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Dual Signal Optical Bistability in a Semiconductor

Optical Amplifier

Aiswarya Kannan

Abstract

Future all-optical signal processing applications may require the use of multiple opti-

cal signals passing through a single, optically bistable device. My thesis investigates an

improved model for modeling two optical signals passing through an optically bistable

Fabry-Perot semiconductor optical amplifier (FP-SOA). The optical power and phase of

these signals are both modeled, as well as the optical gain of the FP-SOA. My improved

model is based on an improved model used to study optical bistability of just a single op-

tical signal, in which the internal power is related to the output power with an expression

accounting for the Fabry-Perot structure. Work has been performed to put all models into

a consistent notation. The resulting, improved model for dual-signal operation indicates

lower critical powers to trigger bistable action.
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CHAPTER 1

Light Propagation in a Resonator-Less

Semiconductor Optical Amplifier

My thesis begins with an introduction to light propagation in a semiconductor

optical amplifier (SOA). Chapter 1 deals with the power, phase, gain equations

which govern the light propagation in an SOA. Chapter 2 deals with the optical

bistability of a single light signal within an SOA that is within a resonator. This

chapter studies the behavior of output gain, power and phase for the light signal.

Chapter 3 deals with the same system of Chapter2, but uses a simpler model. The

simpler approach is compared with the results obtained in chapter 2. Chapter 4

also deals with optical bistability, but now using 2 different input signals. Chapter

5 also deals with the 2 signal case but the equations are obtained using the sim-

pler method followed in Chapter 2. We compare and quantify the two different

12



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

modeling approaches.

Figure 1.0.1: Semiconductor Optical Amplifier

Semiconductor optical amplifiers are based on the semiconductor gain medium

in the middle called as active region. As shown in Fig.1 , a weak optical signal is

provided as input and it comes out amplified as an amplified optical signal. The

electrical current is applied while the signal travels through the semiconductor

cavity. This injection current creates large number of electron and holes. When the

carrier density exceeds carrier transparency, the material is capable of optical gain,

thus behaving as an amplifier [1].

13



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

This chapter introduces semiconductor optical amplifiers and derives equa-

tions for power, gain and phase of an optical pulse inside a semi-conducting optical

amplifier. These quantities and expressions serve as a foundation for the rest of the

chapters in my thesis.

1.1 Carrier density equation

The carrier density in the SOA is given by a rate equation [2]

dN
dt

=
J

qd
− N

τc
− a(N − NT) ˜|E|2

h f
, (1.1.1)

where N is the carrier density [ 1
cm3 ], J is the current density [ A

cm2 ], q is the electron

charge [C], d is the active layer thickness [µm], τc is the carrier lifetime [ps], a is

the differential gain factor [cm2], hf is the photon energy[eV], and Ẽ is the electric

field. This rate equation ignores carrier diffusion.

N is the carrier density and NT is the carrier density at transparency which is

the state when the system experiences no loss. We assume that the carrier den-

sity does not vary much in the transverse dimension across the active region, and

therefore average over the transverse dimension. The carrier density equation is

re-written as [3]

dN
dt

=
J

qd
− N

τc
− Γa(N − NT)

h f
σ

wd
|A|2, (1.1.2)

where |A|2σ represents the optical power P and Γ is the confinement factor. More-

14



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

over, a saturation energy can be defined as [3]:

Esat =
h f wd

aΓ
,

and a saturation power can be defined as

Psat =
Esat

τc
=

h f wd
τcaΓ

.

Thus, the rate equation for N can be written as:

dN
dt

=
J

qd
− N

τc
− (N − NT)P

Esat
,

dN
dt

=
J

qd
− N

τc
− (N − NT)P

τcPsat
,

dN
dt

=
J

qd
− N

τc
− (N − NT)P

τc
,

where

P =
P

Psat
.

Further simplification can occur by multiplying throughout by τc [2] :

τc
dN
dt

=
Jτc

qd
− N − (N − NT)P,

τc
dN
dt

= N0 − N − (N − NT)P,

where Jτc
qd = N0 and the expression for steady-state can be found below.

15



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

1.1.1 Steady state and small signal carrier density

To find the steady state equation, the time derivative is equated to zero.

0 =
Jτc

qd
− N − (N − NT)P,

N =
Jτc

qd
− (N − NT)P.

For the small signal case, Pa = 0 which yields the steady state small signal carrier

density N0:

N0 =
Jτc

qd
. (1.1.3)

Similarly, the carrier density at transparency NT is given by

NT =
JTτc

qd
. (1.1.4)

Thus [3],

N = N0 − (N − NT)P,

N + NP = N0 + NTP,

N =
N0 + NTP

1 + P
. (1.1.5)

1.1.2 Steady state and small signal gain

The general expression for the gain coefficient is given by [7]

g = Γa(N − NT), (1.1.6)

16



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

where NT is the carrier density at transparency and N represents the initial carrier

density. The small signal steady state gain is therefore given by

g = Γa(N0 − NT),

g = Γa
[

Jτc

qd
− JTτc

qd

]
.

Re-arranging the equation gives

g =
Γaτc

qd
(J − JT),

g =
Γaτc JT

qd
(

J
JT
− 1).

Thus we obtain an expression for small-signal steady state gain as

g = ΓaNT(
J
JT
− 1).

At small signal, the gain coefficient is given by

g0 = Γa(N0 − NT).

Note that using the expression for g, the carrier density rate equation can be writ-

ten as

dN
dt

=
J

qd
− N

τc
− g

h f
σ

wd
|A|2.

1.1.3 Gain rate equation

Differentiating the gain equation with respect to time yields,

dg
dt

= Γa
dN
dt

.

17



CHAPTER 1: LIGHT PROPAGATION IN A RESONATOR-LESS SEMICONDUCTOR
OPTICAL AMPLIFIER

Substituting the carrier density rate equation in the gain equation gives,

dg
dt

= Γa
(

N0 − N
τc

− (N − NT)P
τc

)
,

τc
dg
dt

= Γa(N0 − N)− Γa(N − NT)P.

Note that (N0 − N) can be expanded as N0 − NT − (N − NT). Thus,

τc
dg
dt

= Γa(N0 − NT)− aΓ(N − NT)− aΓ(N − NT)P,

τc
dg
dt

= g0 − g− gP,

τc
dg
dt

= g0 − g(1 + P).

At steady state, [3]

0 = g0 − g(1 + P),

g =
g0

1 + P
.

1.2 Optical field

The complex field is given by [5]

Ẽ(x, y, z, t) = F(x, y)Ã(z, t)eiβz−iωt,

where F is the transverse distribution [-], Ã is the slowly varying envelope [
√

W],

β is the wavenumber [Rad/m] and ω is the angular frequency [Rad/Hz]. The rate

18
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equation for the envelope is [5]

∂Ã
∂z

+
1
vg

∂Ã
∂t

=
−iΓ

2
(α + i)a(N − NT)Ã− 1

2
αint Ã,

where vg is the group velocity [m/s], α is the line-width enhancement factor [-],

and αint is the scattering loss. Using the gain coefficient g, the rate equation be-

comes

∂Ã
∂z

+
1
vg

∂Ã
∂t

= −i(α + i)
gÃ
2
− 1

2
αint Ã,

∂Ã
∂z

+
1
vg

∂Ã
∂t

= (1− iα)
gÃ
2
− 1

2
αint Ã. (1.2.1)

1.3 Optical Power

The amplitude Ã of the electric field can be written in terms of power and phase

as

Ã =
√

Peiφ. (1.3.1)

Substituting this equation into the rate equation yields

∂(
√

Peiφ)

∂z
+

1
vg

∂(
√

Peiφ)

∂t
=

g
√

Peiφ(1− iα)
2

− 1
2

αint
√

Peiφ,

∂
√

P
∂z

eiφ +
√

P
∂eiφ

∂z
+

1
vg

∂
√

P
∂t

eiφ +
1
vg

√
P

∂eiφ

∂t
=

g
√

Peiφ

2
− 1

2
αint
√

Peiφ− iαg
√

Peiφ

2
,

∂
√

P
∂z

eiφ +
√

Pi
∂φ

∂z
eiφ +

1
vg

∂
√

P
∂t

eiφ +
1
vg

√
P

i∂φ

∂t
eiφ =

(g− αint)
√

Peiφ

2
− iαg

√
Peiφ

2
.
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eiφ can be dropped since it is a common term. The expression is then separated

into real and imaginary part as follows. The real part is [5]

∂
√

P
∂z

+
1
vg

∂
√

P
∂t

=
(g− αint)

√
P

2
. (1.3.2)

The equation can be re-written in terms of derivatives of P by noting

∂P
∂X

=
∂(
√

P
√

P)
∂X

=
√

P
∂(
√

P)
∂X

+
∂(
√

P)
∂X

√
P,

∂P
∂X

=
∂
√

P
∂X

2
√

P.

To use this equation, multiply the real part equation by 2
√

P

2
√

P
∂
√

P
∂z

+
2
√

P
vg

∂
√

P
∂t

= (g− αint)P,

∂P
∂z

+
1
vg

∂P
∂t

= (g− αint)P. (1.3.3)

The imaginary part is:

√
Pi

∂φ

∂z
+

1
vg

√
Pi

∂φ

∂t
=
√

P
(−iαg)

2
,

∂φ

∂z
+

1
vg

∂φ

∂t
=
−iαg

2
. (1.3.4)
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1.4 Linewidth enhancement factor

The linewidth enhancement factor was introduced above. This section describes

its origin [4].

n = nb + na,

where na is written as

na = Re{na}+ iIm{na}.

The linewidth enhancement factor is defines as

α =
Re{na}
Im{na}

,

where

Im{na} =
g
−2β0

,

βo =
2π

λ0
.

Therefore,

α =
−Re{na}
4g

2β0,

α =
−4π

λ0

4n
4g

,

α =
−4π

λ0

dn
dN
dg
dN

,

α =
−4π

λ0

dn
dN
a

.

Quite often, α is introduced to link changes in n to changes in g.
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The refractive index n can be written as

n = nT + (n− nT),

where nT is the value of n at transparency. The changes nx from ny can be repre-

sented by a change in the carrier density N:

nx = ny + Γ
dn
dN

(Nx − Ny).

The refractive index can therefore be given by

n = nT + Γ
dn
dN

(N − NT),

where NT is the value at transparency.

The equation for n becomes, after replacing dn
dN ,

n = nT −
Γαaλ0(N − NT)

4π
.

We know that

g = Γa(N − NT).

So, the equation for n can be re-written as

n = nT −
αgλ0

4π
,

n = nT −
αg0λ0

4π
+

α(g0 − g)λ0

4π
. (1.4.1)

There is another way to breakdown n:

n = nT −
Γαaλ0

4π
(N − NT),
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n = nT −
Γαaλ0

4π
(N − N0 + N0 − NT),

where N0 is the small-signal carrier density.

n = nT −
Γαaλ0

4π
(N0 − NT)−

Γαaλ0

4π
(N − N0). (1.4.2)

The second term represents the change in n as N0 varies from NT due to injection

current. The third term represents the change in n as N varies from N0 due to gain

saturation.

It is instructive to explicitly show the changes in gain from its small-signal

value. When N = NT, the gain co-efficient g = Γa(N − NT) = 0. When N = N0,

the gain co-efficient is g = Γa(N0 − NT) = g0, the small signal gain coefficient.

Thus,

g = Γa(N − NT),

g = Γa(N − N0 + N0 − NT),

g = Γa(N − N0) + Γa(N0 − NT),

g = Γa(N − N0) + g0,

g− g0 = Γa(N − N0),

g0 − g = ∆ = Γa(N0 − N).

Thus, Γa(N0 − N) is the difference ∆ of the gain coefficient from its small-signal

value. In steady state,

g =
g0

(1 + P)
.
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Thus,

g− g0 =
g0

(1 + P)
− g0,

g− g0 =
g0

1 + P
− g0(1 + P)

1 + P
,

g− g0 =
g0 − g0(1 + P)

1 + P
,

g− g0 =
g0P

1 + P
,

g0 − g = − g0P
1 + P

.

Thus, three equivalent expression in steady state are

g0 − g = − g0P
1 + P

= Γa(N0 − N).

Using these gain expressions, the refractive index can be understood as

n = nT −
αλ0g0

4π
+

αλ0(g0 − g)
4π

,

n = nT −
αλ0g0

4π
− αλ0

4π

g0P
(1 + P)

.

Above, we derived the following equation for the optical phase:

∂φ

∂z
+

1
vg

∂φ

∂t
= − iαg

2
.

We can now understand the final term in terms of refractive index as follows:

n = nT −
αgλ0

4π
,

αg = −(n− nT)
4π

λ0
,
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∂φ

∂z
+

1
vg

∂φ

∂t
= i(n− nT)

2π

λ0
,

∂φ

∂z
+

1
vg

∂φ

∂t
= iβ,

β =
2π

λ0
(n− nT).

These expressions can be represented in terms of phase φ , where

φ =
∫ L

0

2πn(z)dz
λ0

.

For the moment , we will assume n does not vary with z. In this case,

φ =
2πnL

λ0
=

2πnT L
λ0

+
2π(n− nT)L

λ0
,

φ =
2πnT L

λ0
+

2π(n0 − nT)L
λ0

+
2π(n− n0)L

λ0
,

φ =
2πnT L

λ0
− 2πLΓαa(N0 − NT)λ0

λ04π
− 2π(N − N0)LΓαaλ0

λ04π
,

φ =
2πnT L

λ0
− LΓαa(N0 − NT)

2
− (N − N0)LΓαa

2
.

In terms of gain,

φ =
2πnT L

λ0
− αLg0

2
− αL

2
g0P

(1 + P)
, (1.4.3)

or similarly

φ =
2πnT L

λ0
− αgL

2
.

The first term on the right of the equation is the phase at transparency. The second

term is the change in phase due to the small-signal gain current injection. The third

term is the change in the phase due to gain saturation.
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1.5 Summary of SOA Equations

In summary, the basic equations to describe optical pulse propagation in SOAs are

[5]:

∂g
∂t

=
g0 − g

τc
− gP

Esat
,

∂P
∂z

+
1
vg

∂P
∂t

= (g− αint)P,

and

∂φ

∂z
+

1
vg

∂φ

∂t
=
−iαg

2
.
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CHAPTER 2

Single Optical Input Signal into a

Bistable Semiconductor Optical

Amplifier

Figure 2.0.1: Schematic of a Fabry-Perot SOA
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A schematic of a Fabry-Perot SOA is given. It consists of p and n junction. A cur-

rent applied across the junction creates electrons and holes causing an amplifica-

tion of light entering the device. The SOA is surrounded by two reflective surfaces

with reflectivity R1 and R2 producing an optical resonator [6].

A model for optical bistability in Fabry-Perot-Type semiconductor optical am-

plifiers (FP-SOAs) was considered in Reference [2]. We adapt this model in this

chapter to be notationally consistent with the previous chapter. The rate equation

for the carrier density N in the amplifier is [2]

dN
dt

=
J

qd
− N

τc
− Γa(N − NT)

h f
σ

wd
|A|2, (2.0.1)

where N = carrier density [ 1
cm3 ], J= current density [ A

cm2 ], q = electron charge [C],

d = active layer thickness [µm], τc = carrier lifetime [ps], Γ = confinement factor

[−], σ|A|2 =P =the optical power averaged over the length of the SOA, hf = photon

energy [eV]. Just like as in Chapter 1, this expression can be simplified to

dN
dt

=
J

qd
− N

τc
− (N − NT)P

τc
,

where NT is the carrier density at transparency.
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2.1 Internal phase

The phase change φ experienced by an optical signal after traversing a single pass

along the FP-SOA is given by

φ =
2π

λ0
nL,

n = n0 +
dn
dN

(N − N0)Γ,

φ =
2π

λ0
n0L +

2π

λ0
L

dn
dN

(N − N0)Γ,

where n is the refractive index, n0 = small-signal refractive index and N0 = carrier

density when the input signal is absent.

φ = φ0 +
2πL(N − N0)

λ0

dn
dN

Γ, (2.1.1)

φ0 =
2π

λ0
n0L,

where φ0 = small-signal change in phase, independent of the optical power [rad],

λ0 = free-space wavelength [µm] , and L = amplifier length [µm]. Knowing

α = −4π

λ0

dn
dN

1
a

,

φ = φ0 −
2πL(N − N0)Γ

λ0

αaλ0

4π
= φ0 −

αaΓ(N − N0)L
2

,

φ = φ0 −
αgL

2
.
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2.2 Internal Phase Rate Equation

Eqn.(1.0.3) can be represented in dynamic version by taking the time derivative of

the phase leading to

dφ

dt
=

2πL
λ0

(
dN
dt

)
dn
dN

Γ.

The dN
dt term is substituted from rate Eqn.(1.0.1)

dφ

dt
=

2πL
λ0

dn
dN

[
J

ed
− N

τc
− (N − NT)P

τc

]
Γ.

Multiplying on either side with τc ,we get

τc
dφ

dt
=

2πL
λ0

dn
dN

[
τc J
ed
− N − (N − NT)P

]
Γ.

Simplifying by substituting Jτc
ed as N0 the small-signal carrier density ,

τc
dφ

dt
=

2πL
λ0

dn
dN

[
N0 − N − (N − NT)P

]
Γ,

λ0

Γ2πL dn
dN

τc
dφ

dt
= N0 − N − (N − NT)P,

λ0

Γ2πL dn
dN

τc
dφ

dt
+ (N − NT)P = N0 − N.

Note that Eqn.(1.1.1) can be re-written as

λ0

Γ2π

φ− φ0
∂n
∂N L

= (N − N0). (2.2.1)

Combining these two previous equations yields

λ0

Γ2π

1
dn
dN

τc
dφ

dt
1
L
=

(φ0 − φ)λ0

Γ dn
dN L2π

− (N − NT)P,
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τc
dφ

dt
= (φ0 − φ)− (N − NT)P

dn
dN

L
2π

λ0
Γ.

Adding and subtracting with N0 in the R.H.S,we get

τc
dφ

dt
= (φ0 − φ)− [(N − N0) + (N0 − NT)]P

dn
dN

L
2π

λ0
Γ.

Expanding the above equation yields

τc
dφ

dt
= (φ0 − φ)− (N − N0)PΓ

dn
dN

2π

λ0
L− (N0 − NT)P

dn
dN

2π

λ0
LΓ.

Substituting Eqn.(1.0.5) in the above equation , we get

τc
dφ

dt
= (φ0 − φ)− (φ− φ0)P− (N0 − NT)

dn
dN

2π

λ0
PΓ.

τc
dφ

dt
= (φ0 − φ)(1 + P) + (NT − N0)

dn
dN

2π

λ0
PΓ. (2.2.2)

The phase rate equation can be expanded as

τc
dφ

dt
= (φ0 − φ)(1 + P)− 2πL

λ0
(N0 − NT)P

dn
dN

Γ. (2.2.3)

We can re-write the phase equation in terms of linewidth enhancement factor α as

α = − 4π

λ0a
dn
dN

. (2.2.4)

Rearranging the terms yields

−2π

λ0

dn
dN

=
αa
2

.

We define the small-signal gain g0 to be

g0 = Γa(N0 − NT). (2.2.5)
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Substituing Eqn.(1.0.8) and Eqn.(1.0.9) in the phase equation yields

τc
dφ

dt
= (φ0 − φ)(1 + P) +

αa
2

L(N0 − NT)PΓ,

τc
dφ

dt
= (φ0 − φ)(1 + P) +

α

2
g0LP. (2.2.6)

2.3 Steady state internal phase

Eqn.(1.2.6) is solved in steady state by assuming d
dt=0

0 = (φ0 − φ)(1 + P) +
α

2
g0LP,

α

2
g0LP = (φ− φ0)(1 + P),

φ− φ0 = α
g0L
2

(
P

1 + P

)
,

φ = φ0 + α
g0L
2

(
P

1 + P

)
. (2.3.1)

Note that in steady state ,

∆ = g0 − g = g0 −
g

1 + P
=

(1 + P)g0 − g0

1 + P
=

g0P
1 + P

.

Thus,

φ = φ0 + α
∆L
2

,

φ− φ0 =
α∆L

2
=

α

2
g0LP
1 + P

. (2.3.2)
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Figure 2.3.1: Phase difference versus normalized internal power

Fig (2.3.1) [2] is plotted using P as given in Eqn. (2.5.1) with φ0 = −π/4 [rad]

and α of 5 [-] and g0L of 3.24 [-] with R1=R2=03 [-]. The loss factor αintL is 0.5 [-]

and confinement factor Γ is 0.5 [-]. Unless specified otherwise, these parameter

values are used for all graphs in this chapter.

From the figure we can see that φ− φ0 has a linear and then saturated increase

with increase in internal power. Since the values are normalized, the value of P=1
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is when the optical power matches the saturated power Psat.

2.4 Steady state gain coefficient

In the steady state equation for phase Eqn.(1.3.1)

φ = φ0 +
2πL
λ0

(N − N0)
dn
dN

Γ,

φ− φ0 =
2πL
λ0

(N − N0)
dn
dN

Γ.

Simplifying the equation using

−2π

λ0

∂n
∂N

=
αa
2

,

we get

φ− φ0 = −αaL
2

(N − N0)Γ.

2(φ0 − φ)

αL
= a(N − N0)Γ,

ΓaN = ΓaN0 +
2

αL
(φ0 − φ).

Subtracting either side of the equation by −aNTΓ

ΓaN − ΓaNT = ΓaN0 − ΓaNT +
2

αL
(φ0 − φ),

Γa(N − NT) = Γa(N0 − NT) +
2

αL
(φ0 − φ),

g = g0 +
2

αL
(φ0 − φ). (2.4.1)
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The net modal gain g− is given by

g− = g− αint. (2.4.2)

where αint = effective loss coefficient [ 1
cm ]. The relation between the net gain g−

and small-signal gain g0 is given by combining Eqns.(1.4.1) and (1.4.2)

g− = g0 + (φ0 − φ)
2

αL
− αint. (2.4.3)

Figure 2.4.1: Single pass gain versus normalized internal power
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Fig (2.4.1) is plotted using equation for P as given in Eqn. (1.4.3). From the fig-

ure we can see that the single pass gain has an exponential decrease with increase

in internal power.

2.5 Output and Input power

The output power Pout and P are related as [2]

P =
(1 + R2egL)(egL − 1)Pout

(1− R2)egLgL
= PoutY. (2.5.1)

where R2 is the reflectivity of the second mirror. The input power Pin and P are

related as

Pout = Pin
(1− R1)(1− R2)egL

(1− (R1R2)1/2egL)2 + 4(R1R2)1/2egL sin2 φ
= PinX. (2.5.2)

where R1 is the reflectivity of the first mirror. Since P is the known, Pout and Pin are

readily found as

Pout =
P
Y

,

Pin =
Pout

X
=

P
XY

.
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Figure 2.5.1: Normalized output Power versus normalized internal power

Fig (2.5.2) is plotted using equation for Pout as given in Eqn. (2.5.1) and ma-

nipulating that equation to get the normalized average power. From the figure we

can see internal power increase increases the output power. The internal power

and output power are directly proportional. The SOA increases the input power

producing an amplified output.
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Figure 2.5.2: Normalized input power versus normalized internal power

Fig (2.5.1) is plotted using equation for P as given in Eqn. (2.5.1) and Eqn.(2.5.2).

From the figure we can see that the normalized internal input power varies non-

monotonically with normalized internal power.
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2.6 In terms of Pin

Note that we know Pin, we can recreate the previous graphs as a function of Pin:

Figure 2.6.1: Phase change minus detuning versus normalized input power

Fig. (2.6.1) use the same parameter values as the previous figures. The graph

shows a hysteresis curve with switching to high phase occurring at a value of nor-

malized power of 0.013 and 0.002.
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Figure 2.6.2: Single pass gain versus normalized input power

Fig. (2.6.2) uses the same parameter value as the previous figures. The graph

shows a hysteresis curve with switching occurring at a value of normalized power

of 0.013 and 0.002. The single pass gain is high for a normalized power value of 0.
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Figure 2.6.3: Normalized output power versus normalized input power

Fig. (2.6.3) uses same parameter values as the previous figures. The graph

shows a hysteresis curve with switching occurring at a value of normalized power

of 0.013 and 0.002. The output power is initially 0 for 0 input power. As the power

increases the output also increases and following a hysteresis curve.
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2.7 Output phase

The relation between output phase ψout and input phase ψin is given by [2]

ψout = ψin − φ− tan−1(
(R1R2)

1/2egLsin2φ

1− (R1R2)1/2egLcos2φ
). (2.7.1)

Figure 2.7.1: Output phase versus normalized input power

Fig. (2.7.4) uses same parameter value as the previous figures. The graph shows

hysteresis curve with switching to high peaks occurring at a value of normalized
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power of 0.013 and 0.002.

2.8 Gain coefficient rate equation

As derived in the previous section, the net gain is given by

g− = g− αint.

The rate equation for the net gain is given by

dg
dt

−
=

dg
dt

dg
dt

−
=

g0 − g(1 + P)
τc

,

g− = g− αint,

g− + αint = g,

τc
dg−

dt
= g0 − (g + αint)(1 + P),

τc
dg−

dt
= g0 − g(1 + P)− αint(1 + P). (2.8.1)

2.9 Phase rate equation revisited

The phase rate equation is given by [2]

φ = φ0 +
2πL
λ0

(N − N0)
∂n
∂N

Γ,
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α = − 4π

λ0a
∂n
∂N

,

−2π

λ0

∂n
∂N

=
αa
2

,

φ = φ0 −
αa
2
(N − N0)LΓ,

φ = φ0 −
αa
2
(N − NT − N0 + NT)LΓ,

φ = φ0 −
αa
2
(N − NT)Γ +

αa
2
(N0 − NT)LΓ,

φ = φ0 −
αg
2

+
αg0L

2
,

φ = φ0 + α
(g0 − g)

2
L. (2.9.1)

Differentiating the phase equation with respect to time, we get

dφ

dt
= −αL

2
dg
dt

,

dφ

dt
= −αL

2
(

g0

τc
− g

τc
(1 + P)),

τc
dφ

dt
= −αL

2
(g0 − g− gP),

τc
dφ

dt
= −g0αL

2
+

gαL
2

+
gαL

2
P,

τc
dφ

dt
= −(φ− φ0) +

gαL
2

P,

φ = φ0 +
αg0L

2
− αgL

2
,

αgL
2

= (φ0 − φ) +
αg0L

2
,

τc
dφ

dt
= −(φ− φ0) + ((φ0 − φ) +

αg0L
2

)P,

τc
dφ

dt
= (φ0 − φ) + (φ0 − φ)P +

αg0L
2

P,
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τc
dφ

dt
= (φ0 − φ)(1 + P) +

αg0L
2

P. (2.9.2)

This expression matches the one derived earlier.
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CHAPTER 3

Single Optical Input Signal: Simpler

Model

The previous chapter studied optical bistability of a single optical signal injected

into an FP-SOA by using the average internal optical power, which was distin-

guished from both the input power and the output power. In the literature there

was a simple model introduced that used output power as an approximation to

the internal power [8]. This chapter uses this simpler model to study optical bista-

bility of the FP SOA. We again use the technique of parameterization to determine

various quantities like gain, phase, and power. At the end of the chapter, we com-

pare the results of the simple model and the internal power model of the previous

chapter.
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3.1 Basic equations

The basic equations used in this chapter are given below. These equations are then

modified as per the parameterization requirement to derive various solutions [8].

Pout =
T2G

[(1− GR)2 + 4GR sin2 φ]
Pin, (3.1.1)

G = exp[(g− αint)L], (3.1.2)

g =
g0

1 + P
, (3.1.3)

φ = φ0 +
α

2
g0L

P
1 + P

, (3.1.4)

Pout = P. (3.1.5)

where Pout = Pout
Psat

, P= P
Psat

, R is the reflectivity of the mirror , T=1-R is the transmit-

tance, αint is the loss coefficient, φ is the single path phase change, φ0 is the initial

detuning, and L is the length of the cavity. The gain co-efficient g is derived from

the carrier density rate equation. The g and φ, G and Pout equations are familiar

from Chapter 2. This set of equations differs from those of chapter 2 by the equa-

tion for output power interms of internal power P.

3.2 Output optical power parameterization

In this section, Pout =
Pout
Psat

is parameterized, which allows equations for gain coeffi-

cient g and phase φ to be solved. The result obtained is used to calculate the optical
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gain G. Then the solution for normalized input power Pin is found. The results ob-

tained are used to graphically plot the normalized output power vs normalized

input power.

For the calculations , the same parameters are used as in chapter 2. This would

give us better understanding and comparison of the two techniques. The values

used are reflectivity of 0.3, confinement factor of 0.5, loss coefficient of 0.5, input

phase of 0, phase detuning value of −π/4 and a single pass unsaturated gain of

3.24 [-]. The same parameters are used throughout the chapter for further calcula-

tions.

3.2.1 Gain coefficient and single-pass phase

Since we define the value for Pout and small signal gain g0 , we can use that to

determine the value of g and φ from Eqns.(3.1.3) and (3.1.4).
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Figure 3.2.1: Gain coefficient vs Normalized internal power

The gain coefficient exponentially decreases with the increase in the internal

power. The value is maximum for lower power and decreases as the power in-

creases.
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Figure 3.2.2: Phase difference vs Normalized internal power

The phase difference increases exponentially with the increase in the internal

power. The phase is lower for small input power and increases as the power in-

creases.
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3.2.2 Gain

Since we have calculated the value for g, we can readily find the value for optical

gain G. The optical gain varies exponentially along the length of the semiconductor

L and the expression is given by Eqn.(3.1.2).

Figure 3.2.3: Single pass gain vs Normalized internal power

The single pass gain follows the same graph as it is an exponential function

of the gain coefficient. The single pass gain also exponentially decreases with the
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increase in the internal power.

3.2.3 Normalized input and output power

In the simplified model of this chapter, the output power Pout is simply equal to the

internal power P. Eqn.(3.1.1) can be re-written in the normalized form by diving

the input and output power terms by Psat terms yielding [2]

Pout

Psat
=

Pin

Psat

G(1− R)2

(1− GR)2 + 4GR sin2 φ
.

The normalized terms can be written in a simplified form as Pin and Pout as

Pout = Pin
G(1− R)2

(1− GR)2 + 4GR sin2 φ
.

From this equation, the solution for normalized input power is determined,

Pin = Pout
(1− GR)2 + 4GR sin2 φ

G(1− R)2 . (3.2.1)

Alternatively, η can be defined as a part of Pin.

Note that we have calculated the input power in terms of the output power and

now we can graph all quantities (previously graphed in terms of the output power

in terms of input power).
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Figure 3.2.4: Normalized input power vs Normalized output power

The input power increases with the increase in the output power.
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Figure 3.2.5: Normalized output power vs Normalized input power

The output power increases with the increase in the input power.
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Figure 3.2.6: Gain coefficient vs Normalized input power

The gain coefficient decreases with the increase in the input power. The value

is maximum for lower power and decreases as the power increases.
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Figure 3.2.7: Phase difference vs Normalized input power

The phase difference increases with the increase in the internal power. The

phase is lower for small input power and increases as the power increases.
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Figure 3.2.8: Single pass gain vs Normalized input power

The single pass gain follows the same graph as it is an exponential function of

the gain coefficient. The single pass gain also decreases with the increase in the

input power.
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3.3 Output phase

The relation between output phase ψout and input phase ψin is given by [2]

ψout = ψin − φ− tan−1(
(R1R2)

1/2Gsin2φ

1− (R1R2)1/2Gcos2φ
). (3.3.1)

Figure 3.3.1: Output phase versus normalized input power

The output phase decreases with the increase in the input power.
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3.4 Comparison of Models

As explained at the beginning of this chapter, this chapter uses a simpler model

than the Chapter 2. The core difference in the model is that in the simpler model

the output power equals the internal power. The difference is shown in the figures

below. In other words, the simpler model (Chapter 3) uses

P′′out = P,

whereas the more involved approach (Chapter 2) uses

P′out = P
(1− R2)GgL

(1 + R2G)(G− 1)
=

P
X

.

Note that

P′′out
P′out

=
P
P
X

= X,

where

X =
(1 + R2G)(G− 1)

(1− R2)GgL
.

Here is a plot of X vs normalized internal power P. Since X>1, the output power

of the simpler approach is greater than that of the more involved approach.
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Figure 3.4.1: X vs normalized internal power

The X terms decreases with the increase in the internal power.
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Figure 3.4.2: Normalized output power vs normalized internal power

The figure shows that in both the chapters, the function varies linearly in an in-

creasing fashion. Chapter 2 uses a more complicated approach and for the same in-

ternal power, the output power is comparatively more than the approach in Chap-

ter 3.
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Figure 3.4.3: Normalized output power vs normalized input power

The output power in both the cases varies with hysteresis. The output power

is greater in case of the chapter 3 for the same input power range which is demon-

strated in the figure at high values of input power. Note that it takes less input

power to achieve bistability for the Chapter 2 model than for the Chapter 3 model.

This is because a lower input power is related to a lower output power, and the

Chapter 3 model gives a lower output power than the Chapter 2 model for the
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same amount of input power.

Figure 3.4.4: Phase difference vs normalized input power

The phase difference calculated in both the chapter approach varies with hys-

teresis and they curve is an incresing fashion for the increase in the input power.

The Chapter 2 curve has higher values of the phase difference for the same input

power, and the phase jump from lower and higher stable branches is larger.
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Figure 3.4.5: Phase difference vs normalized input power

The output phase calculated using each approach decreases with the increase

in the input power. The Chapter 2 curve has greater range of the output phase than

the Chapter 3 approach. The maximum and minimum limit of the output phase

is from -1.5 rad to 1.5 rad for the input power varying from 0 to 0.1 whereas the

approach in chapter 3 has output phase only varying within -0.5 to 0.5 for the same

x axis values.
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Figure 3.4.6: Normalized input power vs normalized internal power

The input power for the same range of internal power is lesser for the Chapter 2

and more for the simpler model in Chapter 3. This is the reason that all the figures

in chapter 3 has a greater power than the chapter 2 models. But the power required

to achieve bi-stable action is lessor for the more involved approach.
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CHAPTER 4

Dual Optical Input Signals:Baseline

Model

Optical bistability, such as studied in the previous two chapters, can be the basis of

optical memory devices and optical signal processing devices. The previous two

chapters considered a single optical signal, but the behavior when more than one

signal is present may open up more applications in optical signal processing. In

this chapter we consider two optical signals. We follow the model proposed in

reference [8], which is similar in its simplicity as the single signal model proposed

by [2]. The schematic of the FP-SOA using two signal is given below.
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Figure 4.0.1: Schematic of FP-SOA using 2 signals

The FP-SOA using two input signals schematic is given. The current is applied

on the SOA and they produce two amplified output signals.

4.1 Output power parameterization

The Fabry-Perot SOA is designed to have two input powers Pin1 and Pin2 with

output powers Pout1 and Pout2 respectively. The relation between the input and

output powers is given by [9]

Pout1

Ps
=

Pin1

Ps

T2G
(1− GR)2 + 4GR sin2(φ1)

, (4.1.1)

Pout2

Ps
=

Pin2

Ps

T2G
(1− GR)2 + 4GR sin2(φ2)

, (4.1.2)
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where Pin1 is the input power of signal 1, Pin2 is the input power of signal 2, Psat

is saturation output power of the amplifier, T=1-R is transmittivity, R is the reflec-

tivity, φ1 is the single path phase change of signal 1 and φ2 is the single path phase

change of signal 2. It is assumed that the saturation power is the same for each sig-

nal. These equations for the two-signal case are just two instance of the equation

given in Chapter 3. These equations further simplify to

Pout1 = Pin1F1, (4.1.3)

Pout2 = Pin2F2, (4.1.4)

where

Fx =
T2G

(1− GR)2 + 4GR sin2(φx)
,

Poutx =
Poutx

Psat
,

and

Pinx =
Pinx

Psat
,

and x values are 1 and 2.

The gain of the amplifier G is assumed to be the same for each signal and is

given as [9]

G = exp[(g− αint)L], (4.1.5)

where g is the saturated gain coefficient, αint is the loss coefficient and L is cavity

length. The saturated gain coefficient can be expressed in terms of small signal
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gain coefficient as

g =
g0

1 + P1+P2
PSAT

. (4.1.6)

Here, the gain is saturated by the sum of the internal power of both signals, and is a

simple extension of the gain equation used in Chapter 3. Note that it is convenient

to use the normalized internal powers P1 = P1
Psat

and P2 = P2
Psat

, which yields

g =
g0

1 + P1 + P2
.

The phase change is given by

φ1 = φ01 +
α

2
g0L

P1 + P2

1 + P1 + P2
, (4.1.7)

φ2 = φ02 +
α

2
g0L

P1 + P2

1 + P1 + P2
, (4.1.8)

φ2 = φ1 + φ02 − φ01.

Again, the sum of power is used. For the simpler model used in this chapter , the

internal power and the output powers are the same

Pout = P.

4.2 Normalized internal power for signal 1 and 2 pa-

rameterization

The equations above are solved by using parameterization. In this method P1 + P2

is treated as a single quantity and a vector of values is created for further solving.
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From a parameterized P1 + P2, equations for φ1 , φ2 , g and G are immediately

solved. From the value of g, G is solved. φ1 and G provides F1 while φ2 and G

provides F2. By knowing all these values, the input normalized power value can

be determined. The input power Pin can be calculated using the equation (4.1.3)

and (4.1.4). The summed power is

Pout1 + Pout2 = Pin1F1 + Pin2F2,

where the left hand side is equal to output parameter. From the known equation

for normalized output power, if we assume that Pin2 is a constant value and a

known quantity, then Pin1 can be calculated as follows:

Pin1F1 = Pout1 + Pout2 − Pin2F2,

Pin1 =
Pout1 + Pout2 − Pin2F2

F1
. (4.2.1)

By knowing the value of Pin2 and Pin1 we can have a plot with normalized input

power vs normalized output power.

4.2.1 Gain coefficient

Since we define the value of P1 + P2 and small signal gain g0, we can use them to

find the gain coefficient g using (4.1.6). The gain coefficient exponentially decreases

with the increase in the total output power.
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Figure 4.2.1: Gain coefficient vs normalized total internal power

Unless otherwise specified, all figures in this chapter are plotted using L=0.03

cm, R=0.35[-], g0=42.75 [1/cm], αint=10 [1/cm], b=4[-], φ01=2.3 [rad] and φ02=pi

[rad], Γ=0.4 and normalized input power of the signal 2 as 0.01 [9].
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4.2.2 Gain

Since we have calculated the value of g, we can find the value for optical gain G.

The optical gain varies exponentially along the length of the semiconductor L and

the expression is given as

G = exp[(g− αint)L]. (4.2.2)

Figure 4.2.2: Single pass gain vs normalized total internal power

The single pass gain is an exponential function of the gain coefficient. Thus
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it follows the same pattern and decreases exponentially with increase in the total

output power.

4.2.3 Single-pass optical phase

Since we define the value of P1 + P2, and small signal gain g0, we can use that to

find the optical phase φ1 and φ2 using equation (4.1.7) and (4.1.8).

Figure 4.2.3: Optical phase vs normalized total internal power
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The phase quantities increase as the internal power increases. They are directly

proportional to each other.

4.2.4 Output phase

The output phase for both the signal is given by the equations [2]

ψout1 = ψin − φ1 − tan−1[
RGsin(2φ1)

1− RGcos(2φ1)
] (4.2.3)

ψout2 = ψin − φ2 − tan−1[
RGsin(2φ2)

1− RGcos(2φ2)
] (4.2.4)
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Figure 4.2.4: Output phase vs normalized total internal power

The output phase and power are inversely proportional. Hence the value de-

creases with increase in the internal power.
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4.3 Input power

The sum of the output power is used above to determine g, φ, G, F1 and F2. More-

over, Pin1 can be found if we assume a value for Pin2, using Eqn.(4.2.1).

Figure 4.3.1: Normalized input power for signal 1 vs normalized total output

power

Note that we know the input power, all other quantities can be plotted in terms
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of the input power.

4.3.1 Separated output power

Once the input power for each signal is known, the output power can be found

using

Pout1 = Pin1F1,

Pout2 = Pin2F2.

Alternatively, because Pout1 + Pout2 is known, either Pout1 or Pout2 can be found if the

other power is found first. The two output powers are plotted in Figure(4.3.2) as

a function of input power. Note that the bistable behavior is evident. Both signals

have the same input power, that triggers bistability.
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Figure 4.3.2: Normalized output power vs normalized input power of signal 1

4.3.2 Gain and phase

Now that the input power of signal 1 is known, the already calculated gain and

phase can be plotted as a function of it. These graphs clearly show hysteric behav-

ior.
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Figure 4.3.3: Gain coefficient vs normalized input power of signal 1

The gain coefficient decreases with the increase in the input power.
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Figure 4.3.4: Gain coefficient vs normalized input power of signal 1

The single pass gain follows a similar pattern to that of the gain coefficient. The

single pass gain decreases with the increase in the input power.
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Figure 4.3.5: Optical phase vs normalized input power of signal 1

The optical phase variers with hysterisis with increase in the input power.
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Figure 4.3.6: Output phase vs normalized input power of the signal 1

4.4 Dependence on Initial Detuning

In this section, varying the quantity φ02 by keeping φ01 as a constant value as

2.3[rad] and varying the φ02 as π, π/2 and 0 in case 1,2, and 3 respectively, the

output power is varied and plotted as a function of the input power.
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4.4.1 φ01=2.3[rad] and φ02 = π

Figure 4.4.1: Output phase vs normalized input power of the signal 1

The output power for signal 1 increases with the increase in input while output

power for signal 2 decreases. This corresponds to the difference in phase applied

to the signals.
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4.4.2 φ01=2.3[rad] and φ02 = π/2

Figure 4.4.2: Output phase vs normalized input power of the signal 1

The output power of signal 1 increases like the previous case since the value of φ01

is kept as a constant. But since φ02 is varied, it remains as a constant value in this

case with the increase in the input power.
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4.4.3 φ01=2.3[rad] and φ02 = 0

Figure 4.4.3: Output phase vs normalized input power of the signal 1

Since the output power depends on the phase shifts, the output in this case of

signal 2 is similar to the first case because the phase shift in current case is 0 and

it is π for the initial case. The input power for signal 2 decreases while signal 1

increases with the increase in the input power.
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CHAPTER 5

Dual Optical Input Signals:Improved

Model

5.1 Introduction

In this chapter, we again consider a Fabry-Perot SOA being injected with two sig-

nals. Unlike the previous chapter, however, we will consider a more accurate rela-

tion between the output power and the average internal power as the parameter-

ized quantity. Doing so is following the lead of the analysis in Chapter 2 in which

the internal power is distinguished from the output power. This work is expected

to improve the accuracy of simulations of the two-signal case.
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5.2 Gain coefficient

The gain coefficient is common to both signals "1" and "2" and is given by

g = Γa(N − NT),

where the steady state value is given by

g =
g0

1 + P1 + P2
,

where P1 and P2 is the sum of the internal powers and is the parameterized quan-

tity. As in previous chapter, the bar indicates that the power have been normalized

by the saturation power Psat:

P1 =
P1

Psat
,

P2 =
P2

Psat
.

A graph of the gain coefficient as a function of total internal power is shown in

Fig(x.x.x). Unless otherwise specified , all figures in this chapter are plotted using

L=0.03 cm, R=0.035[-], g0=42.75[1/cm], αint=10[1/cm], φ01=2.3[rad], and φ02=π[rad],

Γ=0.4, and Pin2=0.01. Note that these are the same nominal parameter values used

in Chapter 4 for the simpler model.
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Figure 5.2.1: Gain coefficient vs summed internal power

The gain coefficient is same as that of Chapter 4 and it exponentially decreases

with the increase in the summed internal power.
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5.3 Gain

The total single pass gain is given by

G = exp[(g− αint)L],

which is equivalent to [2]

G = Γg0L + Γ(φ01 + φ02 − (φ1 + φ2))
2
b
− aL. (5.3.1)
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Figure 5.3.1: Single pass gain vs summed internal power

The gain value decreases with an increase in the internal power.

5.4 Single-pass optical phase

We know the average optical internal power traveling across the device. Knowing

the power, initial detuning of the signal 1 and 2, we can calculate the optical phase
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as

φ1 = φ01 +
α

2
g0L
(

P1 + P2

1 + P1 + P2

)
,

and

φ2 = φ02 +
α

2
g0L
(

P1 + P2

1 + P1 + P2

)
,

φ2 = φ1 + φ02 − φ01.

Figure 5.4.1: Optical phase vs normalized internal power
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The optical phase exponentially increases with the increase in the internal power.

5.5 Output phase

The relation between output phase ψout1 and input phase ψin is given by

ψout1 = ψin − φ1 − tan−1(
(R1R2)

1/2eGLsin2φ1

1− (R1R2)1/2eGLcos2φ1
).

For simplification, let us assume M1 as

M1 = (
(R1R2)

1/2eGLsin2φ1

1− (R1R2)1/2eGLcos2φ1
).

Thus the phase of the signal 1 is given by

ψout1 = ψin − φ1 − tan−1(M1).

Likewise,

ψout2 = ψin − φ2 − tan−1(
(R1R2)

1/2eGLsin2φ2

1− (R1R2)1/2eGLcos2φ2
).

For simplification, let us assume MB as

M2 = (
(R1R2)

1/2eGLsin2φ2

1− (R1R2)1/2eGLcos2φ2
).

Thus the phase of signal 2 is given by

ψout2 = ψin − φ2 − tan−1(M2).
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Figure 5.5.1: Output phase vs normalized internal power

The output phase also decreases with the increase in the internal power for both

the signals.
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5.6 Output Power

In the previous chapter, simpler approach was used in which the internal power

and the output powers were assumed to be the same. The relation between the

averaged internal and output power in this current chapter is made more realistic:

P1 = Pout1H,

where H is given by

H =
(1 + R2G)(G− 1)

(1− R2)GgL
,

and P1 is the averaged internal power and Pout1 is the output power. Hence the

output power is given by

Pout1 =
P1

H
.

Similarly we have another normalized averaged internal signal P2 producing the

output signal of Pout2. The governing equations are

P2 = Pout2H.

Hence the output power of the "2" signal is given by

Pout2 =
P2

H
.

The internal powers are known in their combined form. Therefore the output

power will be the sum of averaged internal powers:

P1 + P2 = Pout1H + Pout2H,
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Taking H as a common factor ,

P1 + P2 = (Pout1 + Pout2)H,

The sum of the output power is given by

Pout1 + Pout2 =
P1 + P2

H
. (5.6.1)

This expression gives only the sum of output powers, whereas we seek expressions

for each output powers independently in terms of P1 + P2. Note that Eqn.(5.6.1)

reveals the difference between this current model and the simpler model of the

previous chapter is simply the inclusion of H. Thus, H is an important quantity

and is graphed here:
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Figure 5.6.1: H vs summed internal power

The H parameter decreases with the increase in the internal power and it is

common for both the signals.
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5.7 Input power

The normalized output power for signal "1" and the normalized input power are

related by the formula

Pout1 = Pin1F1,

where F1 is given by

F1 =
(1− R1)(1− R2)G

(1−
√

R1R2G)2 + 4
√

R1R2Gsin(φ1)
.

Hence the input power is given by

Pin1 =
Pout1

F1
=

P1

F1H
,

where we have related the input power to the internal power. Likewise,

Pout2 = Pin2F2,

where F2 is given by

F2 =
(1− R1)(1− R2)G

(1−
√

R1R2G)2 + 4
√

R1R2Gsin(φ2)
.

Hence the input power is given by

Pin2 =
Pout2

F2
=

P2

F2H
.

Working with summed power gives,

Pout1 + Pout2 = Pin1F1 + Pin2F2,
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The R.H.S can be equated to

P1 + P2

H
= Pin1F1 + Pin2F2.

We assume that Pin2 is known to us. Thus Pin1 can be found as:

Pin1F1 =
P1 + P2

H
− Pin2F2,

Pin1 =
P1 + P2

HF1
− Pin2

F2

F1
. (5.7.1)

This expression gives Pin1 in terms of the P1 + P2 internal power sum.

Now that the input power is known, the output power can be calculated using

the formula

Pout1 = F1Pin1,

Pout2 = F2Pin2.

The full expression for the output power of signal "1" is

Pout1 =
P1 + P2

H
− Pin2F2. (5.7.2)

After the input power is found, all the other parameters like gain, phase can be

plotted against a function of it.
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Figure 5.7.1: Normalized input power vs normalized internal power

The input power for signal one tends to increase with the increase in the inter-

nal power whereas the input power for signal 2 tend to remain a constant value

denoted by a straight line.
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Figure 5.7.2: Normalized output power vs normalized input power

The output power increases with hysterisis with the increase in the input power.
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Figure 5.7.3: Gain coefficient vs normalized input power

The gain value decreases hysterically with the increase in the input power.
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Figure 5.7.4: Single pass gain vs normalized input power

The gain value decreases with the increase in the input power.
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Figure 5.7.5: Output phase vs normalized input power

The output phase decreases hysterically with the increase in the input optical

power.
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5.8 Comparison of two models

This section compares the dual-optical signal case using the simplified model of

Chapter 4 and the more detailed model of this chapter.

Figure 5.8.1: Gain coefficient vs normalized input power

The gain coefficient decreases with the increase in the input power.
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Figure 5.8.2: Single pass gain vs normalized input power

The single pass gain value decreases with the increase in the input power in

both the cases. The gain values are found to be higher in the case of the chapter 4

than in case of the chapter 5 which is an extension of the model proposed by [2].
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Figure 5.8.3: Optical phase for signal 1 vs normalized input power

The output phase calculated in both the chapters are increasing with respect to

the input power. The chapter 5 method has initially lower phase for lower input

power and tends to increase than the phase calculated in chapter 4 as the input

power increases.

107



CHAPTER 5: DUAL OPTICAL INPUT SIGNALS:IMPROVED MODEL

Figure 5.8.4: Optical phase for signal 2 vs normalized input power

The phase 2 in both in chapters are calculated with a initial detuning angle of π

which is higher than the initial detuning of signal 1 which is 2.4. Hence the phase

is higher range than the phase of signal 1 but the pattern is follows is similar. The

phase calculated in chapter 5 starts at a lower value for lower range of input power

and it increases as the input power increases.
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Figure 5.8.5: Output phase for signal 1 vs normalized input power

The output phase decreases with the increase in the input power.

109



CHAPTER 5: DUAL OPTICAL INPUT SIGNALS:IMPROVED MODEL

Figure 5.8.6: Output phase for signal 2 vs normalized input power

The output phase decreases with the increase in the input power.
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Figure 5.8.7: Normalized output power for signal 1 vs normalized input power

The output power increases with the increase in the input power.
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Figure 5.8.8: Normalized output power for signal 2 vs normalized input power

The output power increases with the increase in the input power.
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5.9 Strong hysteresis

Figure 5.9.1: Normalized output power for signal 1 vs normalized input power

for signal 1

This is an example that proves that by varying φ01, initial detuning angle, we can

produce a strong hysteresis curve even using the approach in Chapter 5. The na-

ture of the depth of the hysteresis curve depends on the detuning angle. In this
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specific case, we use φ01 as 2 rad. Thus by varying the detuning angle, we can

achieve strong hysteresis pattern in the calculation of output power. This is proved

in the figure plotted against the normalized input power of signal 1.
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Conclusion

This thesis developed an improved model to simulate the performance of two op-

tical signals propagating through a bistable semiconductor optical amplifier. The

improved simulations show that the critical switching powers for bistability are

lower than previously published. In the process of improving the model, we stud-

ied two published models of optical bistability for a single optical signal. These

two models informed our work on the dual-signal model. This result and the

model developed herein may be useful in future optical signal applications requir-

ing multiple signals as input.
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