2] would be set 
similarly. This selection may be made for any of the 8 available states.  

Setting Q to track the desired state: 



𝑸𝐶𝑎𝑟𝑡2𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0
0 1000000000 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (117) 

𝑸𝐶𝑎𝑟𝑡3𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1000000000 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (118) 

𝑹 = � 10 0
0 10� (119) 

𝛾 = 20 (120) 
 

Substitute the resulting K (feedback gain matrix) obtained via MATLAB’s lqr()function into 
the earlier derived formula for T: 

𝑻 =  𝑻∗𝑩𝑲[𝑨 + 𝛾 ∗ 𝑒𝑦𝑒(8)]−1 
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 
𝑻 = �0.6738 −1.3278 −1.0004 −0.8526 0.1536 0.0422 −0.2322 0.0833

0.5329 34.9241 429.1039 35.4328 −0.0169 0.6982 18.8197 0.6807� 
 

(121) 

 

The following equation is realized in Simulink as shown in Figure 5: 

𝑢 =  −𝑖𝑛𝑣(𝑻∗ ∗ 𝑩)𝑻 ∗ [(𝑨 + 𝛾 ∗ 𝑰)𝑥 − (𝛾 ∗ 𝑥𝑑) − 𝑥𝑑]̇  (122) 
 



 

Figure 5: Four Mass Spring Damper Transformed Matrix Simulink Model 

 

4.1.5 Results and Comparison of Techniques  
Given the Simulink model described in Section 4.1.4, numerical simulations were ran to 
establish the system response and controller performance for both discussed techniques. In these 
simulations, a target state was selected to optimize tracking of. While all states were simulated, a 
representative example, State Three (Cart Three’s position), is examined here. Shown in Figure 6 
(and Figure 8), the tracking of State Three was nearly perfect and State Four had minimal error 
when controlled with the transformed matrix technique. While this transformed matrix control 
methodology did not exhibit particularly good performance in tracking States One and Two, they 
were not targeted during the system design so this is to be expected. The tracking of these non-
primary states can likely be tuned via optimization of Q matrix value selection.  

In comparison, the performance of the Moore-Penrose pseudo-inverse controller, shown in 
Figure 7 (and Figure 8), was quite poor on the selected State Three in tracking accuracy. In fact 
its tracking was nearly complete out of phase of the desired position (State Three), and the other 
states exhibited similarly poor tracking. Overall its tracking was poor on all states except the two 
velocity states, which were nearly perfect. This response is to be expected as Moore-Penrose 
techniques track only the directly connected states well. 



 

Figure 6: Transformed Matrix Tracking Results 

 

Figure 7: Pseudo-Inverse Tracking Results 

 

 



 

Figure 8: Tracking Error 

The control effort comparison between the techniques is shown in Figure 9 below. It is apparent 
that the transformed matrix technique requires an initial spike in control effort to start system 
movement, but returns to a level comparable to that of the Moore-Penrose method immediately. 
While the control effort is comparable after the initial startup spike, as previously shown the 
Moore-Penrose exhibits poor tracking accuracy throughout and thereby its primary disadvantage; 
the inability to select states to control become apparent. The designer is limited to the externally 
connected states only. The tradeoff of control effort (limited by an actuator’s ability to answer 
the demand) is often a worthwhile trade-off for the accurate tracking of a given state. 



 

Figure 9: Comparison of Control Effort 

In addition to the simulation of State Three, shown above, States One, Two, and Four were also 
simulated. The resulting tracking accuracy and control effort are then rolled up via cost functions 
into performance metrics. These numbers allowed direct comparison between the two techniques 
across all four simulations.  

The cost function used to characterize control effort is shown in Equation (123). The lower the 
resulting number, the less control effort was demanded by the controller: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = ���� |𝑢|𝑑𝑡
30

0
� /30� (123) 

 

Realized in MATLAB functions as: 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = 𝑠𝑢𝑚(𝑡𝑟𝑎𝑝𝑧(𝑎𝑏𝑠(𝑢)./𝑡𝑖𝑚𝑒(𝑒𝑛𝑑)) (124) 
 

The cost function for tracking accuracy is shown in Equation (125). The lower the resulting 
number, the better the tracking: 

𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ��(𝑥𝑑𝑖 − 𝑥𝑖)/𝑥𝑑𝑖� (125) 

 



In MATLAB the syntax below was used. Of note eps() was added to xi to prevent divide by 
zero errors: 

𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑠𝑢𝑚(𝑎𝑏𝑠(
𝑥𝑑𝑖 − 𝑥𝑖

𝑥𝑖
+ 𝑒𝑝𝑠)) (126) 

 

The previous metrics were then used to track each controller’s response at tracking each state. 
Control effort is shown below in Table 1 and the tracking effort is shown in Table 2. It becomes 
readily apparent in Table 2 that the tracking accuracy how the new method outperformed the 
legacy technique. On all four trials its tracking accuracy far exceeded the Moore-Penrose 
method. In terms of control effort, simulations on States Three and Four showed higher control 
effort, but as discussed previously, is acceptable since tracking accuracy is significantly 
improved over the alternative. Of note, the control effort did not change for any of the legacy 
pseudo inverse simulations as the technique does not adjust its control methodology for various 
states. 

Table 1: Mass-Spring-Damper Control Effort Comparison 

State Number State 
Description 

Average Control Effort 
T-Matrix 

Average Control Effort 
P-Inverse 

1 Cart 1 Position 2665.2 9890.8 
2 Cart 2 Position 10318.5 9890.8 
3 Cart 3 Position 9515.7 9890.8 
4 Cart 4 Position 867.4 9890.8 

 

Table 2: Mass-Spring-Damper Tracking Accuracy Comparison 

State Number State 
Description 

Average Tracking 
Accuracy 
T-Matrix 

Average Tracking Accuracy 
P-Inverse 

1 Cart 1 Position 1146.2 45382.3 
2 Cart 2 Position 4562.0 19034.7 
3 Cart 3 Position 6288.6 17726.6 
4 Cart 4 Position 3811.3 40460.3 

4.1.6 Control Allocation 
To demonstrate the control allocation properties of the technique a 0.5 scaling gain was applied 
to one of the input force terms. As shown in the plots below, the controller experienced minimal 
performance impact other than the additional control effort bourn by the remaining 
uncompromised input force term. The ability to allocate control effort to target different states is 
a key advantage of this controller type. 



 

Figure 10: Four Mass Spring Damper – Transformed Matrix - Control Allocation 

 

Figure 11: Four Mass Spring Damper - Pseudo-Inverse - Control Allocation 

 



 

Figure 12: Tracking Error - Control Allocation 

 

Figure 13: Control Effort - Control Allocation 

Finally, the system response to inputs that didn’t match the phase and form of the desired state 
was also simulated. In this case all desired inputs were set to a constant zero except the desired 
state, in this case State Three. The resulting tracking response is shown below in Figure 14. 



While tracking error increases for the non-selected states (shown in Figure 15), and control effort 
used is higher (shown in Figure 16), the tracking remains near perfect for the selected state.  

 

Figure 14: Non-Optimal Input - Tracking Results 

 

 

Figure 15: Non-Optimal Input - Tracking Error 



 

Figure 16: Non-Optimal Input - Control Effort 

4.2 Longitudinal Aircraft Model 
This model is representative of a high performance jet aircraft and provides an opportunity to 
demonstrate the controller performance in a real world application. For sake of clarity, the model 
has been limited to only its longitudinal states which consist of velocity (Vt), flight path angle 
(γ), pitch rate (q), and pitch angle (θ). Figure 17 and Figure 18 show the terms and how they map 
to an aircraft while in both the climbing and descending phases of flight respectively. Of note, 
flight path (γ) is defined to be the pitch angle (θ) minus the angle of attack (α). 



 

Figure 17: Longitudinal Terms of a Climbing Aircraft (image courtesy of NASA OLD) 

 

Figure 18: Longitudinal Terms of a Descending Aircraft (image courtesy of NASA OLD) 

4.2.1 Pseudo-Inverse Controller 
The Moore-Penrose pseudo-inverse controller (also referred to as the legacy method) used as a 
basis of for comparison is shown in Figure 19 below. The details of the implementation are 
highlighted in Figure 20 and rely simply on the MATLAB Moore-Penrose pseudo-inverse 
function pinv(). A more complete derivation of the controller was shown in Section 4.1.3. 



 

Figure 19: Legacy Implementation 

 

𝑢 =  − 𝑝𝑖𝑛𝑣(𝐵) ∗ [(𝐴 + 𝛾 ∗ 𝐼)𝑥 − (𝛾 ∗ 𝑥𝑑) − 𝑥𝑑̇] (127) 

 

 

Figure 20: Moore-Penrose Pseudo-Inverse Controller 

4.2.2 Transformed Matrix Controller 
The transformed matrix controller Simulink implementation is shown in Figure 21 below. The 
details of the implementation are highlighted in Figure 22 and rely on the MATLAB standard 
matrix inverse (suitable for square matrices) inv()applied to the product of B and its 
transpose. The complete derivation of the technique and underlying formulas were explored in 
Section 4.2.2.  

 



 

Figure 21: Transformed Matrix Simulink Implementation 

 

𝑢 =  − 𝑖𝑛𝑣(𝑇∗ ∗ 𝐵)𝑇 ∗ [(𝐴 + 𝛾 ∗ 𝐼)𝑥 − (𝛾 ∗ 𝑥𝑑) − 𝑥𝑑]̇  (128) 
 

 

Figure 22: Transformed Matrix Implementation Detail 

4.2.3 Results and Comparison of Techniques 
To analyze the performance of the expanded transformation technique, it was applied to the 
previously discussed longitudinal aircraft model across three sets of simulations including: 

• Nominal operation – Demonstrate the suitability of the derived controller to the example 
system (a longitudinal aircraft model) and its performance compared to the Moore-
Penrose pseudo-inverse method. 

• Wind gusts – Demonstrate that the derived controller retains the external disturbance 
rejection capability of the standard sliding mode controller, and outperforms the Moore-
Penrose pseudo-inverse method in disturbance laden environments. 

• Control allocation – Demonstrate the property of the derived controller to allow state 
tracking selection and compare its performance in such situations as failed or ineffective 
actuators to the Moore-Penrose pseudo-inverse method. 



4.2.3.1 Nominal Response 
The system was simulated for 30 seconds with the desired state inputs being a sine wave at 1 
rad/sec for states 1 and 3, and negative cosine at 1 rad/sec for states 2 and 4. The transformation 
matrix inversion technique was setup to optimize tracking of state 3 (flight path angle) in the Q 
matrix, and control allocated in the R matrix towards the elevator actuator.  

 

Figure 23: Longitudinal Aircraft Model – Flight Path Tracking 

Figure 23 show the tracking response of both controllers with the desired tracking state set to 
flight path. The transformed matrix provides near perfect tracking on State Two. The Moore-
Penrose pseudo-inverse is only capable of tracking the directly controlled states such as velocity 
and pitch angle (and in turn pitch angle). 



 

Figure 24: Longitudinal Aircraft Model – Flight Path Tracking – Tracking Error 

The error plot in Figure 24 better shows the resulting tracking differences between the 
techniques. In terms of tracking a non-directly connected state, in this case tracking State Two, 
the transformed matrix technique is superior to the legacy pseudo-inverse method.  

 

 

Figure 25: Longitudinal Aircraft Model – Control Effort – Flight Path Tracking 



In terms of control effort, the legacy method primary uses the throttle, a non-ideal control 
method in this case, while the transformed matrix method uses the elevator. This is due to the 
small coupling term present in the input influence matrix that cannot be adjusted for in the legacy 
technique. The transformed matrix method can be weighted via the R matrix to account for this. 

 

Figure 26: Longitudinal Aircraft Model – Control Deflections– Flight Path Tracking 

Figure 26 shows the control deflections throughout the simulation. Quickly apparent is the 
movement of the throttle to track flight path, a non-optimal use of control effort. 

Once again a set of cost functions were utilized to characterize the two controller’s performance 
across a set of state selections. Average control effort was defined again as below. Lower is 
better: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = ���� |𝑢|𝑑𝑡
30

0
� /30� (129) 

 

And implemented in MATLAB as: 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = 𝑠𝑢𝑚(𝑡𝑟𝑎𝑝𝑧(𝑎𝑏𝑠(𝑢)./𝑡𝑖𝑚𝑒(𝑒𝑛𝑑)) (130) 
 

The tracking accuracy metric is shown in Equation (131). Lower is better: 

𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ��(𝑥𝑑𝑖 − 𝑥𝑖)/𝑥𝑑𝑖� (131) 



MATLAB implementation: 

𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑠𝑢𝑚(𝑎𝑏𝑠(
𝑥𝑑𝑖 − 𝑥𝑖

𝑥𝑖
+ 𝑒𝑝𝑠)) (132) 

 

The results from these sets of simulations are shown in the tables below. The comparison of 
control effort has two items of note. First the control effort for the pseudo-inverse does not 
change despite the change in desired state. This gives insight into the fact that the legacy method 
is unable specifically target a desired state. Secondly, the average control effort utilized by the 
transformed matrix method is significantly lower than the legacy method. Again, this is intuitive 
since the legacy method does not have a method minimize the utilized effort. 

 

Table 3: Longitudinal Aircraft State Control Effort Comparison 

State Number State 
Description 

Average Control Effort 
T-Matrix 

Average Control Effort 
P-Inverse 

1 Velocity 16.1 156.2 
2 Flight Path 15.1 156.2 
3 Pitch Rate 9.8 156.2 
4 Pitch 9.9 156.2 

 

The tracking accuracy comparison is mixed between the transformed matrix and legacy method. 
The pseudo-inverse has direct control of velocity and pitch rate and thus can exceed the tracking 
performance of the transformed matrix on those states. However, keep in mind that the legacy 
technique does not consider control effort, and with optimization of the Q matrix, improvement 
on those two states is likely achievable with minimal impact on overall system performance. The 
remaining states of flight path and pitch are tracked with significantly better accuracy with the 
transformed matrix method without any additional optimization of state weighting. 

Table 4: Longitudinal Aircraft State Tracking Accuracy Comparison 

State Number State 
Description 

Average Tracking 
Accuracy 
T-Matrix 

Average Tracking Accuracy 
P-Inverse 

1 Velocity 2050.3 560.9 
2 Flight Path 3715.6 9234.8 
3 Pitch Rate 794.3 125.4 
4 Pitch 28.0 332.1 

 



4.2.3.2 Noise Rejection Properties 
One of the benefits of utilizing a sliding mode controller is its rejection of external disturbances. 
The longitudinal aircraft model was again used to model the controllers ability to track a given 
flight path, however in this case a wind gust model was placed in-line with the state-space model 
output to model disturbances on the system. Given the variances listed in Table 5 below, and the 
Dryden Wind Model  [U.S. Military Handbook MIL-HDBK-1797, 19 December 1997],  the 
model was simulated for 30 seconds to track a given flight path, using the elevator as the primary 
control input.  

Table 5: Wind Gust Variances 

Parameter Variance 
Vt_variance 0.1 

gamma_variance 0.01 
qb_variance 0.01 

theta_variance 0.01 
 

The Dryden gust model computed the α and Vt turbulences from the given variances and random 
noise generators as shown in Figure 27 below. Figure 28 shows how the coupling between the 
gust model and the turbulence model was implemented.  

 

Figure 27: Random Noise Generation Block - Turbulence 



 

Figure 28: Noise Injection Model 

The flight path tracking results from both the transformed matrix and pseudo-inverse are 
documented below. The transformed matrix controller response, as expected, was exceptional; 
whereas the pseudo-inverse suffered significant lag and lacked the ability to track the input 
accurately (never approaching the desired path by more than 50%).  

 

Figure 29: Longitudinal Aircraft Model – Transformed Matrix – Flight Path Tracking – Noise Rejection 



 

Figure 30: Longitudinal Aircraft Model – Pseudo-Inverse – Flight Path Tracking – Noise Rejection 

In terms of control effort the transformed matrix technique did require additional control effort 
compared to the existing technique, however with the result being near perfect tracking of the 
desired state, it would likely be a worthwhile trade off in a real-world implementation. There was 
also evidence of chattering on the control output. This is a common problem in SMC systems 
and is often address by adding a low pass filter or saturation element on the output, however it 
was not demonstrated as part of this thesis. 



 

 

Figure 31: Longitudinal Aircraft Model – Control Effort – Flight Path Tracking – Noise Rejection 

 

 

Figure 32: Longitudinal Aircraft Model – Control Deflection – Flight Path Tracking – Noise Rejection 



4.2.3.3 Control Allocation 
Demonstrated now is the control allocation properties of the technique. This allows a system 
designer to select a state to control in a system while minimizing the control effort required. This 
is of importance, for example, in situations where actuators may have failed, or suffer from 
reduced effectiveness. In the example below the longitudinal aircraft model discussed in Section 
4.2 is again used. The tracking of a desired flight path using the elevator was demonstrated in 
Section 4.2.3.1. Here, tracking the flight path state is attempted using only the throttle (for 
example as in the event of a loss of control on an elevator). This is due to the (weak) link 
between flight path angle (γ) and throttle as seen in the system input influence matrix (B) 
[B(2,2)]. 

𝐵 = �

0.069 0.191
0.130 0.011
−9.383 0.039

0 0

� (133) 

 

Recall the near perfect tracking of flight path with elevator control shown in Figure 23 and 
Figure 24 previously. The R matrix was reconfigured to force throttle control only, and is shown 
in Equation (134). The Q matrix remained the same as shown in the nominal example, setting the 
desired tracking state again to 2 (flight path angle).  

𝑅 = �0.01 0
0 1000� (134) 

 

Figure 33 shows an overlay of the desired tracking response and the actual system responses 
with the two controllers. The tracking performance of the legacy pseudo-inverse technique is 
subpar in comparison to the new transformation matrix. It is apparent that the legacy technique is 
unable to track flight path, with only directly connected states tracking with any accuracy. 
Additionally, in this case the legacy inverse technique required a significant expenditure in 
control effort, yet still was unable to track the desired state. As shown in Figure 36 control 
chatter does not appear to be an issue in this case, however if noise were present in the system, 
mitigation techniques (such as low pass filters or saturation elements) may become required. 

 



 

 

Figure 33: Longitudinal Aircraft Model – Flight Path Tracking – Control Allocation 

 

 

Figure 34: Longitudinal Aircraft Model - Flight Path Tracking Error – Control Allocation 

 



 

 

Figure 35: Longitudinal Aircraft Model – Control Effort – Flight Path Tracking – Control Allocation 

 

 

Figure 36: Longitudinal Aircraft Model – Control Deflection – Flight Path Tracking – Control Allocation 

 



Figure 37 below shows the near perfect tracking of flight path with throttle control only while the 
inability of the legacy technique to track a given flight path is shown; with only the directly 
connected states tracking with any accuracy. The transformed matrix technique does require 
additional control effort relative to the legacy method to achieve perfect tracking, however in 
real-world implementations this is often an acceptable trade-off.  As shown in Figure 40 control 
chatter does not appear to be an issue in this case, however if noise were present in the system, 
mitigation techniques (such as low pass filters or saturation elements) may become required. 

 

Figure 37: Longitudinal Aircraft Model – Flight Path Tracking Using Throttle Only 

 



 

Figure 38: Longitudinal Aircraft Model –Flight Path Tracking Error Using Throttle Only 

 

 

Figure 39: Longitudinal Aircraft Model – Flight Path Tracking Using Throttle Only – Control Effort 

 



 

Figure 40: Longitudinal Aircraft Model – Flight Path Tracking Using Throttle Only – Control Deflections 

 

In summary, the performance of the transformed matrix technique is superior to the legacy 
pseudo-inverse method in several areas. First, its tracking is often nearly perfect and nearly 
always at a lower control effort cost. Secondly, the control method provides for excellent 
rejection of noise and modeling imperfections, assuming they are bounded. Third, control can be 
easily allocated by a system designer to address desired system performance traits, and/or 
compensate for actuator failures.  

  



 Conclusions 5

5.1  Conclusions  
It has been demonstrated that among the methods to implement a dynamic inversion style 
controller, commonly utilized methods have several shortcomings and the investigated technique 
addresses some of those shortcomings. The Moore-Penrose pseudo-inverse lacked the ability to 
select states to control other than those directly connected to the actuators. While dynamic 
extension can provide a solution to MIMO problems it lacks a general solution and therefore 
must be re-derived for every application and left the technique impractical to implement in 
practice. Schokda’s original squaring transformation matrix technique developed the initial use 
of the method on single input, linearized systems but did not demonstrate the control allocation 
properties of the technique, or situations where system noise was present.  Finally, DiFiroe’s 
work addressed a specific class of nonlinear under actuated systems, using system order 
matching to collapse the problem match the SISO solution, again avoiding the over-actuated 
class of problems, and control allocation.  

This thesis has demonstrated an extension of Shkoda’s transformation matrix technique to 
linearized MIMO systems. Through this effort the minimization of control effort, along with 
control allocation properties have been shown to perform as desired across two example 
problems. Additionally, system noise was simulated on the longitudinal aircraft model, to which 
the derived controller showed excellent resistance. The results from both the four-mass-spring-
damper and the longitudinal aircraft model simulations support the conclusion that the derived 
technique meets the desired performance goals.  

5.2 Future Work 
This thesis was focused on extending the discussed technique to MIMO systems and 
demonstrating its performance compare to legacy techniques across several operational goals 
such as noise rejection, control effort, and control allocation properties, however the selection of 
parameters such as Q, R, in the LQR problem were not optimized. Future efforts could 
investigate the optimal selection of these LQR parameters and how the parameters relate to 
system performance using techniques such as Monte Carlo simulations. Additionally, the 
optimization of γ in the SMC control function may provide opportunities for controller 
performance improvements. 

Other areas for future research could seek to include more accurate actuator effects such as time 
delays into the system model and simulate the response and performance impact. Additionally, 
the method could be extended yet again to address non-linear systems and eventually 
implemented on a complete real-world system.  



 Societal Impact 6
The societal impact of this research effort is far ranging. A wide variety of aircraft, ground 
vehicles, and seaborne systems all depend on control methods for non-linear plants.  As these 
systems become more prevalent, the number of lives that depend on them increase as well. An 
example of such a system is aircraft controllers, some of which, with highly non-linear dynamics 
require advanced control methods to actively keep the aircraft in stable flight. Research into 
adaptive and optimal controls has made progress towards allowing aircraft to remain controlled 
in the event of damage, component fatigue failures, maintenance errors, etc.  However as 
systems advance, so must the adaptive control methods. Continuing the example of the 
aircraft…consider a rudder actuator failing due to an improper maintenance action (or lack 
thereof). Ordinarily the pilot may have limited options for direct yaw control. Given the stress of 
the situation the overloaded pilot would be required to manually perform flight path corrections 
using secondary actuators such as a differential throttle input or ailerons. Utilizing the methods 
being proposed herein the control system could automatically recognize the loss of direct yaw 
control (or have the pilot notify it of such a condition), update the desired state weighting matrix 
to optimize for yaw control (including consideration of the control effort), and allow the pilot to 
maintain control of his aircraft utilizing standard input mechanisms. This gives the crew and 
passengers a greater chance of survival in general, and it additionally minimizes the risk of the 
aircraft crashing into populated areas, or attempting a landing at a facility with limited control 
authority.  By providing a method of control under the loss of an actuator or control surface, the 
system provides numerous direct and indirect benefits. The expansion of these techniques to 
military aircraft, automotive systems, and nautical controls could only serve to benefit society. 
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