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Efficiency and Betweenness Centrality of Graphs and some Applications

Abstract

The distance dG(i, j) between any two vertices i and j in a graph G is the minimum number of edges in a path between i

and j. If there is no path connecting i and j, then dG(i, j) = ∞. In 2001, Latora and Marchiori introduced the measure

of efficiency between vertices in a graph. The efficiency between two vertices i and j is defined to be ∈i,j=
1

dG(i,j)
for

all i 6= j. The global efficiency of a graph is the average efficiency over all i 6= j. The power of a graph Gm is defined

to be V(Gm) = V(G) and E(Gm) = {(u, v)|dG(u, v) ≤ m}. In this paper we determine the global efficiency for path

power graphs Pm
n , cycle power graphs Cm

n , complete multipartite graphs Km,n, star and subdivided star graphs, and the

Cartesian products Kn × Pt
m, Kn × Ct

m, Km × Kn, and Pm × Pn.

The concept of global efficiency has been applied to optimization of transportation systems and brain connectivity. We

show that star-like networks have a high level of efficiency. We apply these ideas to an analysis of the Metropolitan

Atlanta Rapid Transit Authority (MARTA) Subway system, and show this network is 82% as efficient as a network

where there is a direct line between every pair of stations. From BOLD fMRI scans we are able to partition the brain

with consistency in terms of functionality and physical location. We also find that football players who suffer the largest

number of high-energy impacts experience the largest drop in efficiency over a season.

Latora and Marchiori also presented two local properties. The local efficiency Eloc =
1
n ∑

i∈V(G)
Eglob (Gi) is the average of

the global efficiencies over the subgraphs Gi, the subgraph induced by the neighbors of i. The clustering coefficient of a

graph G is defined to be CC(G) = 1
n ∑

i
Ci where Ci = |E(Gi)|/(|V(Gi)|

2 ) is a degree of completeness of Gi. In this paper,

we compare and contrast the two quantities, local efficiency and clustering coefficient.

Betweenness centrality is a measure of the importance of a vertex to the optimal paths in a graph. Betweenness centrality

of a vertex is defined as bc(v) = ∑x,y
σxy(v)

σxy
where σxy is the number of unique paths of shortest length between vertices

x and y. σxy(v) is the number of optimal paths that include the vertex v. In this paper, we examined betweenness

centrality for vertices in Cm
n . We also include results for subdivided star graphs and C3 star graphs.

A graph is said to have unique betweenness centrality if bc(vi) = bc(vj) implies i = j: the betweenness centrality

function is injective over the vertices of G. We describe the betweenness centrality for vertices in ladder graphs, P2 × Pn.

An appended ladder graph Un is P2 × Pn with a pendant vertex attached to an “end”. We conjecture that the infinite

family of appended graphs has unique betweenness centrality.
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Efficiency and Betweenness Centrality of Graphs and some Applications

I. Introduction

I.1 Efficiency

In this thesis, we are concerned with several measures of connectivity of graphs: global efficiency, local

efficiency, clustering coefficient and betweenness centrality.

In 2001, Latora and Marchiori introduced the measure of efficiency between vertices in a graph [1]. The

(unweighted) efficiency between two vertices vi and vj is defined to be ∈ (vi, vj) =
1

d(vi ,vj)
for all i 6= j. The

global efficiency of a graph Eglob(G) = 1
n(n−1) ∑i 6=j ∈ (vi, vj) which is simply the average of the efficiencies over

all pairs of the distinct n vertices. Then note that 0 ≤ Eglob(G) ≤ 1 with equality only when G has no edges

and when G is a complete graph respectively.

The concept of reciprocal distance has been studied previously. In 1993, Plavšić, Nikolić, Trinajstić, and Mihalić

introduced the Harary index of a simple graph [2]. For a simple graph G with vertices v1, v2, ..., vn the Harary

index is denoted H(G) and equals ∑
1≤i<j≤n

1
d(vi ,vi)

. We note the close relationship between global efficiency and

the Harary index, Eglob(G) = 2
n(n−1) H(G). There also have been other studies involving the Harary index and

reciprocal distances [3, 4, 5, 6, 7].

In this thesis we determine the global efficiency for path power graphs Pm
n , cycle power graphs Cm

n , complete

multipartite graphs Km,n, star and subdivided star graphs, and the Cartesian Products Kn × Pt
m, Kn × Ct

m,

Km × Kn, and Pm × Pn. As a consequence, we determine new results involving the Harary index for these

families of graphs.

Recently other papers have studied the concept of efficiency, [8, 9, 10, 11, 12]. A comprehensive analysis of all

of these measures is given by Sporns [13].

The concept of global efficiency has been applied to optimization of transportation systems. In 2002, Latora

and Marchiori explored the global efficiency of the Boston Subway (MBTA) and found that the MBTA network

is 63% as efficient as a network where there is a direct line between any two stations[8]. Motivated by the

design of the Metropolitan Atlanta Rapid Transportation Authority (MARTA) Subway network (see Figure

II.9.1), we investigate the global efficiency of subdivided stars. We show that networks of this type have a high

1



Efficiency and Betweenness Centrality of Graphs and some Applications

level of efficiency. We apply these ideas to an analysis of the MARTA Subway system and show that their

network is 82% as efficient as a network where there is a direct line connecting each pair of stations.

Latora and Marchiori also presented two local properties[8]. The local efficiency Eloc =
1
n ∑

i∈G
Eglob (Gi) is the

average of the global efficiencies over the subgraphs Gi, the subgraph induced by the neighbors of i. The

clustering coefficient of a graph G is defined to be CC(G) = 1
n ∑

i
Ci where Ci = |E(Gi)|/(|V(Gi)|

2 ) is a degree of

completeness of Gi. In this thesis, we compare and contrast the two quantities, local efficiency and clustering

coefficient. We include results of these local measurements for complete multipartite graphs Kn,m, cycle power

graphs Cm
n , and Cartesian products Km × Kn and Kn × Cm.

RCBI scientists conducted functional MRI (fMRI) scans of 25 volunteers to find blood oxygen level-dependent

(BOLD) correlations of various regions of the brain. We constructed graphs with edges based on correlation

cutoffs and then partitioned the brain using efficiency. The partitions were found to be consistent with

functionality and physical location within the brain. We also used these measurements to analyze the effects

of a season of hard-contact football on University of Rochester athletes. Again, an outside source conducted

BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations in oxygen levels

of various regions of the brain and modeled these as graphs. We were then able to measure the “efficiency” of

each athlete. As was expected, the athletes who received the largest number of high-energy impacts during the

season also experienced the largest drop in brain efficiency. For comparison, we calculated the measurements

of a macaque brain using data (see Figure VIII.1.1) from Honey et al.[12]

It was stated by Latora and Marchiori [1] that “It can be shown that, when in a graph, most of its local

subgraphs Gi are not sparse, then C [clustering coefficient] is a good approximation of Eloc. In summary, there

are not two different types of analyses to be done for the global and local scales, just one with a very precise

physical meaning: the efficiency in transporting information”. Due to the vague wording of “not sparse” we

provide an in-depth analysis of this statement, identifying graphs where the clustering coefficient and local

efficiency are in fact non-negligibly different. We also identify certain graph families where the two quantities

are the same.

I.2 Betweenness Centrality

Betweenness centrality is a measure of the importance of a vertex to the optimal paths in a graph. Betweenness

centrality of a vertex is defined as bc(v) = ∑x,y
σxy(v)

σxy
where σxy is the number of unique paths of shortest

2
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length between vertices x and y. σxy(v) is the number of optimal paths that include the vertex v. In this thesis,

we examined betweenness centrality for vertices in Cm
n . By the symmetry of Cm

n , every vertex will have the

same betweenness centrality. We also include results for subdivided star graphs and C3 star graphs.

A graph is said to have unique betweenness centrality if bc(vi) = bc(vj) implies i = j: the betweenness

centrality function is injective over the vertices of G. We describe the betweenness centrality for vertices in

ladder graphs, P2 × Pn. An appended ladder graph Un is P2 × Pn with a pendant vertex attached to an “end”.

We conjecture that the infinite family of appended graphs has unique betweenness centrality. We were able to

construct a partial proof but were forced to leave the completion as future research.

I.3 Definitions

Definition I.3.1. A graph, G, is a collection of a set of vertices, V(G), and a set of edges, E(G). The graph can

be denoted G(V, E). An edge is an unordered pair of vertices. The distance dG(i, j) between any two vertices

i and j in a graph G is the minimum number of edges in a path between i and j. The subscript notation is

dropped if it is apparent with respect to which graph the distance is. If there is no path connecting i and j, G

is disconnected, then d(i, j) = ∞.

Definition I.3.2. The power of a graph, G, denoted Gm, is defined to be V(Gm) = V(G) and E(Gm) =

{(u, v)|dG(u, v) ≤ m}. With this definition G1 = G.

Definition I.3.3. Given a graph G and a vertex v ∈ V(G), the neighborhood subgraph induced by v is the subgraph

containing all vertices adjacent to v and all edges, if any, that may exist between the adjacent vertices.

Definition I.3.4. The eccentricity of a vertex v in a graph G is defined as ε(v) = max{d(v, u)|u ∈ V(G)}. The

diameter of a graph, G, is defined as diam(G) = max{ε(v)|v ∈ V(G)}. Diameter is the largest distance between

two vertices in the graph.

Remark I.3.5. Note that ε and ∈ are separate symbols and ∈ (x, y) denotes the efficiency between vertices x

and y and ∈ alone means contained in, as in “an element is contained in a set”.

Remark I.3.6. When we mention a “step” in paths of graphs, we mean an intermediate vertex of the path.

Definition I.3.7. Due to the nature of the properties we examine, the Harmonic number Hn = ∑n
i=1

1
i is very

3
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useful for simplifications. Note that for ease of use, we define H0 = 0.

Definition I.3.8. An automorphism of a graph G(V, E) is a bijective (one-to-one and onto) function on the

vertices of G, φ : V → V, that preserves edges. i.e. φ is a permutation of V that preserves edges. Preserving

edges means that (v1, v2) ∈ E(G) if and only if (φ(v1), φ(v2)) ∈ E(G(φ(V), E)). The set of automorphisms is

denoted Aut(G) and forms a group under composition[14].

Definition I.3.9. Let H be a group of permutations of a set S. For each s ∈ S, let orbH(s) = {φ(s)|φ ∈ H}.

orbH(s) is called the orbit of s under H. The orbits partition S into equivalence classes[15].

Definition I.3.10. Let G(V, E) be a graph. G is said to be vertex-transitive if for all u, v ∈ V, we have that

u ∈orbAut(G)(v) (or equivalently v ∈orbAut(G)(u)). i.e. there exists some φ ∈ Aut(G) such that φ(v) = u (or

there exists some φ ∈ Aut(G) such that φ(u) = v)[16].

4



Efficiency and Betweenness Centrality of Graphs and some Applications

II. Global Efficiency

II.1 Definition and Example

Definition II.1.1. Consider a graph G of order n. The global efficiency is defined as

Eglob(G) =
1

n(n− 1) ∑
i 6=j
∈ (vi, vj), (II.1.1)

where ∈ (vi, vj) =
1

d(vi ,vj)
. The global efficiency is the average efficiency of all pairs of vertices.

Example II.1.2. Let H = P7 with vertices A, B, C, D, E, F and G. See Figure II.1.1.

A B C D E F G

Figure II.1.1: P7 for efficiency example.

The distances between each pair of vertices is given in the matrix shown below.

DM =

L(H) A B C D E F G

A 0 1 2 3 4 5 6

B 1 0 1 2 3 4 5

C 2 1 0 1 2 3 4

D 3 2 1 0 1 2 3

E 4 3 2 1 0 1 2

F 5 4 3 2 1 0 1

G 6 5 4 3 2 1 0

Definition II.1.3. The average distance, D(H), between vertices in a graph H shall be denoted:

D(H) =
1

n(n− 1) ∑
i,j

d(vi, vj). (II.1.2)

The inverse of D(H) is a first approximation of the global efficiency.

In this case, D(P7) =
2

7·6 [6(1) + 5(2) + 4(3) + 3(4) + 2(5) + 1(6)] = 8
3 . The first approximation of the global

efficiency is then 3
8 = 0.375.

5
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The efficiency matrix is then as follows.

EM =

E(H) A B C D E F G

A 0 1 1
2

1
3

1
4

1
5

1
6

B 1 0 1 1
2

1
3

1
4

1
5

C 1
2 1 0 1 1

2
1
3

1
4

D 1
3

1
2 1 0 1 1

2
1
3

E 1
4

1
3

1
2 1 0 1 1

2

F 1
5

1
4

1
3

1
2 1 0 1

G 1
6

1
5

1
4

1
3

1
2 1 0

We note that the matrix is symmetric about the main diagonal. We can also sum the elements in the upper

triangle of the matrix: 6(1) + 5( 1
2 ) + 4

(
1
3

)
+ 3

(
1
4

)
+ 2

(
1
5

)
+ 1

(
1
6

)
. Finally we divide by the number of

non-diagonal elements. Therefore Eglob(P7) =
1

7·6 · 2
(

7−1
∑

i=1

7−i
i

)
= 223

420 ≈ 0.531. The first approximation in this

case is off by nearly 30%: not very good.

II.2 Path Graphs: Pn

Let Pn denote the path on vertices v1, v2, ..., vn with edges v1v2, v2v3, ..., vn−1vn. The distance d(vi, vj) between

distinct vertices vi and vj is |i− j|. Hence the efficiency between vi and vj is ∈ (vi, vj) =
1

d(vi ,vj)
= 1
|i−j| .

Theorem II.2.1.

Eglob(Pn) = 2
(

Hn−1

n− 1
− 1

n

)
. (II.2.1)

Proof. Consider the paths of various lengths in Pn. Without loss of generality we assume the “starting” vertex

is located to the left of the ending vertex. Note that this will only account for half of the efficiencies. If we

want to move i vertices to the right there are only n− i starting vertices. Hence for the efficiency matrix of

Pn, there are n− i pairs of vertices whose efficiency is 1
i . Then by doubling our efficiencies since the matrix

is symmetric, and then normalizing, we have Eglob(Pn) =
2

n·(n−1)

(
n−1
∑

i=1

n−i
i

)
. Simple algebraic manipulation

yields the theorem.

As expected, the global efficiency of a path will vary inversely to the number of vertices. We state this formally

in our next theorem.

6
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Theorem II.2.2.

lim
n→∞

Eglob(Pn) = 0

Proof. Using Lemma VIII.2.1,

0 ≤ lim
n→∞

Eglob(Pn) = lim
n→∞

[
2
(

Hn−1

n− 1
− 1

n

)]
= 2 lim

n→∞

Hn−1

n− 1
− 2 lim

n→∞

1
n

≤ 2 lim
n→∞

ln(n− 1) + 1
n− 1

− 2 lim
n→∞

1
n

= 2 lim
n→∞

ln(n− 1)
n− 1

+ 2 lim
n→∞

1
n− 1

− 2 lim
n→∞

1
n

= 0 + 2 lim
n→∞

1
n
− 2 lim

n→∞

1
n

= 0.

II.3 Path Power Graphs: Pm
n

We next investigate the efficiency of powers of a path Pn. Su, Xiong, and Gutman obtained the Harary index of

Pm
n , from which Eglob(Pm

n ) can easily be obtained. However, we include a computation of Eglob(Pm
n ), as it is

useful for obtaining the global efficiency for the families Kn × Pm
n and Kn × Cm

n .

v1 v2 v3 v4 v5 v6

Figure II.3.1: A representation of the path power: P3
6 .

For the global efficiency of path power graphs: Eglob(Pm
n ), each element of the efficiency matrix is given

by

∈ij=
1⌈
|i−j|

m

⌉ . (II.3.1)

7
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where i is the row and j is the column of the entry. This value corresponds to the efficiency between vertices i

and j. The distance between the vertices in Pn is simply |i− j|. In Pm
n , each step can be up to m vertices away.

Hence the distance between vertices equals
⌈
|i−j|

m

⌉
. Taking the inverse gives the formula in Eq. (II.3.1). Hence

the matrix is:
v1 v2 v3 · · · vn−2 vn−1 vn

v1 0 1 1 1
d n−3

m e
1
d n−2

m e
1
d n−1

m e

v2 1 0 1 · · · 1
d n−4

m e
1
d n−3

m e
1
d n−2

m e

v3 1 1 0 1
d n−5

m e
1
d n−4

m e
1
d n−3

m e
...

...
. . .

...

vn−2
1
d n−3

m e
1
d n−4

m e
1
d n−5

m e
0 1 1

vn−1
1
d n−2

m e
1
d n−3

m e
1
d n−4

m e
· · · 1 0 1

vn
1
d n−1

m e
1
d n−2

m e
1
d n−3

m e
1 1 0

Consider the first vertex of Pm
n . There are (n− 1) other vertices to compute the efficiency with. The sum of

efficiencies from the first vertex is:

n

∑
j=2
∈1,j=

n

∑
j=2

1⌈
|1−j|

m

⌉ =
n−1

∑
i=1

1⌈
i
m

⌉ .

For the second vertex we have, 1 ≤ |2− j| ≤ n− 2 since 3 ≤ j ≤ n, which yields:

n

∑
j=3
∈2,j=

n

∑
j=3

1⌈
|2−j|

m

⌉ =
n−2

∑
i=1

1⌈
i
m

⌉ .

Summing the terms for all vertices gives:

n−1

∑
i=1

1⌈
i
m

⌉ +
n−2

∑
i=1

1⌈
i
m

⌉ + · · ·+
2

∑
i=1

1⌈
i
m

⌉ +
1

∑
i=1

1⌈
i
m

⌉ =
n−1

∑
i=1

n− i⌈
i
m

⌉ .

Finally, we divide this term to get the result of Theorem II.3.1. We note as the matrix is symmetric, we can

sum over the upper half of the matrix (ordered pairs) and then multiply our result by 2. The last step is

normalization.

Theorem II.3.1.

Eglob(Pm
n ) =

2
n(n− 1)

n−1

∑
i=1

n− i⌈
i
m

⌉ . (II.3.2)

An alternate formula for faster computation can be found in Corollary VIII.1.5.
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II.4 Cycle Power Graphs: Cm
n

Definition II.4.1. A Cycle Graph Cn has vertices v1, v2, . . . , vn and edges (vi, vj) if |i− j| = 1 as well as the edge

(v1, vn).

Definition II.4.2. A Cycle Power Graph Cm
n has vertices v1, v2, . . . , vn and edge (vi, vj) if and only if

1 ≤ min (|i− j| , n− |i− j|) ≤ m. This condition is equivalent to 1 ≤
⌊ n

2
⌋
−
⌊∣∣|i− j| − n

2

∣∣⌋ ≤ m.

Consider the Cycle C3
8 :

v1

v2

v3

v4

v5

v6

v7

v8

Figure II.4.1: A representation of the power cycle: C3
8 .

The efficiency matrix is given as:

v1 v2 v3 v4 v5 v6 v7 v8

v1 0 1 1 1 1
2 1 1 1

v2 1 0 1 1 1 1
2 1 1

v3 1 1 0 1 1 1 1
2 1

v4 1 1 1 0 1 1 1 1
2

v5
1
2 1 1 1 0 1 1 1

v6 1 1
2 1 1 1 0 1 1

v7 1 1 1
2 1 1 1 0 1

v8 1 1 1 1
2 1 1 1 0

As previously stated for P3
6 , the global efficiency is found by summing all entries of the efficiency matrix and

9
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scaling it appropriately. Hence,

Eglob(C3
8) =

52
8(8− 1)

=
13
14

= 0.929.

Note that rows are identical; they are merely shifted representations of each other. This is the case due to the

symmetry of the cycle. The following is the generic efficiency matrix for Cm
2n.

v1 v2 · · · vi · · · v n
2

v n
2 +1 · · · vj · · · vn−1 vn

v1 0 1 · · · 1
d i−1

m e
· · · 1

d n/2−1
m e

1
d n/2

m e
· · · 1⌈

n+1−j
m

⌉ · · · 1 1

...

vn 1 1 · · · 1
d i

m e
· · · 1

d n/2
m e

1
d n/2+1

m e
· · · 1⌈

n+2−j
m

⌉ · · · 1 0

Also, note that each row (by removing the zero: efficiency to itself) is symmetric to itself so the sum of the row

is the same as twice the first half. For even cases, the center element is counted twice, thus it must be removed

once. So considering the first portion of the last row, the ith element is given as:

∈ (vi, vn) =
1⌈
i
m

⌉ .

So the sum of the row is almost given by:

2

n
2

∑
i=1

1⌈
i
m

⌉ .

As indicated above, the center element is incorrectly doubled; however, the above sum does not take this into

account. As a result, 1
d n

2m e
must be subtracted off. The total efficiency is then the row sum multiplied by the

number of rows: n. Therefore the global efficiency of any power cycle with an even number of vertices: n, is

given by:

Lemma II.4.3. For even n,

Eglob(Cm
n ) =

1
n(n− 1)

n

2

n
2

∑
i=1

1⌈
i
m

⌉ − 1⌈ n
2m
⌉


=
1

(n− 1)

2

n
2

∑
i=1

1⌈
i
m

⌉ − 1⌈ n
2m
⌉
 . (II.4.1)

Consider the Cycle C2
9 :

10
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v1

v2

v3

v4

v5v6

v7

v8

v9

Figure II.4.2: A representation of the power cycle: C2
9 .

The efficiency matrix is given as:

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 1
2

1
2

1
2

1
2 1 1

v2 1 0 1 1 1
2

1
2

1
2

1
2 1

v3 1 1 0 1 1 1
2

1
2

1
2

1
2

v4
1
2 1 1 0 1 1 1

2
1
2

1
2

v5
1
2

1
2 1 1 0 1 1 1

2
1
2

v6
1
2

1
2

1
2 1 1 0 1 1 1

2

v7
1
2

1
2

1
2

1
2 1 1 0 1 1

v8 1 1
2

1
2

1
2

1
2 1 1 0 1

v9 1 1 1
2

1
2

1
2

1
2 1 1 0

From the efficiency matrix,

Eglob(C2
9) =

9(1 + 1 + 1
2 + 1

2 + 1
2 + 1

2 + 1 + 1)
9(9− 1)

=
9 · 6
9 · 8 =

3
4
= 0.75.

11
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The generic efficiency matrix for Cm
n , where n is odd, is then given by:

v1 v2 · · · vi · · · v n+1
2

v n+1
2 +1 · · · vj · · · vn−1 vn

v1 0 1 · · · 1
d i−1

m e
· · · 1⌈

(n−1)/2
m

⌉ 1⌈
(n−1)/2

m

⌉ · · · 1⌈
n+1−j

m

⌉ · · · 1 1

...

vn 1 1 · · · 1
d i

m e
· · · 1⌈

(n−1)/2
m

⌉ 1⌈
(n−3)/2

m

⌉ · · · 1⌈
n+2−j

m

⌉ · · · 1 0

Considering the first portion of the first row, the ith element is given as:

∈ (vi, v1) =
1⌈

i−1
m

⌉ .

So the sum of the row is given by:

2

n+1
2

∑
i=2

1⌈
i−1
m

⌉ = 2

n−1
2

∑
i=1

1⌈
i
m

⌉ .

Note the sums are identical; the index was merely shifted. And so the global efficiency for Cm
n , where n is odd,

is found by multiplying this sum by the number of rows and normalizing:

Lemma II.4.4. For odd n,

Eglob(Cm
n ) =

2
(n− 1)

n−1
2

∑
i=1

1⌈
i
m

⌉ . (II.4.2)

We can combine Lemmas II.4.3 and II.4.4 into Theorem II.4.5.

Theorem II.4.5.

Eglob(Cm
n ) =


1

2k−1

[
∑k

i=1
2
d i

m e
− 1
d k

m e

]
if n = 2k,

1
k ∑k

i=1
1
d i

m e
if n = 2k + 1.

(II.4.3)

An alternate formula for faster computation can be found in Corollary VIII.1.6.

II.5 Complete Multipartite Graphs

Definition II.5.1. A complete multipartite graph G = Ks1,s2,...,st is composed of t classes each with si vertices,

1 ≤ i ≤ t, where each vertex in class i is adjacent to every vertex in class j 6= i, and is not adjacent to any vertex

in class i.

We note that the distance between any pair of vertices in different classes is 1 and the distance between any

pair of vertices in the same class is 2. This leads to our next theorem.

12
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Theorem II.5.2. Let G = Ks1,s2,...,st , t > 1, and let n = ∑t
i=1 si. Then

Eglob(G) = 1− 1
2(n− 1)

[
1
n

t

∑
i=1

s2
i − 1

]
. (II.5.1)

Proof. Let v be a vertex in a part with si vertices. Then the shortest path from v to any vertex in the same part

is 2 and v is adjacent to all vertices in other parts. Hence for every vertex, v, in part i, the sum of efficiencies

including v is
[
(si−1)

2 + (n− si)
]
. Summing over all vertices in a given part and then over all parts gives

t
∑

i=1
∑

v∈part i

[
(si−1)

2 + (n− si)
]
=

t
∑

i=1
si

[
(si−1)

2 + (n− si)
]
. Normalizing and some algebraic manipulation gives

the desired result.

Remark II.5.3. If we increase the value of n, the efficiency doesn’t necessarily tend toward 1. It all depends

on the distribution of vertices within the classes. If one class is filled with nearly all the vertices, then the

efficiency will tend towards 1
2 . Other ratios will tend toward different values in between 1

2 and 1.

For the small case of t = 2, s1 = n, s2 = m: complete bipartite graphs, we have great simplifications.

Theorem II.5.4.

Eglob(Kn,m) = 1− 1
2(n + m− 1)

[
n2 + m2

n + m
− 1
]

. (II.5.2)

Another simplification due to symmetry is for Kr,...,r: a complete multipartite graph with n classes, each with r

vertices. We will denote the complete multipartite graph Kr,...,r as Kr;n. An example is shown below in Figure

II.5.1

13
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Figure II.5.1: A complete multipartite graph. K4;4

Theorem II.5.5.

Eglob(Kr;n) = 1− r− 1
2(nr− 1)

. (II.5.3)

Remark II.5.6. As the number of classes increases, the complete multipartite graph begins to approach the

appearance of a complete graph. Thus we have a global efficiency approaching 1.

lim
n→∞

Eglob(Kr;n) = 1.

Increasing the number of vertices in each class tends to decrease the global efficiency since this increases the

number of optimal paths of length 2 (the worst paths). However it also increases the number of optimal paths

of length 1 depending on the number of classes. Thus we arrive at a lower bound for the global efficiency

based on the number of classes.

lim
r→∞

Eglob(Kr;n) = 1− 1
2n

.

II.6 Efficiency under the Euclidean Metric

When analyzing the efficiency of a transportation, it is natural to compare global efficiency under the graph

metric Eglob(G) versus a weighted metric Ew
glob(G). We will refer to the former as unweighted efficiency and

14
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the latter as maximum weighted efficiency. In calculating the maximum weighted efficiency, we consider every

pair of vertices to be adjacent with the weight of an edge as the Euclidean distance between the corresponding

vertices. Note then that the weighted efficiency is highly dependent on the orientation of the graph as well as

the plane in which it is embedded.

a

b c

Figure II.6.1: Demonstration of the effect of considering Euclidean distance.

For the unweighted efficiency we have ∈ (x, y) = 1, ∈ (x, z) = 1, and ∈ (y, z) = 1
2 . Hence Eglob(G) =

1
3·2 · 2(1+ 1+ 1

2 ) =
5
6 ≈ 0.83. However for the maximum weighted efficiency we have ∈ (x, y) = 1, ∈ (x, z) = 1,

and ∈ (y, z) = 1√
2

. Hence Ew
glob(G) = 1

3·2 · 2(1 + 1 + 1√
2
) = 1

6

√
2 + 2

3 ≈ 0.90.

In Figure II.6.1, we compare the two types of efficiency of the graph G, drawn with a prescribed orientation.

By examining the ratio of the unweighted efficiency to the maximum weighted efficiency, we can compare how

efficient a graph network is compared to a Euclidean network. The ratio ERatio(G) = Eglob(G)/Ew
glob(G) = 5

6 /(
1
6

√
2 + 2

3 ) ≈ 0.92. Hence for the particular graph in Figure II.6.1, the graph is 92% as efficient as the completed

graph under the Euclidean metric.

The case where G = Pn is straightforward since the shortest distance between any points is a straight line. This

assumes that the path is oriented in the “usual” fashion of a line. Hence

Theorem II.6.1. Eglob(Pn) = Ew
glob(Pn), and ERatio(Pn) = 1.

II.7 Uniformly Subdivided Star Graphs: Sd,l

In this subsection we consider the efficiency of star-like networks. The graph K1,r is called a star and is a

complete bipartite graph with a single vertex in one part and r vertices in the other. We next recall the graph

operation known as an edge subdivision.
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Definition II.7.1. An edge subdivision is an operation that is applied to an edge uv where a new vertex w is

inserted, and the edge uv is replaced by edges uw and wv. A subdivision H of a graph G is a graph that can be

obtained by performing a sequence of edge subdivisions.

Hence we can define a subdivided star.

Definition II.7.2. Let Sd,l be the subdivision of the star K1,r where each edge is replaced by a path with l

vertices. The vertex of degree d will be referred to as the center.

The subdivided star S4,3 is shown in Figure II.7.1.

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v0 v1

Figure II.7.1: An S4,3 graph. See the accompanying efficiency matrix below: Table II.7.1.
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Table II.7.1: Efficiency matrix for S(4, 3).

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v0 0 1 1 1 1 1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

v1 0 1
2

1
2

1
2 1 1

3
1
3

1
3

1
2

1
4

1
4

1
4

v2 0 1
2

1
2

1
3 1 1

3
1
3

1
4

1
2

1
4

1
4

v3 0 1
2

1
3

1
3 1 1

3
1
4

1
4

1
2

1
4

v4 0 1
3

1
3

1
3 1 1

4
1
4

1
4

1
2

v5 0 1
4

1
4

1
4 1 1

5
1
5

1
5

v6 0 1
4

1
4

1
5 1 1

5
1
5

v7 0 1
4

1
5

1
5 1 1

5

v8 0 1
5

1
5

1
5 1

v9 0 1
6

1
6

1
6

v10 0 1
6

1
6

v11 0 1
6

v12 0

We first examine efficiencies between vertices on the same spoke including the center. Note that based on our

labeling, there are three blocks of four identical entries across the top row and each continues in a “downward

diagonal pattern”. The total sum of these diagonals is: 4(3)
1 + 4(2)

2 + 4(1)
3 .

Next we examine efficiencies between vertices on different spokes. There are “patches” of (4
2) = 6 identical

entries. There is one patch where the entries are equal to 1
2 , two patches where the entries equal 1

3 , three

patches where the entries equal 1
4 , two patches where the entries equal 1

5 , and one patch where the entries

equal 1
6 . This pattern is inherent from the labeling of our vertices. The vertices vhi+1, vhi+2, vhi+3, vhi+4, all have

distance h from the center. We will consider paths between vertices on different spokes. Paths of length 2 must

be between vertices where h = 1. Paths of length 3 must be between vertices where one vertex has h = 1 and

another has h = 2. Paths of length 4 must be between vertices where both vertices have h = 2, or where one

has h = 1 and the other has h = 3. Paths of length 5 must be between vertices where one vertex has h = 2 and

another has h = 3. Paths of length 6 must be between vertices where h = 3. For each partition of a path length,

there will be (4
2) paths: picking the spokes to travel between.

The sum over all of the patches is 4(3)
2 ·

1
2 + 4(3)

2 ·
2
3 + 4(3)

2 ·
3
4+

4(3)
2 ·

2
5 + 4(3)

2 ·
1
6 . Using symmetry about the

17
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main diagonal, the total sum over all efficiencies is

2 ·
(

4(3)
1

+
4(2)

2
+

4(1)
3

+
4(3)

2
· 1

2
+

4(3)
2
· 2

3
+

4(3)
2
· 3

4
+

4(3)
2
· 2

5
+

4(3)
2
· 1

6

)
=

967
15

.

Dividing by the number of non-diagonal entries in our matrix gives: 1
13·12 ·

967
15 = 967

2340 = 0.413 25.

This example provides the structure for the proof of our next theorem.

Theorem II.7.3. We have

Eglob(Sd,l) =
2

l (dl + 1)

(
(d− 1)

(
l +

1
2

)
H2l − (d− 2)(l + 1)Hl − l

)
. (II.7.1)

Proof. First we consider the efficiencies between vertices on the same spoke including the center. Each spoke is

isomorphic to Pl+1. By Theorem II.2.1 the sum of the efficiencies of this spoke is (l + 1)Hl − l. Hence the total

sum of the efficiencies over all d spokes is d[(l + 1)Hl − l].

Next we consider efficiencies between vertices on different spokes. In general the number of paths of length k

in Sd,l will equal the number of partitions of k into a and b where a, b ≤ l. Each partition k = a + b corresponds

to a path in Sd,l that travels through the center with a subpath of length a from the starting vertex to the center

and a subpath of length b from the center to the end vertex. These correspond to the patches with entries

equal to 1
k .

Each of the patches will contain (d
2) identical entries since this is the number of ways to choose the starting

and ending spokes. Considering the various partitions of k there will be i patches where all of the entries are

equal to 1
i+1 for 1 ≤ i ≤ l and i patches where all of the entries are equal to 1

2l+1−i for 1 ≤ i ≤ l − 1.

The total sum is
l

∑
i=1

d(d−1)
2 · i

i+1 +
l−1
∑

i=1

d(d−1)
2 · i

2l+1−i . The sum of the efficiencies for a subdivided star graph

with d spokes, each of length l is then (doubling for the symmetry of the matrix):

∑
i,j
∈ij= 2

(
d[(l + 1)Hl − l] +

l

∑
i=1

d(d− 1)
2

· i
i + 1

+
l−1

∑
i=1

d(d− 1)
2

· i
2l + 1− i

)
,

which can simplify to

2d
(
(d− 1)

(
l +

1
2

)
H2l − (d− 2)(l + 1)Hl − l

)
.

Normalizing with n = dl + 1 completes the proof.

II.7.1 Weighted Efficiencies

When applying these methods in a real-world situation, we consider edges weighted by the Euclidean distance

between the corresponding vertices (See Figure II.7.2). For the weighted version we will consider the distance
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between any adjacent vertices to be 1. Furthermore, we consider all spokes to be linear and spaced at equal

angles around the center vertex, v0 in the plane. Weighted efficiency can effectively approximate real-world

networks such as a subway system. This is found by dividing the unweighted global efficiency by the maximum

weighted global efficiency.

3
√

2

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v0 v1

Figure II.7.2: An S4,3 graph partially completed.

The following, Table II.7.2, is a matrix of the efficiency of a subdivided star graph as if each pair of vertices

were connected with an edge weighted by the Euclidean distance between them, see Figure II.7.2. For example,

v8 and v11 would be connected by an edge of weight equal to the Euclidean distance between the points,
√

22 + 32 =
√

13. Here the efficiency ∈ (v8, v11) =
1√
13

.
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Table II.7.2: Euclidean efficiency matrix for S(4, 3).

j = 1 j = 2 j = 3

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v0 0 1 1 1 1 1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

v1 1 0 1√
2

1
2

1√
2

1 1√
5

1
3

1√
5

1
2

1√
10

1
4

1√
10

i=1
v2 1 1√

2
0 1√

2
1
2

1√
5

1 1√
5

1
3

1√
10

1
2

1√
10

1
4

v3 1 1
2

1√
2

0 1√
2

1
3

1√
5

1 1√
5

1
4

1√
10

1
2

1√
10

v4 1 1√
2

1
2

1√
2

0 1√
5

1
3

1√
5

1 1√
10

1
4

1√
10

1
2

v5
1
2 1 1√

5
1
3

1√
5

0 1√
8

1
4

1√
8

1 1√
13

1
5

1√
13

i=2
v6

1
2

1√
5

1 1√
5

1
3

1√
8

0 1√
8

1
4

1√
13

1 1√
13

1
5

v7
1
2

1
3

1√
5

1 1√
5

1
4

1√
8

0 1√
8

1
5

1√
13

1 1√
13

v8
1
2

1√
5

1
3

1√
5

1 1√
8

1
4

1√
8

0 1√
13

1
5

1√
13

1

v9
1
3

1
2

1√
10

1
4

1√
10

1 1√
13

1
5

1√
13

0 1√
18

1
6

1√
18

i=3
v10

1
3

1√
10

1
2

1√
10

1
4

1√
13

1 1√
13

1
5

1√
18

0 1√
18

1
6

v11
1
3

1
4

1√
10

1
2

1√
10

1
5

1√
13

1 1√
13

1
6

1√
18

0 1√
18

v12
1
3

1√
10

1
4

1√
10

1
2

1√
13

1
5

1√
13

1 1√
18

1
6

1√
18

0

Notice that the blocks of 4 identical terms with diagonals directed downward are identical to those appearing

in the non-weighted case. These are the efficiencies between vertices on the same spoke or the center. For the

pairs of vertices on different spokes, we focus on the squares which represent efficiencies between two vertices,

where one is distance i from the center and the other is distance j from the center. For box, i = 1 and j = 2, the

sum equals 8 · 1√
5
+ 4 · 1

3 = 4√
5
+ 4

3 +
4√
5

. In Figure 5, going from v1 to v8 requires a turn of an angle of π
2 . The

terms can be expressed using the law of cosines:

4√
12 + 22 − 2 · 1 · 2 · cos

(
π
2
) + 4√

12 + 22 − 2 · 1 · 2 · cos (π)
+

4√
12 + 22 − 2 · 1 · 2 · cos

( 3π
2
) .

Theorem II.7.4.

Ew
glob (Sd,l) =

1
l (dl + 1)

2(l + 1)Hl − 2l +
l

∑
i=1

l

∑
j=1

d−1

∑
θ=1

1√
i2 + j2 − 2ij cos

( 2π
d θ
)
 . (II.7.2)

Proof. The first step is to consider the orientation of the star graph. We assume that all spokes are straight
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lines in the Euclidean plane. We also assume that every spoke is spaced around the center vertex at equal

angle intervals.

The sum of the efficiencies for vertices on the same spoke including the center is almost the same as in the

proof of the previous theorem, 2d((l + 1)Hl − l). We need to double this now as we are not doubling all terms

later. Next we consider the pairs of vertices that are found on different spokes. In general the number of paths

of length k in Sd,l will equal the number of partitions of k into a and b where a, b ≤ l. Each partition k = a + b

corresponds to a path in Sd,l that travels through the center with a subpath of length a from the starting

vertex to the center and a subpath of length b from the center to the end vertex. These form entries equal

to 1√
a2+b2−2ab cos θ

where θ is the angle between spokes. We focus on the d× d submatrices which represent

efficiencies between two vertices, where one is distance i from the center and the other is distance j from the

center.

The generic terms in a given d× d submatrix could then be written as d√
i2+j2−2ij·cos( 2π

d θ)
where θ varies from

1 to d − 1. We then sum over all d × d submatrices and add the diagonal terms to yield the sum of the

Euclidean efficiencies for Sd,l , ∑
i 6=j
∈ (vi, vj) = 2d((l + 1)Hl − l) +

l
∑

i=1

l
∑

j=1

d−1
∑

θ=1

d√
i2+j2−2ij cos( 2π

d θ)
. Normalizing

with n = dl + 1 gives the result.

An alternate formula for faster computation can be found in Corollary VIII.1.7.

Instead of normalizing by the maximum number of edges, n(n − 1), we can normalize by the maximum

weighted efficiency. The efficiency ratio, ERatio for a subdivided star graph Sd,l is found by dividing the

unweighted global efficiency by the maximum weighted global efficiency.

Theorem II.7.5.

ERatio (Sd,l) =
(d− 1) (2l + 1) H2l − (d− 2)(2l + 2)Hl − 2l

(2l + 2)Hl − 2l + ∑l
i=1 ∑l

j=1 ∑d−1
θ=1

1√
i2+j2−2ij cos( 2π

d θ)

. (II.7.3)

Remark II.7.6. As expected, when d increases, the efficiency ratio decreases. In this case the spokes are getting

closer but travel between spokes still requires traveling to the center vertex. However, an interesting aspect of

this formula is that as l increases, the efficiency ratio increases. To see why this is true note that a straight line

path has a weighted efficiency ratio of 1. We note that as the lengths of the spokes increases, the shape of a

subdivided star bears a closer resemblance to a path.
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II.7.2 New Unweighted Global Efficiency and Double Sum Reduction

The method used to find the weighted global efficiency also gives us a different way to calculate the unweighted

global efficiency.

Corollary II.7.7.

Eglob (Sd,l) =
1

l (dl + 1)

[
2(l + 1)Hl − 2l +

l

∑
i=1

l

∑
j=1

d− 1
i + j

]
.

Proof. The law of cosines term in Theorem II.7.4 can be replaced with the graph path distance (i + j). Then the

triple sum reduces to the double sum above.

We can now equate the two formulas to find a reduction for the double sum.

Corollary II.7.8.

(2l + 1) H2l − (2l + 2)Hl =
l

∑
i=1

l

∑
j=1

1
i + j

. (II.7.4)

Proof. Equating the two formulas for the unweighted global efficiency of a star graph in Theorem II.7.3 and

Corollary II.7.7 gives the following reduction:

2
l (dl + 1)

(
(d− 1)

(
l +

1
2

)
H2l − (d− 2)(l + 1)Hl − l

)
=

1
l (dl + 1)

[
2(l + 1)Hl − 2l +

l

∑
i=1

l

∑
j=1

d− 1
i + j

]
,

(d− 1) (2l + 1) H2l − (d− 2)(2l + 2)Hl − 2l = (2l + 2)Hl − 2l +
l

∑
i=1

l

∑
j=1

d− 1
i + j

,

(d− 1) (2l + 1) H2l − (d− 1)(2l + 2)Hl =
l

∑
i=1

l

∑
j=1

d− 1
i + j

,

(2l + 1) H2l − (2l + 2)Hl =
l

∑
i=1

l

∑
j=1

1
i + j

.

II.8 Cartesian Products

Definition II.8.1. The Cartesian Product of two graphs G and H is a graph G × H, with the vertex set

V(G)× V(H), where vertices {(i1, i2) , (j1, j2)} are adjacent if {i1, j1} ∈ E(G) and i2 = j2, or {i2, j2} ∈ E(H)

and i1 = j1.
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II.8.1 Kr × Pm
n

In the figure below, we show the graph of the Cartesian product of K4 and P2
4 .

v1,4 v1,3

v1,2v1,1

v2,4 v2,3

v2,2v2,1 v4,1

v4,4 v4,3

v4,2

v3,4 v3,3

v3,2v3,1

Figure II.8.1: The Cartesian product of a complete graph and a path power. The efficiency matrix is given in Table II.8.1

below.
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Table II.8.1: The efficiency matrix for K4 × P2
4 .

v1,1 v1,2 v1,3 v1,4 v2,1 v2,2 v2,3 v2,4 v3,1 v3,2 v3,3 v3,4 v4,1 v4,2 v4,3 v4,4

v1,1 0 1 1 1 1 1
2

1
2

1
2 1 1

2
1
2

1
2

1
2

1
3

1
3

1
3

v1,2 0 1 1 1
2 1 1

2
1
2

1
2 1 1

2
1
2

1
3

1
2

1
3

1
3

v1,3 0 1 1
2

1
2 1 1

2
1
2

1
2 1 1

2
1
3

1
3

1
2

1
3

v1,4 0 1
2

1
2

1
2 1 1

2
1
2

1
2 1 1

3
1
3

1
3

1
2

v2,1 0 1 1 1 1 1
2

1
2

1
2 1 1

2
1
2

1
2

v2,2 0 1 1 1
2 1 1

2
1
2

1
2 1 1

2
1
2

v2,3 0 1 1
2

1
2 1 1

2
1
2

1
2 1 1

2

v2,4 0 1
2

1
2

1
2 1 1

2
1
2

1
2 1

v3,1 0 1 1 1 1 1
2

1
2

1
2

v3,2 0 1 1 1
2 1 1

2
1
2

v3,3 0 1 1
2

1
2 1 1

2

v3,4 0 1
2

1
2

1
2 1

v4,1 0 1 1 1

v4,2 0 1 1

v4,3 0 1

v4,4 0

We next extend to the general case.

Theorem II.8.2.

Eglob(Kr × Pm
n ) =

2
n(nr− 1)

n−1

∑
i=1

(n− i)

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+
r− 1

nr− 1
. (II.8.1)

Proof. Notice that the matrix is very similar to that of a path power. Each i now corresponds to a block. Each

block has r terms on the main diagonal of a block and these correspond to the pairs of vertices in the r adjacent

path powers. All other terms correspond to the distance between vertices in different path powers and then

within the copies of the complete subgraphs. For this, we have r vertices in the initial class to choose from and

r− 1 vertices in the final Kr. Since each class is complete, it will only take one additional step to reach the final
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vertex, and so the efficiency is only slightly smaller. There are also ‘triangles’ of 1s next to the main diagonal;

these correspond to movements within a single Kr. The number of 1’s is then n times the number of edges in

Kr which equals r(r−1)
2 . Averaging the efficiencies over all pairs yields Eq. (II.8.1).

An alternate formula for faster computation can be found in Corollary VIII.1.8.

II.8.2 Kr × Cm
n

We next investigate the global efficiency of a Cartesian product of a complete graph and a cycle power. The

graph of the Cartesian product of K3 and C2
6 is shown in Figure II.8.2.

v1,1

v1,2

v1,3

v2,1

v2,2

v2,3

v3,1

v3,2v3,3

v4,1

v4,2

v4,3
v5,1

v5,2

v5,3

v6,1

v6,2

v6,3

Figure II.8.2: The Cartesian product of a complete graph and a cycle power. Note that there is also a C2
6 between the vi,1

vertices and another C2
6 connecting the vj,2 vertices. See Table II.8.2 for efficiency matrix.
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Table II.8.2: The efficiency matrix for K3 × C2
6 .

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 v3,1 v3,2 v3,3 v4,1 v4,2 v4,3 v5,1 v5,2 v5,3 v6,1 v6,2 v6,3

v1,1 0 1 1 1 1
2

1
2 1 1

2
1
2

1
2

1
3

1
3 1 1

2
1
2 1 1

2
1
2

v1,2 1 0 1 1
2 1 1

2
1
2 1 1

2
1
3

1
2

1
3

1
2 1 1

2
1
2 1 1

2

v1,3 1 1 0 1
2

1
2 1 1

2
1
2 1 1

3
1
3

1
2

1
2

1
2 1 1

2
1
2 1

v2,1 1 1
2

1
2 0 1 1 1 1

2
1
2 1 1

2
1
2

1
2

1
3

1
3 1 1

2
1
2

v2,2
1
2 1 1

2 1 0 1 1
2 1 1

2
1
2 1 1

2
1
3

1
2

1
3

1
2 1 1

2

v2,3
1
2

1
2 1 1 1 0 1

2
1
2 1 1

2
1
2 1 1

3
1
3

1
2

1
2

1
2 1

v3,1 1 1
2

1
2 1 1

2
1
2 0 1 1 1 1

2
1
2 1 1

2
1
2

1
2

1
3

1
3

v3,2
1
2 1 1

2
1
2 1 1

2 1 0 1 1
2 1 1

2
1
2 1 1

2
1
3

1
2

1
3

v3,3
1
2

1
2 1 1

2
1
2 1 1 1 0 1

2
1
2 1 1

2
1
2 1 1

3
1
3

1
2

v4,1
1
2

1
3

1
3 1 1

2
1
2 1 1

2
1
2 0 1 1 1 1

2
1
2 1 1

2
1
2

v4,2
1
3

1
2

1
3

1
2 1 1

2
1
2 1 1

2 1 0 1 1
2 1 1

2
1
2 1 1

2

v4,3
1
3

1
3

1
2

1
2

1
2 1 1

2
1
2 1 1 1 0 1

2
1
2 1 1

2
1
2 1

v5,1 1 1
2

1
2

1
2

1
3

1
3 1 1

2
1
2 1 1

2
1
2 0 1 1 1 1

2
1
2

v5,2
1
2 1 1

2
1
3

1
2

1
3

1
2 1 1

2
1
2 1 1

2 1 0 1 1
2 1 1

2

v5,3
1
2

1
2 1 1

3
1
3

1
2

1
2

1
2 1 1

2
1
2 1 1 1 0 1

2
1
2 1

v6,1 1 1
2

1
2 1 1

2
1
2

1
2

1
3

1
3 1 1

2
1
2 1 1

2
1
2 0 1 1

v6,2
1
2 1 1

2
1
2 1 1

2
1
3

1
2

1
3

1
2 1 1

2
1
2 1 1

2 1 0 1

v6,3
1
2

1
2 1 1

2
1
2 1 1

3
1
3

1
2

1
2

1
2 1 1

2
1
2 1 1 1 0

For a Cartesian product between a complete graph Kr and a cycle power Cm
n , we must divide the global

efficiency into two cases where n is either odd or even.

Theorem II.8.3. If n = 2k + 1 then

Eglob(Kr × Cm
n ) =

1
r(2k + 1)− 1

2
k

∑
i=1

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+ r− 1

 . (II.8.2)
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If n = 2k then

Eglob(Kr × Cm
n ) =

1
2rk− 1

2
k

∑
i=1

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+ r− 1−

 1⌈
k
m

⌉ +
r− 1⌈
k
m

⌉
+ 1

 . (II.8.3)

Proof. Each i corresponds to a single line of each block. Also, each i has one entry that falls on the main

diagonal of an r× r block that corresponds to pairs of vertices within a cycle power. All other terms correspond

to pairs of vertices that are in different cycle powers but in different copies of Kr. There are also 1’s next to the

main diagonal; these correspond to movements within a single complete graph. The number of 1’s is then

r− 1: the number of vertices that are available for the final position. Averaging the efficiencies over all pairs of

vertices yields Eqs. (II.8.2) and (II.8.3).

Eglob(Kr × Cm
n ) =

1
nr(nr− 1)

· nr ·

2

n−1
2

∑
i=1

 1⌈
i
m

⌉ +
r− 1

1 +
⌈

i
m

⌉
+ r− 1


=

1
nr− 1

2

n−1
2

∑
i=1

 1⌈
i
m

⌉ +
r− 1

1 +
⌈

i
m

⌉
+ r− 1

 .

For the even case, note that the term corresponding to the efficiency of moving across the diameter is counted

twice, so it must be subtracted to obtain Eq. (II.8.3).

An alternate formula for faster computation can be found in Corollary VIII.1.9.

II.8.3 Km × Kn

Theorem II.8.4.

Eglob(Km × Kn) =
nm + m + n− 3

2(nm− 1)
. (II.8.4)
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Proof. We obtain the global efficiency for Km × Kn using Eglob
(
Km × Pn−1

n
)

and Eglob

(
Km × Cb

n
2 c

n

)
.

Eglob(Km × Kn) = Eglob(Km × Pn−1
n )

=
2

nm(nm− 1)

n−1

∑
i=1

(n− i)

 m⌈
i

n−1

⌉ +
m(m− 1)⌈

i
n−1

⌉
+ 1

+
nm(m− 1)

2


=

2
n(nm− 1)

[
n−1

∑
i=1

(n− i)
(

1
1
+

m− 1
1 + 1

)
+

n(m− 1)
2

]

=
1

n(nm− 1)

[
n−1

∑
i=1

i (m + 1) + n(m− 1)

]

=
1

n(nm− 1)

[(
(n− 1)(n− 1 + 1)

2

)
(m + 1) + n(m− 1)

]
=

1
nm− 1

[
n− 1

2
(m + 1) + (m− 1)

]
=

1
nm− 1

[
nm
2
− m

2
+

n
2
− 1

2
+ m− 1

]
=

nm + m + n− 3
2(nm− 1)

.

We note that the ceiling functions were dropped since 1 ≤ i ≤ n− 1 implies 0 < 1
n−1 ≤

i
n−1 ≤ 1 which makes

the ceiling terms always equal to 1. We can also use the Cartesian product of a complete graph and a cycle

power graph. If we use the case of an odd cycle power graph, we have:

Eglob(Km × Kn) = Eglob

(
Km × C

n−1
2

n

)

=
1

nm− 1

2

n−1
2

∑
i=1

 1⌈
i

(n−1)/2

⌉ +
m− 1⌈
i

(n−1)/2

⌉
+ 1

+ m− 1


=

1
nm− 1

2

n−1
2

∑
i=1

(
1
1
+

m− 1
1 + 1

)
+ m− 1


=

1
nm− 1

2

n−1
2

∑
i=1

m + 1
2

+ m− 1


=

1
nm− 1

[
n− 1

2
(m + 1) + m− 1

]
=

nm + m + n− 3
2(nm− 1)

.
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For the Cartesian product of a complete graph and an even cycle, we have:

Eglob(Km × Kn) = Eglob

(
Km × C

n
2
n

)
=

1
nm− 1

2

n
2

∑
i=1

 1⌈
i

n/2

⌉ +
m− 1⌈
i

n/2

⌉
+ 1

+ m− 1−

 1⌈
n

2(n/2)

⌉ +
m− 1⌈
n

2(n/2)

⌉
+ 1


=

1
nm− 1

2

n
2

∑
i=1

(
1
1
+

m− 1
1 + 1

)
+ m− 1−

(
1
1
+

m− 1
1 + 1

)
=

1
nm− 1

2

n
2

∑
i=1

m + 1
2

+ m− 1− 1
2
(m + 1)


=

1
nm− 1

[
n
2
(m + 1) + m− 1− 1

2
(m + 1)

]
=

1
nm− 1

[
n− 1

2
(m + 1) + m− 1

]
=

nm + m + n− 3
2(nm− 1)

.

All three derivations agree. Thus Eglob(Km × Kn) is given by Eq. (II.8.4).

II.8.4 Grid Graphs: Pm × Pn

Consider the grid graph Pm × Pn which is embedded in the cartesian plane. The vertex in the upper left corner

is labeled v1,1 and vi,j is used to label vertex that is obtained by starting at vertex v1,1 and travelling i − 1

positions to the right and then j− 1 units downward.

v1,1

vn,1

v2,1

vn−1,1

vn,m−1

v1,m−1 v1,m

vn,m

Figure II.8.3: A generic grid Ggaph composed of Pn × Pm.

Now consider the graph P3 × P6.
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v1,1

v3,1 v3,6

v1,6

Figure II.8.4: A Grid Graph composed of P3 × P6.

The initial block of 9 vertices from v1,1 to v3,3 creates the graph P3 × P3. Adding sets of 3 additional vertices,

v1,4 to v3,4 up to v1,6 to v3,6 we obtain the entire graph of P3 × P6. This can be seen in Figure II.8.4. The

efficiency matrix in Table II.8.3 is divided into subsections of P3 × Pn where n ≤ 6.
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v1,1 v2,1 v3,1 v1,2 v2,2 v3,2 v1,3 v2,3 v3,3 v1,4 v2,4 v3,4 v1,5 v2,5 v3,5 v1,6 v2,6 v3,6

v1,1 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

1
7

v2,1 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

v3,1 0 1
3

1
2 1 1

4
1
3

1
2

1
5

1
4

1
3

1
6

1
5

1
4

1
7

1
6

1
5

v1,2 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6

v2,2 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

v3,2 0 1
3

1
2 1 1

4
1
3

1
2

1
5

1
4

1
3

1
6

1
5

1
4

v1,3 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

v2,3 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

v3,3 0 1
3

1
2 1 1

4
1
3

1
2

1
5

1
4

1
3

v1,4 0 1 1
2 1 1

2
1
3

1
2

1
3

1
4

v2,4 0 1 1
2 1 1

2
1
3

1
2

1
3

v3,4 0 1
3

1
2 1 1

4
1
3

1
2

v1,5 0 1 1
2 1 1

2
1
3

v2,5 0 1 1
2 1 1

2

v3,5 0 1
3

1
2 1

v1,6 0 1 1
2

v2,6 0 1

v3,6 0

Table II.8.3: The efficiency matrix for P3 × P6.

Our first goal is to sum the efficiencies of Pm × Pn. We shall consider the copies of Pm to be ‘vertical’ and the

Pn copies to be ‘horizontal’. To sum the efficiencies we begin by considering the n copies of Pm. The sum

of efficiencies between a single Pm is simply ∑m−1
k=1

m−k
k . So our total for vertical connections is n ∑m−1

k=1
m−k

k .

Similarly, our total for horizontal connections is m ∑n−1
k=1

n−k
k .

Next we determine the remaining efficiencies. Consider two copies of Pm. There are n − i pairs of Pm

that are separated by a horizontal distance of i ≤ n− 1. There are 2(m− j) pairs of points in separate Pm

that are separated by a vertical distance of j ≤ m − 1. Thus the sum of efficiencies of the cross terms is

∑n−1
i=1 ∑m−1

j=1
2(n−i)(m−j)

i+j . Since the total number of vertices is nm, our global efficiency is:
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Eglob (Pm × Pn) =
2

mn(mn− 1)

[
n

m−1

∑
k=1

m− k
k

+ m
n−1

∑
k=1

n− k
k

+
n−1

∑
i=1

m−1

∑
j=1

2(n− i)(m− j)
i + j

]

=
2

mn(mn− 1)

[
m−1

∑
k=1

nm
k
− n(m− 1) +

n−1

∑
k=1

mn
k
−m(n− 1) + 2

n−1

∑
i=1

m−1

∑
j=1

(n− i)(m− j)
i + j

]

=
2

mn(mn− 1)

[
m + n− 2nm +

m−1

∑
k=1

nm
k

+
n−1

∑
k=1

nm
k

+ 2
n−1

∑
i=1

m−1

∑
j=1

(n− i)(m− j)
i + j

]

=
2

mn(mn− 1)

[
m

∑
k=1

nm
k

+
n

∑
k=1

nm
k
− 2nm + 2

n−1

∑
i=1

m−1

∑
j=1

(n− i)(m− j)
i + j

]
.

We shall restate this in a theorem.

Theorem II.8.5.

Eglob(Pn × Pm) =
2

mn− 1

[
Hn + Hm − 2 +

2
nm

n−1

∑
i=1

m−1

∑
j=1

(n− i)(m− j)
i + j

]
.

Conjecture II.8.6. Without loss of generality, assume m ≥ n.

Eglob(Pn × Pm) =
2

3nm(nm− 1)

[
9mn2 − 27mn + 11n3 + 6n2 − 5n + 6

6

+ n
(

3mn + n2 − 1
) m−1

∑
k=n

1
k

+
n−2

∑
k=0

(n− k)
[
(n− k)2 − 1

]
k + m

]
.

This formula was found to be consistent but is not called a theorem due to the inadequate description of

derivation.

Using a weight corresponding to the Euclidean distance, we can obtain the global efficiency ratio which

compares the efficiency using distances along the lines of the grid versus the ideal Euclidean distance.

Theorem II.8.7. The global efficiency ratio is given by:

ERatio(Pm × Pn) =
(Hn + Hm − 2)nm + 2 ∑n−1

i=1 ∑m−1
j=1

(n−i)(m−j)
i+j

(Hn + Hm − 2)nm + 2 ∑n−1
i=1 ∑m−1

j=1
(n−i)(m−j)√

i2+j2

. (II.8.5)
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Figure II.8.5: A plot of ERatio(Pm × Pn) for fixed n as a function of m. Fixing n and increasing m tends to initially decrease

ERatio until around n = m and then increases asymptotically towards 1: resembling a path. The minimum

value is due to the extreme non-path like nature of a square grid. Note though that the minimum occurs

slightly past a square grid. Future research could be into why this is the case.

II.8.5 Harary Index

We can use the close relationship between global efficiency and the Harary index, H(G) = n(n−1)
2 Eglob(G),

where n is the size of the vertex set, to obtain new results. Note that H(G) denotes Harary index of a graph

whereas Hn denotes the nth harmonic number.

Corollary II.8.8. Let H(G) be the Harary index of a graph G. Then:

1. H (Pm
n ) = ∑k

i=1
n−i
d i

m e
,

2. n = 2k: H (Cm
n ) = k

[
2 ∑k

i=1
1
d i

m e
− 1
d k

m e

]
,

3. n = 2k + 1: H (Cm
n ) = (2k + 1)∑k

i=1
1
d i

m e
,
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4. H (Ks1,...,st) =
n(n−1)

2 − 1
4
[
∑t

i=1 s2
i − n

]
,

5. H(Kn,m) = nm + 1
4
[
n2 − n + m2 −m

]
,

6. H(Kr;n) =
nr(2nr−r−1)

4 ,

7. H(Sd,l) = d
(
(d− 1)

(
l + 1

2

)
H2l − (d− 2)(l + 1)Hl − l

)
,

8. H (Kr × Pm
n ) = r ∑k

i=1(n− i)
(

1
d i

m e
+ r−1

1+d i
m e

)
+ nr(r−1)

2 ,

9. n = 2k: H (Kr × Cm
n ) = rk

[
2 ∑k

i=1

(
1
d i

m e
+ r−1
d i

m e+1

)
+ r− 1−

(
1
d k

m e
+ r−1
d k

m e+1

)]
,

10. n = 2k + 1: H (Kr × Cm
n ) = r(2k + 1)

[
∑k

i=1

(
1
d i

m e
+ r−1
d i

m e+1

)
+ r−1

2

]
,

11. H (Km × Kn) =
1
4 nm(nm + m + n− 3),

12. H (Pm × Pn) = (Hn + Hm − 2)nm + 2 ∑n−1
i=1 ∑m−1

j=1
(n−i)(m−j)

i+j .

A listing of Harary index values using faster computation are available in Corollary VIII.1.10.

II.9 Applications

II.9.1 Metropolitan Atlanta Rapid Transit Authority Subway

The Metropolitan Atlanta Rapid Transit Authority Subway has 38 stations (see Figure II.9.1). We note that 33

of the 38 stations fall within a subdivided star formation. Approximating the network as the graph S4,8, we

have

ERatio (S4,8) =
(4− 1) (2 · 8 + 1) H2·8 − (4− 2)(2 · 8 + 2)H8 − 2 · 8

(2 · 8 + 2)H8 − 2 · 8 + ∑8
i=1 ∑8

j=1 ∑4−1
θ=1

1√
i2+j2−2ij cos( 2π

4 θ)

= 0.914 27.

Next, we put our estimate to the test by considering the actual MARTA network.
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Figure II.9.1: A scale map of MARTA: the Atlanta metro. Note the star-like design. Five Points Station serves as the central

vertex. The distance between North Springs station and Sandy Springs station is approximately 1 mile. Light

blue lines denote the city’s major interstate corridors. Used with permission from M. Casey.[17] 35



Efficiency and Betweenness Centrality of Graphs and some Applications

After obtaining rail distances along each of the lines directly from MARTA, we calculated the rail distance

between every pair of stations. The distances are shown in Table VIII.1.1 (Appendix). Using Google Earth we

determined the Euclidean distance between every pair of stations (see Table VIII.1.2 in Appendix).

In our analysis we only consider distances between stations, and not the length of a track in a particular

station. Using Google Earth, we found the Euclidean distances (in miles) between every pair of rail stations.

For a map of the MARTA Subway network where the scale is Euclidean distance, see Figure II.9.1. The sum

of the maximum Euclidean efficiencies was then computed to be 379.8169. Using rail distances provided by

MARTA we calculated the actual efficiencies with total sum of 311.7036. Hence, ERatio(MARTA)= 311.7036
379.8169 =

0.8207.

This means that the MARTA system is roughly 82% as efficient (in terms of distance) as a system that has

every station connected to every other station by a direct rail line.

Our analysis shows that a main fingerprint of a subway network can be star-like in structure. We note that the

graph Sd,l is a star that is perfectly “balanced”, meaning that all of pendant paths have the same length. As

noted earlier if l is fixed and d is increased then the efficiency ratio decreases as the number of pairs of vertices

on different spokes is increased. Also if d is fixed and l is increased then the efficiency ratio increases, as the

network bears a closer resemblance to a path.

It would be a difficult problem indeed to generalize the result for balanced stars to stars where the pendant

paths are of arbitrary length. However it is reasonable to derive some approximations. If the pendant paths are

of similar lengths then the efficiency will be close to that of a balanced star. Given a star-like network where

the pendant paths have different lengths, it is tempting to consider Sd,l where l is the average of the pendant

path lengths. However this will not work well in a case where there is significant variation in the path lengths.

For example the efficiency of S4,25 is much different than the efficiency of a star-like graph with one pendant

path with 97 edges and three pendant edges. The latter will be much closer to 1. If there are a small number

of pendant paths and one of the paths is much larger than the others (e.g.. there are four pendant paths with

lengths 91, 1,1, and 1), this graph will resemble a path in structure and will thus have an efficiency close to

1.

There is also a further generalization where the pendant paths are replaced by pendant trees (as in the MARTA

network). We noted previously that the MARTA network is similar to S4,8, and the efficiencies are 82% and

91% respectively. There are two reasons for the discrepancy, the first being that distances from Five Points

Station to the last station on each line are not all the same. The second is that the lines leaving Five Points
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Station going north and west split into different routes. This split impacts the efficiency in a manner similar to

increasing d in Sd,l and decreases the efficiency ratio.

We conclude by posing a problem involving a broad generalization where the network is a tree and that

incident edges are separated by angles that are equal. It would be interesting to investigate not only bounds

but the complexity of this problem as well.

II.9.2 Brain Network

Anything that is relatable to our brains is an area of great importance and interest. Efficiency is another way of

measuring the effect of an event on a brain’s composition. RCBI scientists conducted functional MRI (fMRI)

scans of 25 volunteers to find blood oxygen level-dependent (BOLD) correlations of various regions of the

brain. Previous papers have looked at the BOLD correlation matrices of macaque brains[12]. They used binary

connections with a given correlation threshold to find regions of high connectivity. We noticed definitive "hot

spots" of communication in our matrices as well and divided the regions into cliques. We developed our matrix

with threshold correlations, computed the efficiency matrix and used a partitioning algorithm[18] in order to

find the cliques. The algorithm ranks the regions based on the values of the eigenvector corresponding to the

second largest eigenvalue of the efficiency matrix.

Figure II.9.2: The average correlations between regions of the brain ordered according to the efficiency partitioning

algorithm. Warmer colors are more positively correlated. From left to right the regions are: LMTG, RMF,

LMF, LMT, IPS, RFEF, LIP, RS, LM, LS, MPC, RM, LMLA, LPC, LLP.
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The algorithm proved valid visually in the matrix as well as by partitioning motor system regions, sensory

regions and left brain regions: expected high-connectivity cliques. Our preliminary findings demonstrated

that while most brains varied in one or two region assignments, partitions were nearly constant across the 25

matrices (see Figure II.9.3).

Figure II.9.3: Partition of the brain into two groups using the average of absolute values. The width of the lines correspond

to the strength of the correlation. The difference is hard to see in most cases but the connection from LMF to

RMF is clearly stronger than LLP to RFEF. See Table VIII.1.4 for legend.

This is great evidence for a “normal” brain that can be used as a template. Disregarding the physical distance

between brain coordinates, the “average” brain graph in Figure II.9.4 was computed to have a global efficiency

of 0.294. If one considered the physical distance as well, the efficiency would undoubtable increase.
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Figure II.9.4: Image of the graph created by the adjacency matrix for the average minimum matrix with a cut off of -0.2 and

the average maximum matrix with a cut off of 0.4. The nodes are plotted according to talairach coordinates of

the 15 measured regions in the brain. Notice that the regions of the brain tend to be connected to physically

closer regions. Using the weights of the correlations instead of strict cutoffs, these regions were partitioned

together as in Figure II.9.3.

We did not exhaustively try to recreate the results from Honey et. al.[12] but simply include their data as a

comparison point. See Figure VIII.1.1 for their adjacency matrix of a macaque neocortex. Using their matrix

we obtained a value of 0.571 for the global efficiency of their corresponding graph. If one was more relaxed

in our cutoffs, the efficiency would likely approach that of the macaque’s. In our further study we actually

approached the same efficiency with a relaxed correlation cutoff of absolute value ≥ 0.325.

We continued our brain investigation in collaboration with the University of Rochester. Again, an outside

source conducted BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations

in oxygen levels of various regions of the brain and modeled these as graphs. This time we received data from

52 regions of the brain (a superset of the above regions). We were then able to measure the “efficiency” of

each athlete. As was expected, the athletes who received the largest number of high-energy impacts during

the season also experienced the largest drop in brain efficiency. At a typical correlation cutoff of 0.325, one

patient lost nearly half of the connections. This reduced the efficiency from 0.555 to 0.478. The average loss

in efficiency (after removing the player who sat on the bench all season) was 0.047: a roughly 10% drop in

measurement.
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III. Local Efficiency and Clustering Coefficient

For simplicity of reading, we provide the definition of local efficiency and clustering coefficient again

here.

Definition III.0.1. Local Efficiency Consider a graph G with vertex set V(G). Let n = |V(G)|. Let Gi denote

the neighborhood induced by vertex i.

Eloc =
1
n ∑

i∈V(G)

Eglob (Gi) . (III.0.1)

The local efficiency is the average global efficiency of all neighbor induced subgraphs.

Definition III.0.2. Clustering Coefficient Consider a graph G.

CC(G) =
1
n ∑

i
Ci, (III.0.2)

where Ci is the number of edges in Gi divided by the maximum number of possible edges: (|V(Gi)|
2 ).

Remark III.0.3. Note that because of these definitions, Eloc(G) ≥ CC(G).

Lemma III.0.4. A graph G contains a K3 subgraph if and only if Eloc(G) ≥ CC(G) > 0.

Proof. =⇒

If Eloc(G) ≥ CC(G) > 0 then there must be some neighborhood subgraph such that Eglob(Gi) > 0. Thus Gi

must contain an edge. Let this edge be between vertices u and v. Then {u, v, i} form a K3.

⇐=

If G contains a K3 subgraph, then taking the neighborhood induced subgraph of one of these vertices will

have an edge. Thus it will have nonzero Ci and nonzero Eglob. Therefore the local efficiency and clustering

coefficient (averages) must also be nonzero.

III.1 Graphs where the Clustering Coefficient and Local Efficiency Differ

In this section we analyze the claim made by Latora and Marchiori and show cases where it does not hold. That

is we present families of graphs where the local subgraphs are not sparse, but where CC and Eloc differ.

III.1.1 Clustering Coefficients vs. Local Efficiency for Complete Multipartite Graphs

A complete multipartite graph G = Ks1,s2,...,st is composed of t classes each with si vertices, 1 ≤ i ≤ t, where

each vertex in class i is adjacent to every vertex in class j 6= i, and is not adjacent to any vertex in class i. For

bipartite graphs, the clustering coefficient and local efficiency are clearly 0.
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Theorem III.1.1. Let G = Km,n where m, n ≥ 1. Then CC(G) = 0.

Theorem III.1.2. Let G = Km,n where m, n ≥ 1. Then Eloc(G) = 0.

However, for general multipartite graphs this is not the case. Let v be a vertex in Ks1,s2,...,st . Let v be in part i.

The subgraph Gv induced by the neighbors of v is isomorphic to Ks1,...,si−1,si+1,...,st .

Theorem III.1.3. Let n = ∑t
i=1 si.

Eloc(Ks1,...,st) =
1
n

t

∑
i=1

siEglob(Ks1,...,si−1,si+1,...,st)

=
1
n

t

∑
i=1

si
(n− si)(n− si − 1)

t

∑
j=1,j 6=i

sj

[(
sj − 1

)
2

+
(
n− si − sj

)]
. (III.1.1)

Theorem III.1.4. Let n = ∑t
i=1 si.

CC(Ks1,...,st) =
1
n

t

∑
i=1

si
(n− si)(n− si − 1)

t

∑
j=1,j 6=i

sj
(
n− si − sj

)
. (III.1.2)

As before with the global efficiency, we shall look at a few special cases.

Lemma III.1.5. Let G = Kr,r,r with r ≥ 3. Then CC(Kr,r,r) =
r

2r−1 and Eloc(Kr,r,r) =
3r−1

2(2r−1) .

Proof. Let V(G) be the union of the three classes of vertices {v1,1, v1,2, . . . , v1,r}, {v2,1, v2,2, . . . , v2,r}, and

{v3,1, v3,2, . . . , v3,r}. Note that all vertices have isomorphic neighborhoods. Without loss of generality consider

the vertex v1,1. Then the neighbors of v1,1 are {v2,1, v2,2, . . . , v2,r} and {v3,1, v3,2, . . . , v3,r}. We first calculate

the clustering coefficient. The only pairs of neighbors of v1,1 that are adjacent are (v2,i, v3,j). The number

of these edges is r2. Dividing over the total number of possible edges gives r2

(2r
2 )

= r
2r−1 . This is the value

of the clustering coefficient. Non-1 efficiencies create the difference between clustering coefficient and local

efficiency. Therefore, we next examine efficiencies of each pair of these vertices. We have ∈ (v2,i, v2,j) =
1
2

and ∈ (v3,i, v3,j) =
1
2 for all i 6= j, 1 ≤ j ≤ r, and ∈ (v2,i, v3,j) = 1 for all 1 ≤ i, j ≤ r. Hence the sum of all

efficiencies is (r
2)

1
2 + (r

2)
1
2 + r2 = r2 + (r

2). Averaging over all efficiencies gives r2+(r
2)

(2r
2 )

.

We note the two small cases.

Corollary III.1.6.

lim
r→∞

CC(Kr,r,r) = lim
r→∞

r2

r(2r− 1)
=

r
2r− 1

=
1
2

,

lim
r→∞

Eloc(Kr,r,r) = lim
r→∞

r2 + (r
2)

(2r
2 )

= lim
r→∞

r2 + 1
2 (r− 1)

2r− 1
=

1 + 1
2

2
=

3
4

,

lim
r→∞

(Eloc(Kr,r,r)− CC(Kr,r,r)) =
1
4

.
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We can then look at the case for general n.

Theorem III.1.7. Let Kr;n denote the complete multipartite graph consisting of n parts of order r. Then Eloc(Kr;n) =

1− r−1
2[(n−1)r−1] and CC(Kr;n) = 1− r−1

(n−1)r−1 .

Proof. Let v be a vertex in Kr;n. The subgraph Gv induced by the neighbors of v is isomorphic to Kr;n−1. Then

we can use Theorem II.5.5 to directly find Eloc.

Next, we consider CC(Kr;n). The number of edges in a neighborhood subgraph is |E (Kr;n−1)| = (n−1
2 )r2 =

1
2 (n− 1)(n− 2)r2. The maximum number of edges that can exist on this set of r(n− 1) vertices is ((n−1)r

2 ) =

1
2 (n− 1)r · ((n− 1)r− 1). Therefore CC(Kr;n) =

1
2 (n−1)(n−2)r2

1
2 (n−1)r·((n−1)r−1)

= (n−2)r
(n−1)r−1 = 1− r−1

(n−1)r−1 .

Corollary III.1.8. As n→ ∞, Eloc(Kr;n)→ 1 and CC(Kr;n)→ 1. The sizes of the parts have become negligible with

respect to the total composition of the graph: a complete graph.

Corollary III.1.9.

lim
r→∞

CC(Kr,r,r) = 1− 1
n− 1

,

lim
r→∞

Eloc(Kr,r,r) = 1− 1
2(n− 1)

,

lim
r→∞

(Eloc(Kr,r,r)− CC(Kr,r,r)) =
1

2(n− 1)
.

III.1.2 Cycle Powers

A cycle power Cm
n is a graph with vertices v1, v2, ..., vm and edges vivj where |i− j| ≤ m mod n. In the next

two theorems we determine Eloc(Cm
n ) and CC(Cm

n ).

Theorem III.1.10.

Eloc(Cm
n ) =


1 when m ≤ n ≤ 2m + 1,

16m2+n2+4m+2−6mn−3n
4m(2m−1) when 2m + 2 ≤ n ≤ 3m,

21m2−15m−2
12m(2m−1) when n ≥ 3m + 1.

Proof. Because the cycle power graph is vertex-transitive, the average local efficiency is equal to the local

efficiency of any particular neighborhood subgraph. Thus we consider a single vertex vi with neighbors vj

where i−m ≤ j ≤ i− 1 and i + 1 ≤ j ≤ i + m. We consider three cases.

Case (i). Let m ≤ n ≤ 2m + 1. Then all of the local subgraphs are complete and Eloc (Cm
n ) = 1.

Case (ii). Let 2m + 2 ≤ n ≤ 3m. See Figure III.1.1.
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vn−m vm+2

vm+1
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Figure III.1.1: A cycle power with the local subgraph shown in black.

Keeping m constant but increasing n increases the distance separating vi−m and vi+m until it becomes greater

than m; when n ≥ 3m + 1. As a result, fewer edges are kept until a single edge remains. This prevents

Gi from becoming a path. The single edge is between vi−m and vi+m. For each value of m, there are

(3m)− (2m + 3) + 1 = m− 2 different values of n that fall into this case. The greatest value of n in this interval:

3m, will yield a path power plus a connection between vi−m and vi+m. Then,

Eloc(Cm
n ) =

2
2m (2m− 1)

2m−1

∑
k=1

2m− k⌈
i

m−1

⌉ +
3m+1−n

∑
k=1

(3m + 2− n− k)

1− 1⌈
n−m−2+k

m−1

⌉


=
1

m (2m− 1)

2m−2

∑
k=1

2m− k⌈
i

m−1

⌉ + 1 +
3m−n

∑
k=1

(3m + 2− n− k)

1− 1⌈
n−m−2+k

m−1

⌉
 .

The second double sum corrects the efficiencies that were changed by having a connection between vi−m

and vi+m. Once the final term is removed, we can use n ≥ 2m + 2, and 1 ≤ k ≤ 3m − n to see that

m + 1 ≤ n−m− 2 + k ≤ 2m− 2. Therefore the fraction term will always have denominator 2. Then

Eloc(Cm
n ) =

1
m (2m− 1)

[
m−1

∑
k=1

2m− k
2

+
2m−2

∑
k=1

2m− k
2

+ 1 +
3m−n

∑
k=1

3m + 2− n− k
2

]

=
1

m (2m− 1)

[
(m− 1)

(
3m− m

4
− (2m− 1)

2

)
+ 1 + (3m− n)

(
3m + 2− n

2
− 3m− n + 1

4

)]
=

1
4m (2m− 1)

[
16m2 + 4m− 6mn + n2 − 3n + 2

]
.
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Case (iii). Let n ≥ 3m + 1. Then the subgraph induced by the neighborhood of a vertex is a path power (see

Figure III.1.2). Specifically, it is Pm−1
2m . The generic graphic is given by:

vi−(m+1) vi+(m+1)

vi+m

vi+(m−1)

vi+2

vi+1

vi

vi−1

vi−2

vi−(m−1)

vi−m

Figure III.1.2: A generic cycle power. Note the black edges indicate Gi of Cm
n where n ≥ 3m + 1

Then

Eloc(Cm
n ) =

2
2m (2m− 1)

2m−1

∑
k=1

k

∑
i=1

1⌈
i

m−1

⌉


=
1

m(2m− 1)

[
m−1

∑
k=1

k

∑
i=1

1
1
+

2m−1

∑
k=m

(
k− 1 + (k−m + 1)

1
2

)]

=
1

2m (2m− 1)

(
7
2

m2 − 5
2

m− 1
3

)
.

Next we investigate the clustering coefficient of a cycle power.

Theorem III.1.11.

CC(Cm
n ) =


1 when n ≤ 2m + 1,

12m2+6m−6mn+n2−3n+2
4m2−2m when 2m + 2 ≤ n ≤ 3m,

3m−3
4m−2 when n ≥ 3m + 1.

(III.1.3)
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Proof. We consider three cases.

Case (i). n ≤ 2m + 1 Then we have a complete graph and CC(Cm
n ) = 1.

Case (ii). 2m + 2 ≤ n ≤ 3m CC(Cm
n ) =

12m2+6m−6mn+n2−3n+2
4m2−2m .

The adjacency matrix of a subgraph is similar to the matrix of Case 1, however additional ones must be

added since each subgraph is a path power with additional edges. Thus the clustering coefficient is found

by adding the sum of Case 1, and the additional edges. In Case 2 for local efficiency, we changed entries

equal to 1
2 to 1. Now, we must add 1 to the same entries since they are 0 in this case. Thus we are adding

twice as much to the adjacency matrix as in Case 2 of local efficiency, yielding 2 (3m+2−n)(3m+1−n)
2 . The sum

is 2 · 3
2 m(m− 1) + (3m + 2− n)(3m + 1− n) = 12m2 + 6m− 6mn + n2 − 3n + 2. And normalizing yields Eq.

(III.1.3).

Case (iii). n ≥ 3m + 1. Consider the subgraph created by Cm
n where n ≥ 3m + 1. Recall that this subgraph is

a path power: Pm−1
2m . Hence, the adjacency matrix is simply the efficiency matrix of a path power but with

every value less than 1 replaced by 0. Then the sum is 3
2 m(m− 1). However, this quantity is doubled since the

summation only sums over the upper half of the symmetric matrix. Normalizing gives a clustering coefficient

of CC(Cm
n ) =

2· 32 m(m−1)
2m(2m−1) = 3m−3

4m−2 .

Remark III.1.12. We note that when n ≥ 3m + 1, lim
m→∞

CC(Cm
n ) =

3
4 and lim

m→∞
Eloc(Cm

n ) =
7
8 .

III.1.3 Networks of the Brain

In 2007, Honey et al. [12] examined a large-scale anatomical data set known as a "macaque neocortex". This

consisted of a binary connection matrix of brain regions connected by interregional pathways (see Figure

VIII.1.1 in Appendix). The 47-node network was constructed by collating data from different macaques using

tract-tracing studies. The network consists of 47 nodes and 505 unweighted directed edges. Here each vertex

represents a particular region of the brain and each edge denotes the presence of a directed anatomical

connection.

We used MATLAB to verify the following properties: L = 2.0541, Eglob = 0.5714, CC = 0.6098, and Eloc =

0.7903. We note the local subgraphs are not sparse as CC > 0.5 and yet there is a significant difference between

CC and Eloc.
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III.2 Graphs where C and Eloc are equal

In this section we consider graphs that are the Cartesian Product of a complete graph and another graph H

where H is a cycle or complete graph.

III.2.1 Clustering Coefficients vs. Local Efficiency for Cartesian Products of Graphs

Theorem III.2.1. Eloc(Kn × Cm) = CC(Kn × Cm) =
n2−3n+2

n2+n , m ≥ 4.

Proof. We note that all vertices have isomorphic neighborhoods. Let v be a vertex in Kn × Cm. Then deg(v) =

n + 1. The vertex v has n− 1 neighbors in the clique that contains v, and two outside of this clique. Among

these neighbors in the clique there are 2(n−1
2 ) ordered pairs of adjacent vertices. The other two neighbors are

non-adjacent. Hence Eloc(Kn × Cm) =
2(n−1

2 )
(n+1)(n) = n2−3n+2

n2+n . Since all of the efficiencies between vertices are

either 0 or 1, CC(Kn × Cm) = Eloc(Kn × Cm).

Theorem III.2.2. Eloc(Kn × Km) = CC(Kn × Km) =
(n−1)(n−2)+(m−1)(m−2)

(n+m−2)(n+m−3) .

Proof. We note that all vertices have isomorphic neighborhoods. Let v be a vertex in Kn × Km. Then deg(v) =

(n− 1) + (m− 1). The vertex v has n− 1 neighbors in the clique that contains v. Among these neighbors in

the clique there are 2(n−1
2 ) ordered pairs of adjacent vertices. The other neighbors form a clique of size m− 1,

with 2(m−1
2 ) ordered pairs of adjacent vertices. Hence Eloc(Kn × Km) =

2(n−1
2 )+2(m−1

2 )
(n−1+m−1)(n−1+m−1−1) . Since all of the

efficiencies between vertices are either 0 or 1, CC(Kn × Km) = Eloc(Kn × Km) =
2(n−1

2 )+2(m−1
2 )

(n−1+m−1)(n−1+m−1−1) .

III.2.2 Removing an edge from Kn.

Theorem III.2.3. Let G = Kn − e. Then CC(Kn − e) = 1− 2
n(n−1) and Eloc(Kn − e) = 1− 1

n(n−1) .

Proof. Note that all but two of the entries in the C matrix are 1. In the Eloc matrix, all entries are 1 except one

that is 1
2 .

Remark III.2.4. Note that lim
n→∞

CC(Kn − e) = 1 and lim
n→∞

Eloc(Kn − e) = 1.

III.3 Summary of Differences in Local Efficiency and Clustering Coefficient

We identified graphs where the local efficiency and clustering coefficient were different. In Corollary III.1.6 we

showed that these two quantities can asymptotically differ by 1
4 . It would be interesting to see how much these
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two quantities can differ. We formally state this problem in the future research section.

Latora and Marchiori mentioned that the clustering coefficient is a good approximation for the local efficiency

of a graph when it is sparse. More accurately, the clustering coefficient is a good approximation when the

vertices of neighborhoods of every vertex have low eccentricity.
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IV. Betweenness Centrality

IV.1 Introduction

IV.1.1 Definition and Example

Let G be a connected graph. The betweenness centrality of a vertex v ∈ G, denoted bc(v), measures the

frequency at which v appears on a shortest path between two other distinct vertices x and y. Let σxy be the

number of shortest paths between distinct vertices x and y, and let σxy(v) be the number of shortest paths

between x and y that contain v. Therefore

Definition IV.1.1.

bc(v) = ∑
x,y

σxy(v)
σxy

, (IV.1.1)

for all distinct vertices x, and y.[19]

Note that σxy 6≡ σyx. This definition can then be used for directed graphs. It can also be generalized to the

components of disconnected graphs.

Example IV.1.2.

a

b c

Figure IV.1.1: Here we have bc(a) = bc(c) = 0 and bc(b) = 2.

IV.1.2 Bounds on Betweenness Centrality

Lemma IV.1.3. Consider a graph G(V, E) with |V(G)| = n and |E(G)| = m. Then

min {bc(v)|v ∈ V(G)} ≥ 0, (IV.1.2)

max {bc(v)|v ∈ V(G)} ≤ (n− 1)(n− 2). (IV.1.3)

The lower bound occurs for vertices that do not lie on any optimal paths. This happens with vertices that are

pendants or lie on cycles with chords that bypass it: in complete graphs, etc. The upper bound only occurs if

the vertex to be considered is the central vertex of a star graph: K1,r.
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Remark IV.1.4. If the graph G is a tree, then all vertices will have integer betweenness centrality. Note that

there are no cycles so an optimal path either always contains a given vertex, or never does: contribution of 0 or

1.

IV.2 Betweenness Centrality for Various Graphs

Because betweenness centrality is a measurement of a particular vertex, we choose to examine graphs with

high vertex transitivity (few group orbits). This reduces the total number of derivations to completely analyze

a given graph.

IV.2.1 Cycle Powers

Lemma IV.2.1. Consider a cycle power graph Cm
n .

diam (Cm
n ) =

⌈
n− 1
2m

⌉
. (IV.2.1)

Example: with C3
19, every vertex is reachable from any spot in at most 3 steps. For C3

20, going across the circle

requires a minimum of 4 steps.

Proof. This can be seen by picking one vertex to look at: vi. The furthest vertex from vi is the vertex

halfway around the circle: once you move further clockwise or counterclockwise, you could simply choose

to approach from the counterclockwise or clockwise direction respectively. Now we look at the odd or

even cases. If n is odd, the distance along the circle would be n−1
2 . The minimum number of steps is then⌈

(n−1)/2
m

⌉
. If n is even, the distance along the circle would be n

2 . The minimum number of steps is then⌈
n/2
m

⌉
=
⌈
d(n−1)/2e

m

⌉
=
⌈
(n−1)/2

m

⌉
.

Theorem IV.2.2. Consider a cycle power graph Cm
n and a vertex v ∈ Cm

n . Let d = diam (Cm
n ) =

⌈
n−1
2m

⌉
. Assume

n > 2m + 1 otherwise we have a complete graph. This also means d ≥ 2. Then

bc(v) = (d− 1)
(

2
⌈

n− 1
2

⌉
− dm

)
. (IV.2.2)

Proof. Consider Cm
n . Let d = diam (Cm

n ) =
⌈

n−1
2m

⌉
and pick r ≡ −

⌈
n−1

2

⌉
mod m such that m > r ≥ 0. Then

r = dm−
⌈

n−1
2

⌉
.

d is the maximum number of steps between vertices so d− 1 is the maximum number of stepping stones used.
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Let Pl be the set of unique optimal paths of length l: m + 1 ≤ l ≤ d. The upper bound is the largest distance

possible in Cm
n and the lower bound is so that we ignore pairs of adjacent vertices. The number of steps in

each optimal path is
⌈

l
m

⌉
. Finding |Pl | = pl is equivalent to finding the number of partitions of an integer

with restriction on number of integers and values of said integers[20]. It turns out that an explicit formula for

pl is not necessary in our search for bc(v).

Consider a vertex v ∈ Cm
n and paths that use s number of stepping stones: 1 ≤ s ≤ d. For every unique path of

length l with s =
⌈

l
m

⌉
− 1 mid-steps, there exist s pair(s) of vertices such that the unique path passes through

v: s term(s) of 1
pl

. Since we can reverse the order of vertices, this doubles the term. Counting all unique paths

of length l, the sum of betweenness centrality for v will get a total contribution of 2pl
s
pl

= 2s. Summing over

all values of l gives:

bc(v) =
d n−1

2 e
∑

l=m+1
2
(⌈

l
m

⌉
− 1
)

= 2
d n−1

2 e−m

∑
l=1

(⌈
l + m

m

⌉
− 1
)

= 2
d n−1

2 e−m

∑
l=1

⌈
l
m

⌉

= 2m
d(d n−1

2 e−m)/me
∑
l=1

l − 2


⌈

n−1
2

⌉
−m

m

 r

= 2m
d n−1

2m e−1

∑
l=1

l − 2
(⌈

n− 1
2m

⌉
− 1
)

r

= 2m
d−1

∑
l=1

l − 2(d− 1)
(

dm−
⌈

n− 1
2

⌉)
= 2m

d(d− 1)
2

+ 2(d− 1)
(⌈

n− 1
2

⌉
− dm

)
= md(d− 1) + (d− 1)

(
2
⌈

n− 1
2

⌉
− 2dm

)
= (d− 1)

(
2
⌈

n− 1
2

⌉
− dm

)
.

There is one key point we glossed over. For the paths of the lengths with the largest number of steps, there are

also possibilities of moving the opposite way around the cycle. The reason these are not separately considered

is that we have already accounted for those paths. Moving l around one way is the same as n− l around

the other way. In the original counting method, we looked at s pairs of vertices for pl paths each having

a contribution of s
pl

: total term of s. Instead, we actually have pl + pn−l paths and s pairs of vertices that

contribute terms of s
pl+pn−l

: still a total term of s. So we arrived at the same answer.
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IV.2.2 Subdivided Star Graphs

Theorem IV.2.3. Consider a subdivided star graph with arms of lengths s1, . . . , sn and vertices labeled vl,k: kth vertex

from v0,0 on lth arm. v0,0 is the center vertex. Then

bc(v0,0) = 2
n

∑
j=2

sj

j−1

∑
i=1

si,

bc(vl,k) = 2 (sl − k)

(
∑
i 6=l

si + k

)
. (IV.2.3)

Proof. The central vertex will lie on an optimal paths if and only if the path is between vertices on different

spokes. Thus we sum the number of pairs of vertices between spokes. Vertices on an arm will lie on an optimal

path if and only if the path is between a vertex further along the same arm (sl − k vertices) and a vertex closer

to v0,0 or on a different arm (∑i 6=l si + k vertices). Simply using multiplication to find the number of ways to

choose these pairs gives us our result. Doubling is to account for moving in either direction.

Note that bc(vl,sl
) = 0. These are the pendant vertices.

IV.2.3 Subdivided Triangle Star Graphs

Theorem IV.2.4. Consider a subdivided triangle star graph with arms of lengths s0 ≤ s1 ≤ s2: a C3 with arms appended

to each vertex of the cycle. Label vertices vl,k: kth vertex from vl,0 on lth arm. k = 0 indicates a vertex on the cycle. By

symmetries of C3, the order in which we append the arms is irrelevant. Then

bc(vl,k) = 2 (sl − k)

(
k + 2 + ∑

i 6=l
si

)
. (IV.2.4)

Proof. vl,k will lie on an optimal path if and only if the path is between a vertex on the lth arm further from the

C3 (sl − k vertices) and a vertex closer to the C3 or on a different spoke (k + 2 + ∑i 6=l si vertices). Simply using

multiplication to find the number of ways to choose these pairs gives us our result. Doubling is to account for

moving in either direction.

IV.2.4 Ladders

A very useful reduction from double sum to single sum is given in Lemma IV.2.5.

Lemma IV.2.5.
k

∑
j=1

n

∑
i=k

1
i− j + 1

=
n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

k
i
− 1. (IV.2.5)
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Proof. We will proceed with proof by induction. Let S(k; n), 1 ≤ k ≤ n, be the statement

k

∑
j=1

n

∑
i=k

1
i− j + 1

=
n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

k
i
− 1.

We note that the statement S(1; 1) is true by the following.

k

∑
j=1

n

∑
i=k

1
i− j + 1

=
1

∑
j=1

1

∑
i=1

1
i− j + 1

=
1

1− 1 + 1

= 1

=
1− 1 + 1
1− 1 + 1

+
1
1
− 1

=
1

∑
i=1−1+1

1− 1 + 1
i

+
1

∑
i=1

1
i
− 1

=
n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

k
i
− 1.

Thus the base case is proven.

Assume S(k; n) is true. To prove: S(k; n + 1) is true. Let 1 ≤ k ≤ n + 1.

k

∑
j=1

n+1

∑
i=k

1
i− j + 1

=
k

∑
j=1

[
n

∑
i=k

1
i− j + 1

+
1

n + 1− j + 1

]

=
k

∑
j=1

n

∑
i=k

1
i− j + 1

+
k

∑
j=1

1
n− j + 2

=
n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

k
i
− 1 +

k

∑
j=1

1
n− j + 2

=
n

∑
i=n−k+1

n− k + 1
i

+
n+1

∑
i=k

k
i
− k

n + 1
− 1 +

n+1

∑
j=n−k+2

1
j

=
n+1

∑
i=n−k+2

n− k + 1
i

+
n− k + 1
n− k + 1

− n− k + 1
n + 1

+
n+1

∑
i=k

k
i
− k

n + 1
− 1 +

n+1

∑
j=n−k+2

1
j

=
n+1

∑
i=n−k+2

n− k + 2
i

+
n+1

∑
i=k

k
i
−

n+1

∑
i=n−k+2

1
i
+

n− k + 1
n− k + 1

− n− k + 1
n + 1

− k
n + 1

− 1 +
n+1

∑
j=n−k+2

1
j

=
n+1

∑
i=n−k+2

n− k + 2
i

+
n+1

∑
i=k

k
i
+

n+1

∑
j=n−k+2

1
j
−

n+1

∑
i=n−k+2

1
i
+ 1− 1− n + 1

n + 1

=
n+1

∑
i=(n+1)−k+1

(n + 1)− k + 1
i

+
n+1

∑
i=k

k
i
− 1.

Thus S(k; n + 1) is true. By induction, the Lemma holds for all n ∈N.
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Lemma IV.2.6. Let Ln be a ladder graph on 2n vertices. Label the vertices so that the “top” vertices read v1, v2, . . . , vn

and the “bottom” vertices are v1′ , v2′ , . . . , vn′ . See Figure IV.2.1. Then,

bc(vk′) = bc(vk) =2

[
2k(n− k + 1)− 2(n + 1) +

n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

k
i

]
.

1 3

1’ 3’ (n-2)’ n’

n(n-2)2

2’ (n-1)’

n-1

Figure IV.2.1: Ln. Note there are 2n vertices.

Proof. In summing the betweenness centrality, we will only consider paths moving from left to right and then

double the final sum. Consider vk ∈ Ln. First, the betweenness centrality from paths beginning on the top side

of the ladder. There are (k− 1) vertices to the left of vk and (n− k) to the right. Picking one vertex from each

side, the optimal path will be a straight path that passes through vk: a contribution of 1. From picking any

pair, we get the term: (k− 1)(n− k).

Next we look at optimal paths that begin on top and end on bottom. The path can start at any vertex vj,

1 ≤ j ≤ k− 1. The ending vertex must be vi′ , k ≤ i ≤ n, otherwise the optimal path could not pass through vk.

The optimal path can drop from the top to bottom at any point of moving along the ladder. Thus there are

i− j + 1 distinct paths. However, we want the path to go through vk. This means the drop must occur after

passing vk: i− k + 1 total options. The proportion of optimal paths that go through vk is then i−k+1
i−j+1 . Summing

over all possibilities gives ∑k−1
j=1 ∑n

i=k
i−k+1
i−j+1 .

Similarly we can consider moving from bottom to top and obtain the term: ∑k
j=1 ∑n

i=k+1
k−j+1
i−j+1 . Then summing

the three terms and simplifying using Lemma IV.2.5 yields the final result of Lemma IV.2.6.

IV.2.5 Pendant Ladders

Lemma IV.2.7. Let Ln be a ladder graph. Append another vertex, which will be labeled vertex v0, to vertex v1. Let Un

describe this graph. See Figure IV.2.2.
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bc(v0) =0,

bc(vk) =2

[
2k(n− k)− 1 +

n

∑
i=n−k+1

n− k + 1
i

+
n

∑
i=k

1
i

]
,

bc(vk′) =2

[
2(k− 1)(n− k)− 3 +

n

∑
i=n−k+1

n− k + 1
i

+ 2
n

∑
i=k

k
i

]
.

0 1 3

1’ 3’ (n-2)’ n’

n(n-2)2

2’ (n-1)’

n-1

Figure IV.2.2: Un. Note there are 2n + 1 vertices.

Proof. The expressions for bc(vk) and bc(vk′) use Lemma IV.2.6 as the “base”.

Note that by adding v0, we have not changed any optimal paths between existing vertices: it is trivially seen

that no optimal path would use v0 as a midpoint. This means that bc(v0) = 0. The only difference from

Lemma IV.2.6 is that we have contributions from the optimal paths that include v0 as an end point. For the

betweenness centrality of a top vertex, vk, every optimal path from v0 to vl , k + 1 ≤ l ≤ n will go through vk.

Hence we have an extra contribution of (n− k) for top vertices. There is also the contribution for optimal

paths to a bottom vertex. The fraction is explained in Lemma IV.2.6, though there are slightly restricted options

since the first step from v0 MUST be to v1. The contribution for the betweenness centrality of bottom vertices

is also very similar and only differs by some slight restrictions.

We also make use of Lemma IV.2.5 to simplify our expressions.

IV.3 Unique Betweenness Centrality

Definition IV.3.1. Let a graph G(V, E) be said to have unique betweenness centrality if for all vi, vj ∈ V(G), we

have bc(vi) = bc(vj) implies i = j. i.e. the betweenness centrality function is injective.

IV.3.1 Necessary Conditions

Theorem IV.3.2. If a graph, G, has unique betweenness centrality, then Aut(G) = {id}.
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Proof. Suppose a graph, G, has unique betweenness centrality. Automorphisms preserve edge connectivity

and thus preserve path connections. Therefore the betweenness centrality of a vertex is preserved across orbits

of automorphisms. Thus two similar vertices have the same betweenness centrality. Then each vertex must be

in its own orbit: |Aut(G)| = 1n = 1.

Theorem IV.3.3. If a graph, G, has unique betweenness centrality, then there is at most 1 pendant vertex.

Proof. Suppose a graph, G, has 2 distinct pendant vertices u, v. Then it is clear that each pendant vertex does

not lie on any optimal paths between other vertices. Thus bc(u) = 0 = bc(v). Therefore G does not have

unique betweenness centrality.

Corollary IV.3.4. If a graph, G, of order n ≥ 2, has unique betweenness centrality, then it is not a tree.

IV.3.2 Infinite Family of Graphs with Unique Betweenness Centrality

Conjecture IV.3.5. Un has unique betweenness centrality for n > 2.

Proof. Our goal is to prove that bc(vk) = bc(vl) implies k = l. We also need to prove bc(vk′) = bc(vl′) implies

k = l and bc(vk) can never equal bc(vl′). Clearly every vertex has nonzero betweenness centrality except for v0.

The cases n = 3, 4, 5, 6, 7, 8 are enumerated in Table VIII.2.1. Thus we may consider now that n ≥ 9.

For 1 ≤ l ≤
⌈ n

2
⌉
− 1, bc(vn−l+1) < bc(vl) < bc(vn−l).
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bc(vn−l) = 2

2(n− l)(n− (n− l))− 1 +
n

∑
i=n−(n−l)+1

n− (n− l) + 1
i

+
n

∑
i=(n−l)

1
i


= 2

[
2l(n− l)− 1 +

n

∑
i=l+1

l + 1
i

+
n

∑
i=n−l

1
i

]

= 2

[
2l(n− l)− 1 +

n

∑
i=l

l + 1
i
− l + 1

l
+

n

∑
i=n−l+1

1
i
+

1
n− l

]

= 2

[
2l(n− l)− 1 +

n

∑
i=l

1
i
+

n

∑
i=l

l
i
+

n

∑
i=n−l+1

n− l + 1
i

−
n

∑
i=n−l+1

n− l
i

+
1

n− l
− l + 1

l

]

= 2

[
2l(n− l)− 1 +

n

∑
i=n−l+1

n− l + 1
i

+
n

∑
i=l

1
i
+

n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i

+
1

n− l
− l + 1

l

]

= bc(vl) + 2

[
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i

+
1

n− l
− l + 1

l

]
> bc(vl)

= 2

[
2l(n− l)− 1 +

n

∑
i=n−l+1

n− l + 1
i

+
n

∑
i=l

1
i

]

= 2

[
2l(n− l)− 1 +

n

∑
i=n−l+1

n− l + 1
i

+
n

∑
i=l

1
i

]
− bc(vn−l+1) + bc(vn−l+1)

= bc(vn−l+1) + 2

[
2l(n− l)− 1 +

n

∑
i=n−l+1

n− l + 1
i

+
n

∑
i=l

1
i

−

2(n− l + 1)(n− (n− l + 1))− 1 +
n

∑
i=n−(n−l+1)+1

n− (n− l + 1) + 1
i

+
n

∑
i=n−l+1

1
i

]

= bc(vn−l+1) + 2

[
2l(n− l) +

n

∑
i=n−l+1

n− l + 1
i

+
n

∑
i=l

1
i
− 2(n− l + 1)(l − 1)−

n

∑
i=l

l
i
−

n

∑
i=n−l+1

1
i

]

= bc(vn−l+1) + 2

[
2ln− 2l2 +

n

∑
i=n−l+1

n− l
i

+
n

∑
i=l

1− l
i
− 2nl + 2l2 − 2l + 2n− 2l + 2

]

= bc(vn−l+1) + 2

[
n

∑
i=n−l+1

n− l
i
−

n

∑
i=l

l − 1
i

+ 2n− 4l + 2

]
> bc(vn−l+1).
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This uses Lemmas VIII.2.2 and VIII.2.5 in the bounding lines. Also note that if n is even

bc(v n
2
)− bc(v n

2 +1) = 2

2
n
2

(
n− n

2

)
− 1 +

n

∑
i=n− n

2 +1

n− n
2 + 1
i

+
n

∑
i= n

2

1
i


− 2

2
(n

2
+ 1
) (

n− n
2
− 1
)
− 1 +

n

∑
i=n− n

2−1+1

n− n
2 − 1 + 1

i
+

n

∑
i= n

2 +1

1
i


= 2

[
2

n
2

(
n− n

2

)
− 1 +

n

∑
i=n− n

2 +1

n− n
2 + 1
i

+
n

∑
i= n

2

1
i

− 2
(n

2
+ 1
) (

n− n
2
− 1
)
+ 1−

n

∑
i=n− n
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n− n
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i
−

n

∑
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1
i

]

= 2
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2

)
+

n

∑
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2 +1

n
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i
+

n

∑
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2

1
i
− (n + 2)

(n
2
− 1
)
−

n

∑
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2

n
2
i
−

n

∑
i= n

2 +1

1
i


= n2 +

n

∑
i= n

2 +1

n + 2
i

+
n

∑
i= n

2

2
i
− (n + 2) (n− 2)−

n

∑
i= n

2

n
i
−

n

∑
i= n

2 +1

2
i

= n2 − n2 + 4 +
n

∑
i= n

2 +1

n + 2
i
−

n

∑
i= n

2

n
i
+

n

∑
i= n

2

2
i
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n
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2
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= 4 +
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∑
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2 +1

2
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n

∑
i= n

2

n
i
− n

n
2
−

n

∑
i= n

2

n
i
+

n

∑
i= n

2

2
i
−

n

∑
i= n

2

2
i
+

2
n
2

= 4 +
n

∑
i= n

2 +1

2
i
− 2 +

4
n

= 2 +
4
n
+

n

∑
i= n

2 +1

2
i

> 0.

Thus we can state that 0 = bc(v0) < bc(vn) < bc(v1) < bc(vn−1) < bc(v2) < bc(vn−2) < · · · < bc(vd n
2 e). Thus

if bc(vk) = bc(vl), then k = l since the vertices are completed ordered by betweenness centrality.

For 1 ≤ l ≤
⌈ n

2
⌉
− 1, bc(v(n−l+1)′) < bc(v′l) < bc(v(n−l)′).

57



Efficiency and Betweenness Centrality of Graphs and some Applications

bc(v(n−l)′) = 2

2((n− l)− 1)(n− (n− l))− 3 +
n

∑
i=n−(n−l)+1

n− (n− l) + 1
i
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∑
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This uses Lemmas VIII.2.4 and VIII.2.3 in the bounding lines. Again, if n is even,
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by Lemmas VIII.2.6 and VIII.2.7. Thus we can state that bc(v0) = 0 < bc(v′n) < bc(v′1) < bc(v(n−1)′) <

bc(v′2) < bc(v(n−2)′) < · · · < bc(v
( n

2 )
′). Thus if bc(v′k) = bc(v′l), then k = l since the vertices are completely

ordered by betweenness centrality.
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The last step uses Lemma VIII.2.9. Thus we have bc(vk′) < bc(vd n
2 e
′) < bc(vd n

2 e) for all k.

We have shown that betweenness centrality is injective when considering only the top or bottom vertices

separately. Only a few cases of distinct values have been shown for inter-row consideration. Initially we

though of attempting to order every vertex like the top and bottom rows had been. Problems arose in much

higher cases of n when suspected orderings would change, seemingly randomly.
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V. Future Research

Though I have tried hard to complete as much as I could, there is always more that could be done. This section

is a list of possible avenues for research or fiddling around.

Problem V.0.6. Let T be a tree. Determine Eglob(T), Ew
glob(T), and ERatio(T). One might have to begin by restricting

to specific trees.

Problem V.0.7. Find global efficiency for some families of directed graphs: tournaments, directed cycles, etc.

Problem V.0.8. Find the asymptotic nature of Eglob(Pm
n ) for various values of m

n . Or other values of m such as
√

n.

Problem V.0.9. The minimum value for the global efficiency of Pn × Pm does not occur exactly at a square grid. Why is

this the case and what n−m ratio produces the minimum value? Also, what is the asymptotic value of this worst grid as

n→ ∞?

Problem V.0.10. Consider the efficiency of a graph PER EDGE. This would be useful as usually roads have a cost

attributed to them. What size/graph maximizes this value?

Problem V.0.11. Determine the maximum value of Eloc(G)− CC(G) over all graphs G. I suspect that the difference

has to be less than or equal to 1
2 .

Problem V.0.12. Determine the betweenness centrality for Cn star graphs. Trouble in defining the graph begins to

appear as the order of appending arms matters: less automorphisms.

Problem V.0.13. Complete the proof of unique betweenness centrality for Un: hooked ladder graphs. Or find other

families of graphs with this property.

Problem V.0.14. One could find the average difference for the graphs discussed in this thesis by going through the same

processes and taking the reciprocal of each vertex-to-vertex efficiency term.
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VI. Conclusion

VI.1 Efficiency

In this thesis, we are concerned with several measures of connectivity of graphs: global efficiency, local

efficiency, clustering coefficient and betweenness centrality.

We determined the global efficiency for path power graphs Pm
n , cycle power graphs Cm

n , complete multipartite

graphs Km,n, star and subdivided star graphs, and the Cartesian Products Kn × Pt
m, Kn × Ct

m, Km × Kn, and

Pm × Pn. As a consequence, we also determined new results involving the Harary index for these families of

graphs.

Just as Latora and Marchiori explored the global efficiency of the Boston Subway (MBTA)[8], we investigated

the global efficiency of the Metropolitan Atlanta Rapid Transportation Authority (MARTA) Subway network.

Motivated by the design of MARTA (see Figure II.9.1), we investigated the global efficiency of subdivided stars.

We showed that networks of this type have a high level of efficiency. We applied these ideas to an analysis of

the MARTA Subway system and show that their network is 82% as efficient as a network where there is a

direct line connecting each pair of stations.

RCBI scientists conducted functional magnetic resonance imaging (fMRI) scans of 25 volunteers to find blood

oxygen level-dependent (BOLD) correlations of various regions of the brain. We constructed graphs with

edges based on correlation cutoffs and then partitioned the brain using efficiency. The partitions were found

to be consistent with functionality and physical location within the brain. We also used these measurements to

analyze the effects of a season of hard-contact football on University of Rochester athletes. Again, an outside

source conducted BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations

in oxygen levels of various regions of the brain and modeled these as graphs. We were then able to measure

the “efficiency” of each athlete. As was expected, the athletes who received the largest number of high-energy

impacts during the season also experienced the largest drop in brain efficiency. For comparison, we calculated

the measurements of a macaque brain using data from Honey et al[12].

It was stated by Latora and Marchiori [1] that “It can be shown that, when in a graph, most of its local

subgraphs Gi are not sparse, then C [clustering coefficient] is a good approximation of Eloc. In summary, there

are not two different types of analyses to be done for the global and local scales, just one with a very precise

62



Efficiency and Betweenness Centrality of Graphs and some Applications

physical meaning: the efficiency in transporting information”. However we provided an in-depth analysis of

this statement, identifying graphs where the clustering coefficient and local efficiency are in fact non-negligibly

different. We also identified certain graph families where the two quantities are the same. In this thesis, we

compared and contrasted the two quantities, local efficiency and clustering coefficient. We included results

of these local measurements for complete multipartite graphs Kn,m, cycle power graphs Cm
n , and Cartesian

products Km × Kn and Kn × Cm.

VI.2 Betweenness Centrality

In this thesis, we examined betweenness centrality for vertices in Cm
n . By the symmetry of Cm

n , every vertex

will have the same betweenness centrality. We also include results for subdivided star graphs and C3 star

graphs. We also describe the betweenness centrality for vertices in ladder graphs, P2 × Pn, and appended

ladder graphs Un: a P2 × Pn with a pendant vertex attached to an “end”. We conjectured that the infinite

family of appended graphs has unique betweenness centrality. We were able to construct a partial proof but

were forced to leave the completion as future research.
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VIII. Appendix

VIII.1 Efficiency

VIII.1.1 Sum Simplifications

Lemma VIII.1.1. Let n, m ∈N and pick d =
⌈ n

m
⌉
. Then

n

∑
i=1

1⌈
i
m

⌉ = m(Hd − 1) +
n
d

. (VIII.1.1)

Proof. Let n, m ∈N and pick d =
⌈ n

m
⌉

and r ≡ −n mod m such that m > r ≥ 0. We can write r as −n+
⌈ n

m
⌉

m,

or r = dm− n.

Consider the sum ∑n
i=1

1
d i

m e
. The first m terms of the sum, i = 1, . . . , m, will have a value of 1

1 . The second m

terms will have a value of 1
2 and so on up to terms of 1

d . Thus the total is almost the same as mHd. We did

however over count the number of terms of 1
d . The number of terms of 1

d should be ≡ n mod m. Thus we

need to subtract r
d = m− n

d .

Lemma VIII.1.2. Let n, m ∈N and pick d =
⌈ n

m
⌉
. Then

n

∑
i=1

i⌈
i
m

⌉ =
1
2

[
dm2 −m(m− 1)Hd −m +

n(n + 1)
d

]
. (VIII.1.2)

Proof. Let n, m ∈N and pick d =
⌈ n

m
⌉

and r ≡ −n mod m such that m > r ≥ 0. We can write r as −n+
⌈ n

m
⌉

m,

or r = dm− n. This proof is similar in thought to the proof of Lemma VIII.1.1.

Consider the sum ∑n
i=1

1
d i

m e
. The first m terms of the sum will have a denominator of 1 and the numerators

will be 1, . . . , m. The second m terms will have a denominator of 2 and the numerators will be m + 1, . . . , 2m.

In general the ith group, 1 ≤ i ≤ d, of m terms will have denominator i and numerators m(i− 1) + 1, . . . , mi.

Thus the total numerator for the ith group is

(m(i− 1) + 1) + (m(i− 1) + 2) + . . . + (mi− 1) + (mi) =
mi

∑
k=1

k−
m(i−1)

∑
k=1

k

=
mi(mi + 1)

2
− m(i− 1)(m(i− 1) + 1)

2

=
m2i2 + mi−m2i2 + m2i−mi + m2i−m2 + m

2

= m2i− m(m− 1)
2

.

Our sum now is almost equal to

d

∑
i=1

m2i− m(m−1)
2

i
= dm2 − m(m− 1)

2
Hd.
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However, again we over counted the final terms with denominator d. Thus we need to subtract off the last r

terms:

1
d

md

∑
k=md−r+1

k =
1
d

[
md

∑
k=1

k−
md−r

∑
k=1

k

]

=
md(md + 1)− (md− r)(md− r + 1)

2d

=
m2d2 + md + mdr− r2 + r−m2d2 + mdr−md

2d

= r
(

m− r− 1
2d

)
= (dm− n)

(
m− dm− n− 1

2d

)
= dm2 − dm2 −mn−m

2
− nm +

dmn− n2 − n
2d

=
dm2

2
+

m
2
− n(n + 1)

2d
.

Subtracting this yields the final formula.

Because of the number of times the following combination of Lemmas VIII.1.1 and VIII.1.2 is used, we should

write it as its own separate corollary.

Corollary VIII.1.3. Let n, m ∈N and pick d =
⌈

n−1
m

⌉
. Then

n−1

∑
i=1

n− i⌈
i
m

⌉ = m
[(

n +
m− 1

2

)
Hd − n− dm

2
+

1
2

]
+

n(n− 1)
2d

. (VIII.1.3)

Lemma VIII.1.4. Let f : N×N→ R with the property that f (i, j) = f (j, i) for all i, j ∈N. Let l ∈N. Then

l

∑
i=1

l

∑
j=1

f (i, j) = 2
l

∑
i=2

i−1

∑
j=1

f (i, j) +
l

∑
i=1

f (i, i) = 2
l−1

∑
i=1

l

∑
j=i+1

f (i, j) +
l

∑
i=1

f (i, i). (VIII.1.4)

Proof. The left hand sum can be thought of as a bunch of ordered pairs (i, j). Since f (i, j) = f (j, i) we are able

to count only those pairs which have i > j (middle sums) or j < i (right hand sums) and then double them.

We also must then add in the sum for i = j.

VIII.1.2 Faster Efficiency Formulae

We begin by simplifying the formula for global efficiency of a path power in Theorem II.3.1.

66



Efficiency and Betweenness Centrality of Graphs and some Applications

Corollary VIII.1.5. Consider a path power graph Pm
n . Pick d =

⌈
n−1

m

⌉
. Then

Eglob(Pm
n ) =

m [(2n + m− 1) Hd − 2n− dm + 1]
n(n− 1)

+
1
d

. (VIII.1.5)

Proof. This formula follows immediately from Corollary VIII.1.3.

Just as for the path power, we can somewhat simplify the expressions in Theorem II.4.5.

Corollary VIII.1.6. Consider a cycle power graph Cm
n . We have n = 2k or n = 2k + 1. Pick d =

⌈
k
m

⌉
. Then

Eglob(Cm
n ) =

 2m
2k−1 (2Hd − 1) + 1

d if n = 2k,
m
k (2Hd − 1) + 1

d if n = 2k + 1.
(VIII.1.6)

Proof. A consequence of using Lemma VIII.1.1.

Corollary VIII.1.7. Consider a star graph Sd,l . If d = 2k + 1,

Ew
glob (Sd,l) =

2
l (dl + 1)

(l + 1)Hl − l + 2
k

∑
θ=1

 Hl√
2
(
1− cos

( 2π
d θ
)) + l

∑
i=2

i−1

∑
j=1

2√
i2 + j2 − 2ij cos

( 2π
d θ
)
 .

(VIII.1.7)

If d = 2k,

Ew
glob (Sd,l) =

2
l (dl + 1)

[
(2l + 1)H2l − (l + 1)Hl − l

+ 2
k−1

∑
θ=1

 Hl√
2
(
1− cos

( 2π
d θ
)) + l

∑
i=2

i−1

∑
j=1

2√
i2 + j2 − 2ij cos

( 2π
d θ
)
]. (VIII.1.8)

Proof. The triple sum of Theorem II.7.4 can be slightly reduced by noting that the denominator is symmetric

with respect to i and j. Then we can use Lemma VIII.1.4. We can also use the symmetry of cos and break

the formula into even (an angle of π is counted) and odd (an angle of π is not counted) cases. In reducing,

Corollary II.7.8 proved to be useful.

Corollary VIII.1.8. Consider a complete graph crossed with a path power, Kr × Pm
n . Pick d =

⌈
n−1

m

⌉
. Then

Eglob(Kr × Pm
n ) =

2
n(nr− 1)

[
m
([

r
(

n +
3m− 1

2

)
−m

]
Hd − r

[
2n + 2m +

dm
2
− 1
]
+ n + 2m− 1

2

)

+
n(n− 1)

2d
+ (r− 1)

n2 − n + 4nm + 4m2 − 2m
2(d + 1)

]
+

r− 1
nr− 1

.
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Proof. We can simplify the expression in Theorem II.8.2.

Eglob(Kr × Pm
n ) =

2
n(nr− 1)

n−1

∑
i=1

(n− i)

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+
r− 1

nr− 1

=
2

n(nr− 1)

n−1

∑
i=1

n− i⌈
i
m

⌉ + (r− 1)
n−1

∑
i=1

n− i⌈
i
m

⌉
+ 1

+
r− 1

nr− 1

=
2

n(nr− 1)

n−1

∑
i=1

n− i⌈
i
m

⌉ + (r− 1)
n+m−1

∑
i=m+1

n− (i−m)⌈
i
m

⌉
+

r− 1
nr− 1

=
2

n(nr− 1)

n−1

∑
i=1

n− i⌈
i
m

⌉ + (r− 1)
n+m−1

∑
i=1

n + m− i⌈
i
m

⌉ − (r− 1)
m

∑
i=1

n + m− i⌈
i
m

⌉
+

r− 1
nr− 1

.

Pick d =
⌈

n−1
m

⌉
. Then

⌈
n+m−1

m

⌉
= d + 1. Then implementing Corollary VIII.1.3 twice and noting the final sum

always has denominator 1,

Eglob(Kr × Pm
n ) =

2
n(nr− 1)

n−1

∑
i=1

n− i⌈
i
m

⌉ + (r− 1)
n+m−1

∑
i=1

n + m− i⌈
i
m

⌉ − (r− 1)
m

∑
i=1

(n + m− i)

+
r− 1

nr− 1

=
2

n(nr− 1)

[
m
[(

n +
m− 1

2

)
Hd − n− dm

2
+

1
2

]
+

n(n− 1)
2d

+ (r− 1)
(

m
[(

n +
3m− 1

2

)
Hd+1 − n− (d + 3)m

2
+

1
2

]
+

(n + m)(n + m− 1)
2(d + 1)

)
− (r− 1)

[
(n + m)m− m(m + 1)

2

] ]
+

r− 1
nr− 1

=
2

n(nr− 1)

[
m
(

n +
m− 1

2

)
Hd −mn− dm2

2
+

m
2
+

n(n− 1)
2d

− (r− 1)
[

nm +
m(m− 1)

2

]
+ (r− 1)

(
m
[

n +
m− 1

2

]
Hd + m2Hd +

m
d + 1

[
n +

3m− 1
2

]
− nm

− dm2

2
− 3m2

2
+

m
2
+

n2 + 2nm + m2 − n−m
2(d + 1)

)]
+

r− 1
nr− 1

=
2

n(nr− 1)

[
rm
(

n +
m− 1

2

)
Hd − (2r− 1)mn− r

dm2

2
+

m
2
+

n(n− 1)
2d

+ (r− 1)
[
m− 2m2

]
+ (r− 1)

(
m2Hd +

n2 − n + 4nm + 4m2 − 2m
2(d + 1)

)]
+

r− 1
nr− 1

=
2

n(nr− 1)

[
m
([

r
(

n +
3m− 1

2

)
−m

]
Hd − r

[
2n + 2m +

dm
2
− 1
]
+ n + 2m− 1

2

)

+
n(n− 1)

2d
+ (r− 1)

n2 − n + 4nm + 4m2 − 2m
2(d + 1)

]
+

r− 1
nr− 1

.
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Corollary VIII.1.9. Consider a complete graph crossed with a cycle power, Kr × Cm
n . If n = 2k + 1 then let d =

⌈
k
m

⌉
and

Eglob(Kr × Cm
n ) =

1
r(2k + 1)− 1

[
2rm(Hd − 2) + r− 1 + 2m + 2

k
d
+ 2

rm + k
d + 1

]
.

If n = 2k then let d =
⌈

k
m

⌉
and

Eglob(Kr × Cm
n ) =

1
2rk− 1

[
2rm(Hd − 2) + r− 1 + 2m +

2k− 1
d

+
r(2m− 1) + 2k + 1

d + 1

]
.

Proof. Begin with Theorem II.8.3. Using Lemma VIII.1.1, if n = 2k + 1 then let d =
⌈

k
m

⌉
and thus

Eglob(Kr × Cm
n ) =

1
r(2k + 1)− 1

2
k

∑
i=1

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+ r− 1


=

1
r(2k + 1)− 1

[
2
(

m(Hd − 1) +
k
d
+ (r− 1)m(Hd+1 − 1) +

k + m
d + 1

− (r− 1)m
)
+ r− 1

]
=

1
r(2k + 1)− 1

[
2rm (Hd − 2) + r + 2m− 1 + 2

k
d
+ 2

rm + k
d + 1

]
.

And if n = 2k then let d =
⌈

k
m

⌉
and therefore

Eglob(Kr × Cm
n ) =

1
2rk− 1

2
k

∑
i=1

 1⌈
i
m

⌉ +
r− 1⌈
i
m

⌉
+ 1

+ r− 1−

 1⌈
k
m

⌉ +
r− 1⌈
k
m

⌉
+ 1


=

1
2rk− 1

[
2rm(Hd − 2) + r + 2m− 1 + 2

k
d
+ 2

rm + k
d + 1

− 1
d
− r− 1

d + 1

]
=

1
2rk− 1

[
2rm(Hd − 2) + r + 2m− 1 +

2k− 1
d

+
r(2m− 1) + 2k + 1

d + 1

]

Using the formulae for faster computation that we just discovered, we repeat the list of Harary indices in

Corollary II.8.8 with updated values.

Corollary VIII.1.10. Let H(G) be the Harary index of a graph G. Then:

1. H (Pm
n ) = m

2 [(2n + m− 1) Hd − 2n− dm + 1] + n(n−1)
2d ,

2. n = 2k: H (Cm
n ) = 2mk(2Hd − 1) + k(2k−1)

d ,

3. n = 2k + 1: H (Cm
n ) = m(2k + 1)(2Hd − 1) + k(2k−1)

d ,

4. H (Ks1,...,st) =
n(n−1)

2 − 1
4
[
∑t

i=1 s2
i − n

]
,
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5. H(Kn,m) = nm + 1
4
[
n2 − n + m2 −m

]
,

6. H(Kr;n) =
nr(2nr−r−1)

4 ,

7. H(Sd,l) = d
(
(d− 1)

(
l + 1

2

)
H2l − (d− 2)(l + 1)Hl − l

)
,

8.

H (Kr × Pm
n ) = r

[
m
([

r
(

n +
3m− 1

2

)
−m

]
Hd − r

[
2n + 2m +

dm
2
− 1
]
+ n + 2m− 1

2

)

+
n(n− 1)

2d
+ (r− 1)

n2 − n + 4nm + 4m2 − 2m
2(d + 1)

]
+

nr(r− 1)
2

,

9. n = 2k + 1: H (Kr × Cm
n ) = r(2k + 1)

[
rm(Hd − 2) + r−1

2 + m + k
d + rm+k

d+1

]
,

10. n = 2k: H (Kr × Cm
n ) = rk

[
2rm(Hd − 2) + r + 2m− 1 + 2k−1

d + r(2m−1)+2k+1
d+1

]
,

11. H (Km × Kn) =
1
4 nm(nm + m + n− 3),

12. H (Pm × Pn) = (Hn + Hm − 2)nm + 2 ∑n−1
i=1 ∑m−1

j=1
(n−i)(m−j)

i+j .
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VIII.1.3 MARTA

NS SS D MC BH LC LNX BHOG CH DRA Arts MT NA CVC PCH 5PT GS K I EW EL DCT AVD KNS IND GNT WE OAK LW EP COL APT DOME VC ASH WL HAM BNK
0 1.1 2.0 3.0 7.7 9.9 11.8 13.3 16.0 18.0 13.1 13.1 13.7 14.1 14.6 15.1 15.5 16.2 17.6 18.4 20.1 21.4 22.2 24.1 25.4 15.5 17.0 18.5 19.6 21.5 23.3 24.1 15.5 15.9 16.6 18.3 19.8 18.0 NS

0 0.9 1.9 6.6 8.8 10.7 12.2 14.9 16.9 12.0 12.0 12.6 13.0 13.5 14.0 14.4 15.1 16.5 17.3 19.0 20.3 21.1 23.0 24.3 14.4 15.9 17.4 18.5 20.4 22.2 23.0 14.4 14.8 15.5 17.2 18.7 16.9 SS
0 1.0 5.7 7.9 9.8 11.3 14.0 16.0 11.1 11.1 11.7 12.1 12.6 13.1 13.5 14.2 15.6 16.4 18.1 19.4 20.2 22.1 23.4 13.5 15.0 16.5 17.6 19.5 21.3 22.1 13.5 13.9 14.6 16.3 17.8 16.0 D

0 4.7 6.9 8.8 10.3 13.0 15.0 10.1 10.1 10.7 11.1 11.6 12.1 12.5 13.2 14.6 15.4 17.1 18.4 19.2 21.1 22.4 12.5 14.0 15.5 16.6 18.5 20.3 21.1 12.5 12.9 13.6 15.3 16.8 15.0 MC
  0 2.2 4.1 5.6 8.3 10.3 5.4 5.4 6.0 6.4 6.9 7.4 7.8 8.5 9.9 10.7 12.4 13.7 14.5 16.4 17.7 7.8 9.3 10.8 11.9 13.8 15.6 16.4 7.8 8.2 8.9 10.6 12.1 10.3 BH

0 1.9 3.4 6.1 8.1 3.2 3.7 4.3 4.7 5.2 5.7 6.1 6.8 8.2 9.0 10.7 12.0 12.8 14.7 16.0 6.1 7.6 9.1 10.2 12.1 13.9 14.7 6.1 6.5 7.2 8.9 10.4 8.6 LC
0 1.5 4.2 6.2 5.1 5.1 5.7 6.1 6.6 7.1 7.5 8.2 9.6 10.4 12.1 13.4 14.2 16.1 17.4 7.5 9.0 10.5 11.6 13.5 15.3 16.1 7.5 7.9 8.6 10.3 11.8 10.0 LNX

0 2.7 4.7 6.6 6.6 7.2 7.6 8.1 8.6 9.0 9.7 11.1 11.9 13.6 14.9 15.7 17.6 18.9 9.0 10.5 12.0 13.1 15.0 16.8 17.6 9.0 9.4 10.1 11.8 13.3 11.5 BHOG
0 2.0 9.3 9.3 9.9 10.3 10.8 11.3 11.7 12.4 13.8 14.6 16.3 17.6 18.4 20.3 21.6 11.7 13.2 14.7 15.8 17.7 19.5 20.3 11.7 12.1 12.8 14.5 16.0 14.2 CH

0 11.3 11.3 11.9 12.3 12.8 13.3 13.7 14.4 15.8 16.6 18.3 19.6 20.4 22.3 23.6 13.7 15.2 16.7 17.8 19.7 21.5 22.3 13.7 14.1 14.8 16.5 18.0 16.2 DRA
0 0.5 1.1 1.5 2.0 2.5 2.9 3.6 5.0 5.8 7.5 8.8 9.6 11.5 12.8 2.9 4.4 5.9 7.0 8.9 10.7 11.5 2.9 3.3 4.0 5.7 7.2 5.4 ARTS

0 0.6 1.0 1.5 2.0 2.4 3.1 4.5 5.3 7.0 8.3 9.1 11.0 12.3 2.4 3.9 5.4 6.5 8.4 10.2 11.0 2.4 2.8 3.5 5.2 6.7 4.9 MT
0 0.6 0.9 1.4 1.8 2.5 3.9 4.7 6.4 7.7 8.5 10.4 11.7 1.8 3.3 4.8 5.9 7.8 9.6 10.4 1.8 2.2 2.9 4.6 6.1 4.3 NA

0 0.5 1.0 1.4 2.1 3.5 4.3 6.0 7.3 8.1 10.0 11.3 1.4 2.9 4.4 5.5 7.4 9.2 10.0 1.4 1.8 2.5 4.2 5.7 3.9 CVC
0 0.5 0.9 1.6 3.0 3.8 5.5 6.8 7.6 9.5 10.8 0.9 2.4 3.9 5.0 6.9 8.7 9.5 0.9 1.3 2.0 3.7 5.2 3.4 PCH

0 0.4 1.1 2.5 3.3 5.0 6.3 7.1 9.0 10.3 0.4 1.9 3.4 4.5 6.4 8.2 9.0 0.4 0.8 1.5 3.2 4.7 2.9 5PT
0 0.7 2.1 2.9 4.6 5.9 6.7 8.6 9.9 0.8 2.3 3.8 4.9 6.8 8.6 9.4 0.8 1.2 1.9 3.6 5.1 3.3 GS

0 1.4 2.2 3.9 5.2 6.0 7.9 9.2 1.5 3.0 4.5 5.6 7.5 9.3 10.1 1.5 1.9 2.6 4.3 5.8 4.0 K 
0 0.8 2.5 3.8 4.6 6.5 7.8 2.9 4.4 5.9 7.0 8.9 10.7 11.5 2.9 3.3 4.0 5.7 7.2 5.4 I 

0 1.7 3.0 3.8 5.7 7.0 3.7 5.2 6.7 7.8 9.7 11.5 12.3 3.7 4.1 4.8 6.5 8.0 6.2 EW 
0 1.3 2.1 4.0 5.3 5.4 6.9 8.4 9.5 11.4 13.2 14.0 5.4 5.8 6.5 8.2 9.7 7.9 EL

0 0.8 2.7 4.0 6.7 8.2 9.7 10.8 12.7 14.5 15.3 6.7 7.1 7.8 9.5 11.0 9.2 DCT
0 1.9 3.2 7.5 9.0 10.5 11.6 13.5 15.3 16.1 7.5 7.9 8.6 10.3 11.8 10.0 AVD

0 1.3 9.4 10.9 12.4 13.5 15.4 17.2 18.0 9.4 9.8 10.5 12.2 13.7 11.9 KNS
0 10.7 12.2 13.7 14.8 16.7 18.5 19.3 10.7 11.1 11.8 13.5 15.0 13.2 IC

0 1.5 3.0 4.1 6.0 7.8 8.6 0.8 1.2 1.9 3.6 5.1 3.3 GNT
0 1.5 2.6 4.5 6.3 7.1 2.3 2.7 3.4 5.1 6.6 4.8 WE 

0 1.1 3.0 4.8 5.6 3.8 4.2 4.9 6.6 8.1 6.3 OAK
0 1.9 3.7 4.5 4.9 5.3 6.0 7.7 9.2 7.4 LW

0 1.8 2.6 6.8 7.2 7.9 9.6 11.1 9.3 EP
0 0.8 8.6 9.0 9.7 11.4 12.9 11.1 COL

0 9.4 9.8 10.5 12.2 13.7 11.9 APT
0 0.4 1.1 2.8 4.3 2.5 DOME

0 0.7 2.4 3.9 2.1 VC
0 1.7 3.2 1.4 ASH

0 1.5 3.1 WL
0 4.6 HAM

0 BNK

Table VIII.1.1: A table of the rail distances between all 38 stations of the MARTA network[21]. Distances are in miles. See

Table VIII.1.3 for acronym key.
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NS SS D MC BH LC LNX BHOG CH DRA Arts MT NA CVC PCH 5PT GS K I EW EL DCT AVD KNS IND GNT WE OAK LW EP COL APT DOME VC ASH WL HAM BNK
0 1.04 1.86 2.31 6.76 8.42 6.93 5.98 4.97 5.31 10.90 11.44 12.07 12.45 12.91 13.34 13.58 13.55 12.98 12.69 12.70 12.30 12.52 13.39 14.21 13.72 14.79 16.19 17.38 19.14 20.97 21.68 13.24 13.30 13.24 14.21 14.61 12.64 NS

0 0.83 1.30 5.84 7.50 5.97 4.92 3.94 4.49 10.02 10.59 11.21 11.57 12.04 12.45 12.66 12.62 12.00 11.71 11.67 11.25 11.49 12.36 13.19 12.84 13.94 15.25 16.54 18.31 20.13 20.84 12.36 12.43 12.66 13.46 13.92 11.86 SS
    0 0.68 5.18 6.84 5.26 4.19 3.20 3.95 9.39 9.95 10.57 10.94 11.37 11.79 12.00 11.93 11.27 10.94 10.88 10.44 10.66 11.54 12.37 12.19 13.33 14.75 15.93 17.70 19.52 20.34 11.73 11.82 12.08 12.94 13.46 11.33 D

0 4.55 6.20 4.67 3.67 3.15 4.16 8.73 9.30 9.91 10.28 10.73 11.15 11.36 11.31 10.69 10.39 10.39 10.01 10.28 11.21 12.11 11.55 12.66 14.09 15.27 17.04 18.86 19.57 11.08 11.16 11.41 12.26 12.77 10.65 MC
0 1.67 0.58 1.86 4.48 6.26 4.20 4.76 5.37 5.75 6.20 6.63 6.82 6.79 6.30 6.13 6.52 6.49 7.05 8.44 9.63 7.01 8.15 9.59 10.76 12.53 14.35 15.05 6.55 6.63 6.94 7.96 8.64 6.31 BH

0 1.63 3.09 5.71 7.45 2.57 3.12 3.73 4.10 4.55 4.97 5.16 5.12 4.67 4.57 5.18 5.37 6.09 7.61 8.88 5.36 6.55 8.00 9.16 10.94 12.74 13.43 4.92 5.05 5.41 6.58 7.41 4.93 LC
0 1.51 4.18 5.94 4.20 4.75 5.35 5.71 6.16 6.57 6.75 6.67 6.06 5.83 6.10 6.00 6.53 7.89 9.06 6.98 8.17 9.62 10.78 12.56 14.37 15.05 6.54 6.66 7.03 8.14 8.89 6.48 LNX

0 2.67 4.44 7.52 6.16 6.73 7.34 7.58 7.95 8.08 7.95 7.16 6.80 6.75 6.41 6.75 7.87 8.91 8.36 9.60 11.05 12.20 13.47 15.76 16.44 7.95 8.09 8.50 9.66 10.42 8.00 BHOG
0 1.78 8.24 8.72 9.30 9.62 10.04 10.46 10.55 10.36 9.40 8.90 8.47 7.84 7.89 8.55 9.30 10.88 12.15 13.61 14.73 16.50 18.27 18.92 10.50 10.67 11.11 12.32 13.09 10.66 CH

0 9.95 10.41 10.88 11.21 11.59 12.08 12.14 11.91 10.86 10.31 9.68 8.91 8.78 9.17 9.68 12.50 13.79 15.25 16.36 18.11 19.86 20.49 12.14 12.34 12.81 14.06 14.84 12.40 DRA
0 0.59 1.24 1.61 2.09 2.45 2.71 2.81 2.97 3.30 4.60 5.30 6.19 7.85 9.19 2.82 3.97 5.42 6.58 8.36 10.17 10.86 2.35 2.46 2.87 4.23 5.23 2.67 ARTS

  0 0.62 1.01 1.47 1.87 2.12 2.24 2.54 2.98 4.39 5.19 6.10 7.76 9.10 2.25 3.44 4.90 6.05 7.83 9.63 10.31 1.80 1.95 2.45 3.93 5.01 2.49 MT
    0 0.32 0.84 1.25 1.50 1.66 2.23 2.81 4.32 5.22 6.13 7.78 9.11 1.63 2.87 4.33 5.46 7.24 9.03 9.71 1.22 1.43 2.04 3.64 4.78 2.37 NA

  0 0.52 0.93 1.13 1.33 2.10 2.75 4.31 5.25 6.18 7.80 9.11 1.28 2.56 4.01 5.13 6.90 8.69 9.36 0.90 1.18 1.86 3.52 4.70 2.40 CVC
  0 0.45 0.67 0.96 2.01 2.73 4.32 5.32 6.25 7.83 9.14 0.86 2.19 3.63 4.72 6.49 8.26 8.93 0.63 0.99 1.74 3.43 4.64 2.51 PCH

0 0.45 0.96 2.25 3.01 4.60 5.63 6.55 8.11 9.40 0.41 1.75 3.18 4.26 6.03 7.81 8.48 0.39 0.76 1.50 3.17 4.39 2.46 5PT
0 0.53 1.94 2.72 4.31 5.36 6.27 7.00 9.08 0.59 1.86 3.21 4.32 5.96 7.72 8.35 0.84 1.18 1.40 3.52 4.76 2.91 GS

0 1.44 2.23 3.79 4.86 5.76 7.29 8.56 1.14 2.34 3.61 4.56 6.26 7.97 8.58 1.34 1.70 2.43 4.07 5.30 3.40 K 
0 0.78 2.35 3.42 4.32 5.87 7.15 2.56 3.79 5.02 5.91 7.53 9.17 9.73 2.60 2.98 3.74 5.42 6.64 4.49 I 

0 1.59 2.63 3.54 5.11 6.40 3.32 4.57 5.79 6.65 8.24 9.85 10.40 3.34 3.71 4.48 6.16 7.38 5.15 EW 
0 2.32 3.22 4.77 6.07 4.90 6.11 7.25 8.05 9.57 11.08 11.57 4.95 5.32 6.07 7.76 8.98 6.69 EL

0 0.93 2.56 3.91 5.94 7.20 8.36 9.11 10.67 12.18 12.66 5.93 6.31 7.06 8.74 9.94 7.58 DCT
0 1.66 2.99 6.85 8.09 9.23 9.98 11.44 12.90 13.35 6.86 7.23 7.99 9.67 10.87 8.52 AVD

0 1.34 8.40 9.59 10.66 11.32 12.69 14.04 14.42 8.44 8.82 4.58 11.26 12.47 10.15 KNS
0 9.67 10.83 11.85 12.45 13.75 15.01 15.36 9.74 10.11 10.88 12.56 13.78 11.48 IC

0 1.35 2.77 3.86 5.62 7.41 8.08 0.53 0.73 1.37 2.95 4.19 2.48 GNT
0 1.45 2.60 4.38 6.20 6.90 1.66 1.52 1.43 2.27 3.42 2.65 WE 

0 1.18 2.94 4.77 5.48 3.11 2.96 2.71 2.75 3.55 3.76 OAK
0 1.78 3.60 4.31 4.26 4.12 3.90 3.76 4.34 4.92 LW

0 1.83 2.56 6.02 5.90 5.66 5.29 5.60 6.61 EP
0 0.77 7.83 7.72 7.48 7.07 7.25 8.43 COL

0 8.50 8.40 8.19 7.80 8.00 9.16 APT
0 0.38 1.14 2.83 4.05 2.08 DOME

0 0.75 2.45 3.66 1.75 VC
0 1.68 2.91 1.25 ASH

0 1.24 1.66 WL
0 2.57 HAM

0 BNK

Table VIII.1.2: A table of the Euclidean (Earth) distances between all 38 stations of the MARTA network[22]. Distances are

in miles. See Table VIII.1.3 for acronym key. There is error in these measurements but our analysis was not

concerned with this.
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Table VIII.1.3: Acronym key for MARTA stations of distance matrices.

Acronym MARTA Station Acronym MARTA Station

NS North Springs SS Sandy Springs

D Dunwoody MC Medical Center

BH Buckhead LC Lindbergh Center

LNX Lenox BHOG Brookhaven/Oglethorpe Univ.

CH Chamblee DRA Doraville

Arts Arts Center MT Midtown

NA North Avenue CVC Civic Center

PCH Peachtree Center 5PT Five Points

GS Georgia State K King Memorial

I Inman Park/Reynoldstown EW Edgewood/Candler Park

EL East Lake DCT Decatur

AVD Avondale KNS Kensington

IND Indian Creek GNT Garnett

WE West End OAK Oakland City

LW Lakewood/Ft. McPherson EP East Point

COL College Park APT Airport

DOME Dome/GWCC/Philips Arena/CNN Center VC Vine City

ASH Ashby WL West Lake

HAM H. E. Holmes BNK Bankhead
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VIII.1.4 Brain Network

Table VIII.1.4: Acronym key for the Regions of the Brain in Global Efficiency Analysis. See Figure II.9.3.

Acronym Part of Brain

LMF Left Medial Fusiform Gyrus

RMF Right Medial Fusiform Gyrus

LMTG Left Middle Temporal Gyrus

LMT Left Motion Selective Cortex

LIP Left Inferior Parietal Cortex

IPS Intra Parietal Sulcus

RFEF Right Frontal Eye Fields

MPC Medial Prefrontal Cortex

LPC Left Posterior Cingulate

LLP Left Lateral Parietal

RS Right Somato

LS Left Somato

LM Left Motor

RM Right Motor

LMLA Left Medial Leg Area
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Figure VIII.1.1: This is the adjacency matrix of a graph corresponding to regions of a macaque neocortex. Black cells

indicate a connection from row to column. Note that the matrix is not symmetric; the graph is directed.

The corresponding graph has global efficiency 0.571. Used with permission from Honey et al.[12]
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VIII.2 Betweenness Centrality

VIII.2.1 Unique Betweenness Centrality Lemmas and Table

Table VIII.2.1: Demonstration of unique betweenness centrality for small Un graphs.

n 3 4 5 6 7 8

bc(v0) 0 0 0 0 0 0

bc(v1)
35
3

97
6

617
30

249
10

2043
70

4681
140

bc(v2) 11 59
3

169
6

1097
30

449
10

3723
70

bc(v3)
7
3

31
2

424
15

245
6

11189
210

1313
20

bc(v4) − 8
3

601
30

554
15

2251
42

2454
35

bc(v5) − − 89
30

368
15

9571
210

5573
84

bc(v6) − − − 97
30

3044
105

11377
210

bc(v7) − − − − 243
70

4677
140

bc(v8) − − − − − 129
35

bc(v′1)
10
3

13
3

77
15

29
5

223
35

481
70

bc(v′2) 8 85
6

298
15

379
15

1066
35

4969
140

bc(v′3)
5
3

40
3

241
10

103
3

4642
105

1884
35

bc(v′4) − 13
6

55
3

1007
30

1688
35

26249
420

bc(v′5) − − 77
30

347
15

8977
210

1853
30

bc(v′6) − − − 29
10

139
5

7243
140

bc(v′7) − − − − 223
70

1133
35

bc(v′8) − − − − − 481
140

We use some bounding properties of the Harmonic numbers in a few places of this thesis:

Theorem VIII.2.1. For n ∈N,
1

2(n + 1)
< Hn − ln(n)− γ <

1
2n

,

where γ = 0.5772 . . . is the Euler-Mascheroni constant[23].
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Lemma VIII.2.2. For n ≥ 9 and 1 ≤ l ≤ n
2 − 1,

n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i

+
1

n− l
− 1

l
− 1 > 0. (VIII.2.1)

Proof. This relies initially on Theorem VIII.2.1.

First we shall remove the cases where l = 1 and l = n
2 − 1.

n

∑
i=1

1
i
−

n

∑
i=n−1+1

n− 1
i

+
1

n− 1
− 1

1
− 1 = Hn −

n− 1
n

+
1

n− 1
− 2

> ln(n) + γ +
1

2(n + 1)
+

1
n
+

1
n− 1

− 3.

Let h(n) = ln(n) + γ + 1
2(n+1) +

1
n + 1

n−1 − 3. When n = 9, 10, 11, h(n) ≈ 0.06, 0.13, 0.20 respectively. And

when n ≥ 12, h(n) ≥ ln(12) + γ− 3 > 0. Thus the case of l = 1 has been shown.

For n = 2k and l = n
2 − 1,

n

∑
i= n

2−1

n
2 − 1

i
−

n

∑
i= n

2 +2

n
2 + 1

i
+

2
n− 4

− 2
n− 2

− 1 =
(n

2
− 1
) n

∑
i= n

2

1
i
+ 1−

(n
2
+ 1
) n

∑
i= n

2

1
i
+ 1

+
n
2 + 1
n/2

+
2

n− 4
− 2

n− 2
− 1

= 2− 2
n

∑
i= n

2

1
i
+

2
n
+

2
n− 4

− 2
n− 2

> 2− 2(1) +
2
n
+

2
n− 4

− 2
n− 2

> 0.

The last step made use of Theorem VIII.2.6.

Now it is important to remember throughout this proof that n ≥ 9 and 2 ≤ l ≤ n−3
2 . In the case n = 2k,

l = n
2 − 1 is taken care of above. If n = 2k + 1, these are the effective bounds anyway. Now considering the
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other cases,

n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i

+
1

n− l
− 1

l
− 1 = l

(
Hn − Hl +

1
l

)
− (n− l + 1)(Hn − Hn−l) +

1
n− l

− 1
l
− 1

= 1 + 2lHn + (n− l + 1)Hn−l − [lHl + (n + 1)Hn] +
1

n− l
− 1

l
− 1

> 2l(ln(n) + γ +
1

2(n + 1)
) + (n− l + 1)

(
ln(n− l) + γ +

1
2(n− l + 1)

)
− l
(

ln(l) + γ +
1
2l

)
− (n + 1)(ln(n) + γ +

1
2n

) +
1

n− l
− 1

l

= (2l − (n + 1)) ln(n) +
l

n + 1
+ (n− l + 1) ln(n− l)

− l ln(l)− n + 1
2n

+
1

n− l
− 1

l

=
l

n + 1
− 1

2
− 1

2n
+ (2l − (n + 1)) ln(n) + (n− l + 1) ln(n− l)

− l ln(l) +
1

n− l
− 1

l
.

Thus we have created a continuous expression of a lower bound for our discrete expression. Consider a function

of l and n: f . Let f (l, n) = l
n+1 −

1
2 −

1
2n + (2l − (n + 1)) ln(n) + (n− l + 1) ln(n− l)− l ln(l) + 1

n−l −
1
l . For

notation, let ∂
∂l f = f ′ and ∂

∂n f = f ∗. Then

f ′′(l, n) =
1

n− l
+

1
(n− l)2 −

1
l
+

2
(n− l)3 −

2
l3

=
2 + n + n2 − l − 2nl + l2 − (n− l)3(l2 + 2)

l3(n− l)3

<
2 + n + n2 − 1− 2n + n2

4 −
( n

2
)3

(12 + 2)
l3(n− l)3

=
1− n +

( 5
4 −

3
8 n
)

n2

l3(n− l)3

< 0.

Therefore f ′′(l, n) < 0: concave down, over the domain of l. And so we can say that for a given n, for all

x, y, z ∈ [1, n
2 − 1], if x ≤ y ≤ z, then f (x, n) ≤ f (y, n) or f (z, n) ≤ f (y, n).

Note that

f (2, n) =
2

n + 1
− 1

2
− 1

2n
+ (4− (n + 1)) ln(n) + (n− 2 + 1) ln(n− 2)− 2 ln(2) +

1
n− 2

− 1
2

=
2

n + 1
− 1

2n
+

1
n− 2

− (n− 3) ln(n) + (n− 1) ln(n− 2)− 1− 2 ln(2).
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And taking the derivative with respect to n this time we can see

f ∗(2, n) = − 2
(n + 1)2 +

1
2n2 −

1
(n− 2)2 − ln(n)− n− 3

n
+ ln(n− 2) +

n− 1
n− 2

=
3
n
− 2

(n + 1)2 +
1

2n2 −
1

(n− 2)2 + ln
(

1− 2
n

)
+

n− 1
n− 2

− 1

>
1

2n2 +
3
n
− 2

(n + 1)2 −
1

(n− 2)2 + 1− 1
1− 2

n
+

n− 1
n− 2

− 1

=
1

2n2 +
3
n
− 2

(n + 1)2 −
1

(n− 2)2 −
n

n− 2
+

n− 1
n− 2

=
4n5 − 17n4 − 2n3 + 7n2 + 28n + 4

2(n− 2)2n2(n + 1)2

>
n4(2n− 17) + 2n3(n2 − 1) + 7n2 + 28n + 4

2(n− 2)2n2(n + 1)2

> 0.

since n ≥ 9. The logarithmic bound came from F. Topsøe, [24]. Thus f (2, n) is a monotonically increasing

function of n. And f (2, 9) = 2
10 −

1
18 + 1

7 − (6) ln(9) + (8) ln(7)− 1− 2 ln(2) ≈ 0.285 > 0. Thus f (2, n) > 0 for

all n ≥ 9. The goal is to show that f
( n−3

2 , n
)
> 0 as well.

Now if we remember that f (l, n) as a function of l is concave down over the domain, we now know that if

2 ≤ l ≤ n−3
2 , f (l, n) > f (2, n) or f (l, n) > f

( n−3
2 , n

)
. Either way f (l, n) > 0. Combine this with the boundary

cases for l and we have proven the lemma.

Lemma VIII.2.3. For n ≥ 9 and 1 ≤ l ≤ n
2 − 1.

n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l + 1
i

> 0. (VIII.2.2)
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Proof. This uses Lemmas VIII.2.2,VIII.2.6 and VIII.2.7

n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l + 1
i

=
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i
−

n

∑
i=n−l+1

1
i

≥
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i
−

n

∑
i=n−( n

2−1)+1

1
i

=
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i
−

n

∑
i= n

2 +2

1
i

>
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i
−

n

∑
i=d n

2 e

1
i

>
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i
− 1

>
n

∑
i=l

l
i
−

n

∑
i=n−l+1

n− l
i

+
1

n− l
− 1

l
− 1

> 0.

A better bound of 0.898 was found for this expression using the same method as the proof of Lemma VIII.2.2.

It was not included as it was not needed.

Lemma VIII.2.4. For n ≥ 9 and 1 ≤ l ≤ n
2 − 1.

2n− 4l −
n

∑
i=l

l − 1
i

+
n

∑
i=n−l

n− l − 1
i

+
1

n− l
− 1

l
> 0. (VIII.2.3)

Proof. By the same method as Lemma VIII.2.2 except for the opposite bound.

Lemma VIII.2.5. For n ≥ 9 and 1 ≤ l ≤ n
2 − 1.

2n− 4l + 2 +
n

∑
i=n−l+1

n− l
i
−

n

∑
i=l

l − 1
i

> 0. (VIII.2.4)

Proof.

2n− 4l + 2 +
n

∑
i=n−l+1

n− l
i
−

n

∑
i=l

l − 1
i

= 2n− 4l + 2− 1 +
n

∑
i=n−l

n− l − 1
i

+
n

∑
i=n−l

1
i
−

n

∑
i=l

l − 1
i

> 2n− 4l +
n

∑
i=n−l

n− l − 1
i

−
n

∑
i=l

l − 1
i

+
1

n− l
− 1

l

> 0.
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Lemma VIII.2.6. For n ≥ 1,
n

∑
i=d n

2 e

1
i
< ln(2) +

3n + 15
2n(n + 3)

. (VIII.2.5)

Proof. This uses Theorem VIII.2.1.
n

∑
i=d n

2 e

1
i
= Hn − Hd n

2 e +
1⌈ n
2
⌉

< ln(n) + γ +
1

2n
− ln

(⌈n
2

⌉)
− γ− 1

2(
⌈ n

2
⌉
+ 1)

+
1⌈ n
2
⌉

≤ ln(n) +
1

2n
− ln

(n
2

)
− 1

2(
⌈ n

2
⌉
+ 1)

+
1⌈ n
2
⌉

≤ ln(2) +
1

2n
− 1

2( n+1
2 + 1)

+
1
n
2

= ln(2) +
3n + 15

2n(n + 3)
.

Lemma VIII.2.7. For n ≥ 1,

ln(2) +
3n + 15

2n(n + 3)
< 1 +

2
n

.

Proof.

d
dn

[
ln(2) +

3n + 15
2n(n + 3)

]
=

3(2n(n + 3))− (4n + 6)(3n + 15)
4n2(n + 3)2

=
6n(n + 3)− 6(n + 3)(n + 5)

4n2(n + 3)2

=
3n− 3(n + 5)

2n2(n + 3)

=
−15

2n2(n + 3)

< 0.

Thus ln(2) + 3n+15
2n(n+3) is monotonically decreasing for n ≥ −3. We can then use this to say that

n Lemma VIII.2.6 Bound 1 + 2
n

1 2.943 3

2 1.743 2

3 1.360 1.666

4 1.175 1.5

5 1.068 1.4

6 0.999 1.333

≥ 7 < 1 > 1
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And therefore ln(2) + 3n+15
2n(n+3) < 1 + 2

n , for all n ∈N.

Corollary VIII.2.8. For n ≥ 7,
n

∑
i=d n

2 e

1
i
< 1.

Lemma VIII.2.9. For n ≥ 9

2n− 2
⌈n

2

⌉
+ 2− 2

n

∑
i=d n

2 e

⌈ n
2
⌉

i
+

n

∑
i=d n

2 e

1
i
> 0. (VIII.2.6)

Proof. The second line uses Lemma VIII.2.6 and the third line uses Lemma VIII.2.7 and that n ≥ 9.

2n− 2
⌈n

2

⌉
+ 2− 2

n

∑
i=d n

2 e

⌈ n
2
⌉

i
+

n

∑
i=d n

2 e

1
i
≥ 2n− 2

n + 1
2

+ 2−
(

2
⌈n

2

⌉
− 1
) n

∑
i=d n

2 e

1
i

> n + 1−
(

2
n + 1

2
− 1
)(

ln(2) +
3n + 15

2n(n + 3)

)
> n + 1− n(1)

> 0.
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