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Efficiency and Betweenness Centrality of Graphs and some Applications

Abstract
The distance dg (i, ) between any two vertices i and j in a graph G is the minimum number of edges in a path between i
and j. If there is no path connecting i and j, then dg (i, j) = oo. In 2001, Latora and Marchiori introduced the measure
of efficiency between vertices in a graph. The efficiency between two vertices i and j is defined to be €; j= m for
all i # j. The global efficiency of a graph is the average efficiency over all i # j. The power of a graph G™ is defined
to be V(G™) = V(G) and E(G™) = {(u,v)|dg(u,v) < m}. In this paper we determine the global efficiency for path
power graphs PJl', cycle power graphs C!, complete multipartite graphs Ky, », star and subdivided star graphs, and the
Cartesian products Ky, X Pi,, Ky x CL, Ky x Ky, and Py, X Py.

The concept of global efficiency has been applied to optimization of transportation systems and brain connectivity. We
show that star-like networks have a high level of efficiency. We apply these ideas to an analysis of the Metropolitan
Atlanta Rapid Transit Authority (MARTA) Subway system, and show this network is 82% as efficient as a network
where there is a direct line between every pair of stations. From BOLD fMRI scans we are able to partition the brain
with consistency in terms of functionality and physical location. We also find that football players who suffer the largest

number of high-energy impacts experience the largest drop in efficiency over a season.

Latora and Marchiori also presented two local properties. The local efficiency Ej,. = %

Y Egiob (G;) is the average of
ieV(G)
the global efficiencies over the subgraphs G;, the subgraph induced by the neighbors of i. The clustering coefficient of a
graph G is defined to be CC(G) = 1 Y. C; where C; = |E(G;)| /(|V(ZG")‘) is a degree of completeness of G;. In this paper,

1
we compare and contrast the two quantities, local efficiency and clustering coefficient.

Betweenness centrality is a measure of the importance of a vertex to the optimal paths in a graph. Betweenness centrality
of a vertex is defined as bc(v) = Y, , U*;—fyz}) where oy is the number of unique paths of shortest length between vertices

x and y. oxy(v) is the number of optimal paths that include the vertex v. In this paper, we examined betweenness

centrality for vertices in C;!. We also include results for subdivided star graphs and Cs star graphs.

A graph is said to have unique betweenness centrality if bc(v;) = be(v;) implies i = j: the betweenness centrality
function is injective over the vertices of G. We describe the betweenness centrality for vertices in ladder graphs, Py X Py.
An appended ladder graph U, is Py X Py, with a pendant vertex attached to an “end”. We conjecture that the infinite

family of appended graphs has unique betweenness centrality.
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Efficiency and Betweenness Centrality of Graphs and some Applications

1. INTRODUCTION

I.1 Efficiency

In this thesis, we are concerned with several measures of connectivity of graphs: global efficiency, local

efficiency, clustering coefficient and betweenness centrality.

In 2001, Latora and Marchiori introduced the measure of efficiency between vertices in a graph [1]. The

(unweighted) efficiency between two vertices v; and v; is defined to be € (v;,v;) = m for all i # j. The
i0]

global efficiency of a graph Eg 0 (G) = ﬁ Y.i+j € (vi,vj) which is simply the average of the efficiencies over

all pairs of the distinct n vertices. Then note that 0 < E,;(G) < 1 with equality only when G has no edges

and when G is a complete graph respectively.

The concept of reciprocal distance has been studied previously. In 1993, Plavsi¢, Nikoli¢, Trinajsti¢, and Mihali¢

introduced the Harary index of a simple graph [2]. For a simple graph G with vertices v1, vy, ..., v, the Harary

index is denoted H(G) and equals  }, W We note the close relationship between global efficiency and
1<i<j<n v
the Harary index, Eg10p(G) = ﬁH (G). There also have been other studies involving the Harary index and

reciprocal distances [3} 4, 5] 6] [7].

In this thesis we determine the global efficiency for path power graphs P}, cycle power graphs C}}, complete
multipartite graphs Ky, star and subdivided star graphs, and the Cartesian Products K, x P, K, x Ct,
K x Ky, and Py, X P,. As a consequence, we determine new results involving the Harary index for these

families of graphs.

Recently other papers have studied the concept of efficiency, [8, 9] 10} 11} [12]. A comprehensive analysis of all

of these measures is given by Sporns [13]].

The concept of global efficiency has been applied to optimization of transportation systems. In 2002, Latora
and Marchiori explored the global efficiency of the Boston Subway (MBTA) and found that the MBTA network
is 63% as efficient as a network where there is a direct line between any two stations[8]. Motivated by the
design of the Metropolitan Atlanta Rapid Transportation Authority (MARTA) Subway network (see Figure
[1.9.1), we investigate the global efficiency of subdivided stars. We show that networks of this type have a high
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level of efficiency. We apply these ideas to an analysis of the MARTA Subway system and show that their

network is 82% as efficient as a network where there is a direct line connecting each pair of stations.

Latora and Marchiori also presented two local properties[8]. The local efficiency Ej,, = % 2 Egtop (Gj) is the
average of the global efficiencies over the subgraphs G;, the subgraph induced by the nleei%hbors of i. The
clustering coefficient of a graph G is defined to be CC(G) = 1 Y. C; where C; = |E(G;)| /(|V(2Gi)\) is a degree of
completeness of G;. In this thesis, we compare and contrast thle two quantities, local efficiency and clustering
coefficient. We include results of these local measurements for complete multipartite graphs K, ;, cycle power

graphs C}, and Cartesian products K;; X K, and K;; x Cy,.

RCBI scientists conducted functional MRI (fMRI) scans of 25 volunteers to find blood oxygen level-dependent
(BOLD) correlations of various regions of the brain. We constructed graphs with edges based on correlation
cutoffs and then partitioned the brain using efficiency. The partitions were found to be consistent with
functionality and physical location within the brain. We also used these measurements to analyze the effects
of a season of hard-contact football on University of Rochester athletes. Again, an outside source conducted
BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations in oxygen levels
of various regions of the brain and modeled these as graphs. We were then able to measure the “efficiency” of
each athlete. As was expected, the athletes who received the largest number of high-energy impacts during the
season also experienced the largest drop in brain efficiency. For comparison, we calculated the measurements

of a macaque brain using data (see Figure [VIIL.1.1) from Honey et al.[12]

It was stated by Latora and Marchiori [1] that “It can be shown that, when in a graph, most of its local
subgraphs G; are not sparse, then C [clustering coefficient] is a good approximation of Ej,.. In summary, there
are not two different types of analyses to be done for the global and local scales, just one with a very precise
physical meaning: the efficiency in transporting information”. Due to the vague wording of “not sparse” we
provide an in-depth analysis of this statement, identifying graphs where the clustering coefficient and local
efficiency are in fact non-negligibly different. We also identify certain graph families where the two quantities

are the same.

I.2 Betweenness Centrality

Betweenness centrality is a measure of the importance of a vertex to the optimal paths in a graph. Betweenness

U}y(v)
Oy

centrality of a vertex is defined as bc(v) = Y, where 0y is the number of unique paths of shortest
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length between vertices x and y. oy, (v) is the number of optimal paths that include the vertex v. In this thesis,
we examined betweenness centrality for vertices in C;}'. By the symmetry of C}}, every vertex will have the

same betweenness centrality. We also include results for subdivided star graphs and C3 star graphs.

A graph is said to have unique betweenness centrality if bc(v;) = be(v;) implies i = j: the betweenness
centrality function is injective over the vertices of G. We describe the betweenness centrality for vertices in
ladder graphs, P, x P,. An appended ladder graph U, is P, X P, with a pendant vertex attached to an “end”.
We conjecture that the infinite family of appended graphs has unique betweenness centrality. We were able to

construct a partial proof but were forced to leave the completion as future research.

1.3 Definitions

Definition 1.3.1. A graph, G, is a collection of a set of vertices, V(G), and a set of edges, E(G). The graph can
be denoted G(V, E). An edge is an unordered pair of vertices. The distance d (i, j) between any two vertices
i and j in a graph G is the minimum number of edges in a path between i and j. The subscript notation is
dropped if it is apparent with respect to which graph the distance is. If there is no path connecting i and j, G

is disconnected, then d(i, j) = co.

Definition 1.3.2. The power of a graph, G, denoted G", is defined to be V(G™) = V(G) and E(G™) =
{(u,v)|dc(u,v) < m}. With this definition G = G.

Definition 1.3.3. Given a graph G and a vertex v € V(G), the neighborhood subgraph induced by v is the subgraph

containing all vertices adjacent to v and all edges, if any, that may exist between the adjacent vertices.

Definition 1.3.4. The eccentricity of a vertex v in a graph G is defined as €(v) = max{d(v,u)|u € V(G)}. The
diameter of a graph, G, is defined as diam(G) = max{e(v)|v € V(G)}. Diameter is the largest distance between

two vertices in the graph.

Remark I.3.5. Note that € and € are separate symbols and € (x,y) denotes the efficiency between vertices x

and y and € alone means contained in, as in “an element is contained in a set”.

Remark 1.3.6. When we mention a “step” in paths of graphs, we mean an intermediate vertex of the path.

1

Definition 1.3.7. Due to the nature of the properties we examine, the Harmonic number H, = Y[ ; 7 is very
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useful for simplifications. Note that for ease of use, we define Hy = 0.

Definition 1.3.8. An automorphism of a graph G(V,E) is a bijective (one-to-one and onto) function on the
vertices of G, ¢ : V — V, that preserves edges. i.e. ¢ is a permutation of V that preserves edges. Preserving
edges means that (vq,v2) € E(G) if and only if (¢(v1),¢(v2)) € E(G(¢(V),E)). The set of automorphisms is

denoted Aut(G) and forms a group under composition[14].

Definition 1.3.9. Let H be a group of permutations of a set S. For each s € S, let orby(s) = {¢(s)|¢ € H}.

orbp(s) is called the orbit of s under H. The orbits partition S into equivalence classes[15].

Definition 1.3.10. Let G(V,E) be a graph. G is said to be vertex-transitive if for all u,v € V, we have that
u €orb 4,4(c)(v) (or equivalently v €orb 4,4 (1)). i.e. there exists some ¢ € Aut(G) such that ¢(v) = u (or
there exists some ¢ € Aut(G) such that ¢(u) = v)[16].
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II. GLOBAL EFFICIENCY

II.1 Definition and Example

Definition II.1.1. Consider a graph G of order n. The global efficiency is defined as

1
Eglob(G) = m Z € (v;, Uj), (I1.1.1)
i#]
where € (v;,v}) = m The global efficiency is the average efficiency of all pairs of vertices.

Example I1.1.2. Let H = P; with vertices A, B,C, D, E, F and G. See Figure|ll.1.1

Figure I1.1.1: P; for efficiency example.

The distances between each pair of vertices is given in the matrix shown below.

LH)|A|B|C|D|E|F|G
A 0/1[23 4|56
B 1](0/1]2(3|4]|5
e 2 (1]0]1 (234
D [3|2]1]0]1|2]3
E 4032|1012
F 50432 (1]0]1
G 6543210

Definition IL.1.3. The average distance, D(H), between vertices in a graph H shall be denoted:
1
DH) = ———~ i, 0j). I.1.2
(H) n(n—1) izjd(vl v]) ( )

The inverse of D(H) is a first approximation of the global efficiency.

In this case, D(P;) = 4 [6(1) +5(2) +4(3) +3(4) +2(5) + 1(6)] = §. The first approximation of the global
efficiency is then % =0.
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The efficiency matrix is then as follows.

E(H |A|B|C|D|E|F|G
A Jo [ [p[3]E[3s
B 1joj1 314l
et LS lrjoft | H3:
D Tlijrjo 1|33
E i1 ijrjof1|d
P [iaaae]n
c [[alale[3lnfo

We note that the matrix is symmetric about the main diagonal. We can also sum the elements in the upper
triangle of the matrix: 6(1) + 5(%) +4 (%) +3 (%) +2 (%) +1 (%) Finally we divide by the number of

7-1 .
non-diagonal elements. Therefore quob(P7) = iﬁ -2 ( > 711) = % ~ 0.531. The first approximation in this
‘ i=1

case is off by nearly 30%: not very good.

I.2 Path Graphs: P,

Let P, denote the path on vertices vy, vy, ..., v, with edges v1v3, V203, ..., v;,—10,. The distance d(v;, vj) between

distinct vertices v; and v; is |i — j|. Hence the efficiency between v; and v; is € (v;,v;) = d(z}v.) = ﬁ
17 j
Theorem II.2.1.
H,, 1
EW“BJ:2<nZ1_n>' (I.2.1)

Proof. Consider the paths of various lengths in P,,. Without loss of generality we assume the “starting” vertex
is located to the left of the ending vertex. Note that this will only account for half of the efficiencies. If we
want to move i vertices to the right there are only n — 7 starting vertices. Hence for the efficiency matrix of

P,, there are n — i pairs of vertices whose efficiency is % Then by doubling our efficiencies since the matrix

2

is symmetric, and then normalizing, we have Eglob(Pn) =Y

[

n—1 .

('21 ”_l> Simple algebraic manipulation
i=

yields the theorem.

As expected, the global efficiency of a path will vary inversely to the number of vertices. We state this formally

in our next theorem.
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Theorem I1.2.2.

;}E&Eglob(PH) =0

Proof. Using Lemma |VIIL.2.1

. . anl 1
0 < lim Egjop(Py) = lim [2 (n -1 "ﬂ

— 2%im 271 o jim L
n—ooyy — 1 n—con

< 21imw —21im1
n—oo n—1 n—oconl

ot ™D o Y ofim L
n—oo N — n—ooy — 1 n—ocoy

:O—|—211rr11—21im1

n—ocol n—oo

=0.

I1.3 Path Power Graphs: P}

We next investigate the efficiency of powers of a path P,. Su, Xiong, and Gutman obtained the Harary index of
Py, from which Ege,(P)') can easily be obtained. However, we include a computation of Eg 5 (Py'), as it is

useful for obtaining the global efficiency for the families K;; x P}’ and K;, x C};".

01 (%) 03 U4 (%5 Ug

Figure I1.3.1: A representation of the path power: P2.

For the global efficiency of path power graphs: Eg;(Py'), each element of the efficiency matrix is given

by

(I13.1)
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where i is the row and j is the column of the entry. This value corresponds to the efficiency between vertices i

and j. The distance between the vertices in P, is simply |i — j|. In P}’, each step can be up to m vertices away.

Hence the distance between vertices equals [ﬂ—‘ . Taking the inverse gives the formula in Eq. (I1.3.1). Hence

m

the matrix is:

01 02 03 Tt Up=2 On—1 Un
oo 01 EIREINEL
N N A e
v3 1 1 0 L L !

On2 | TEA] TEA] TR o1
1 1 1
On1 | -k 1 1 1 0 1
1| TR TEI] T
1 1 1
v 1 1 1 1 1 0
v TR TR

Consider the first vertex of P}'. There are (n — 1) other vertices to compute the efficiency with. The sum of

efficiencies from the first vertex is:

g
Mm
»
Il
—.
INng
—
~
S‘\
.
1
I
—
3~
—_—

Summing the terms for all vertices gives:

n—1
L
i=1

! +n§ ! +~'+2 LI ! =Hn4_i.
Ea=1r =R ==

Finally, we divide this term to get the result of Theorem We note as the matrix is symmetric, we can

1
i=1

3|

sum over the upper half of the matrix (ordered pairs) and then multiply our result by 2. The last step is
normalization.

Theorem II1.3.1.

Eglob<P;T) = 7’1(1’1 — 1) ; "i‘l : (I1.3.2)

An alternate formula for faster computation can be found in Corollary [VIIL.1.5
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IL4 Cycle Power Graphs: C}}

Definition I1.4.1. A Cycle Graph C,, has vertices v1,vs, ..., v, and edges (v;, v]-) if |i — j| = 1 as well as the edge

(v1,0n).
Definition I1.4.2. A Cycle Power Graph CI' has vertices v1,v,...,v, and edge (v;, vj) if and only if
1 < min (i —j|,n — |i — j|) < m. This condition is equivalent to 1 < | 4| — |[|i —j| — §|] < m.

Consider the Cycle C3:
01

0
0s 2

03
07

(S U4
U5

Figure I1.4.1: A representation of the power cycle: Cg’ .

The efficiency matrix is given as:

U1 Uy U3 U4 Us U Uy Ug
070 1 1 1 3 1 1 1
|1l 0 1 1 1 %+ 1 1
01 1 0 1 1 1 % 1
|1 1 1 0 1 1 1 %
53 1 1 1 0 1 1 1
%1 ¥ 1 1 1 0 1 1
o1 1 3 1 1 1 0 1
g1 1 1 3 1 1 1 0

As previously stated for P2, the global efficiency is found by summing all entries of the efficiency matrix and
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scaling it appropriately. Hence,

52 13
3 = —— T e—
Eqiop (C3) = g G TR

Note that rows are identical; they are merely shifted representations of each other. This is the case due to the

symmetry of the cycle. The following is the generic efficiency matrix for C3) .

'Ul '02 .« o ’Ul o e [

q
N
+
—_

U]' cee o Up1 Uy

1 1 1 1
n|0 1 .. =4 e L .. 1 1

—_
—_
I~
N
—_
—_
—_
o

-
R
PR—
|
=
[~
2N
S
A
JR—
—
=
~|+
=N
L
™~

vn | 1

Also, note that each row (by removing the zero: efficiency to itself) is symmetric to itself so the sum of the row
is the same as twice the first half. For even cases, the center element is counted twice, thus it must be removed

once. So considering the first portion of the last row, the i element is given as:

=i

€ (vi/ Uﬂ) ==

So the sum of the row is almost given by:

=

1
Itk
]

As indicated above, the center element is incorrectly doubled; however, the above sum does not take this into

account. As a result, ﬁ must be subtracted off. The total efficiency is then the row sum multiplied by the
2

2.
i=1

number of rows: n. Therefore the global efficiency of any power cycle with an even number of vertices: 7, is
given by:

Lemma I1.4.3. For even n,

my __ 1 " 2 1 B 1
Eg106(Cp') = i —1) 2; [ﬂ o
1 LA 1
R 2; [ﬂ A (IL4.1)

Consider the Cycle C2:

10
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01

09
U2

(%] U3

Ug U5

Figure I1.4.2: A representation of the power cycle: C3.

The efficiency matrix is given as:

U1 Uy U3 Vg4 U5 Vg Uy Vg Vg
nwnlo 1 1 3 2 1 3 11
»n/1 o 1 1 3 1 1 1 1
/1 1 0 1 1 § 1 1 1
|3y 11 0 1 1 3 1 3
|3 3 11 0 1 1 % 1
w3 3 3 11 0 1 1 1}
vl 23 3 11 0 11
w1 &+ 3 1 31 1 1 0 1
w1l 1 5 3 L 1 1 1 o0

From the efficiency matrix,

. (Cz):9(1+1+%+%+%+%+1+1) _ 96
glob 9 9(9_1)

3
= - =0.75.
-8 4 075

O
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The generic efficiency matrix for C};', where n is odd, is then given by:

v |vp |- v; . ’U% Unt1 +1 U] Up—1 | Un
v 01 |- {%1 .. le,l,)/ﬂ (("*},)/ZW o [”*j],’q 1 1
vy | 1|1 |- [21 o P"’:ll)/ﬂ ((”’é)/ﬂ o ["*};’j} .. 1 0

1
€ (vj,v1) = [%“
So the sum of the row is given by: 1 1
nil n-1
2[5 =

Note the sums are identical; the index was merely shifted. And so the global efficiency for C;, where n is odd,
is found by multiplying this sum by the number of rows and normalizing:

Lemma I1.4.4. For odd n,

2 < 1
Egi0b(Cit') T (I1.4.2)
(n ) i—1 [i—‘
We can combine Lemmas and into Theorem
Theorem I1.4.5.
1 k2 1 .
T |Lie1 TiT — TE ] ifn =2k,
Eqiop(Cy') = o Tl (I1.4.3)

Fr [h ifn=2k+1.
An alternate formula for faster computation can be found in Corollary [VIIL.1.6

II.5 Complete Multipartite Graphs

Definition I1.5.1. A complete multipartite graph G = K, 5,,..s; is composed of t classes each with s; vertices,
1 <i < t, where each vertex in class i is adjacent to every vertex in class j # i, and is not adjacent to any vertex

in class i.

We note that the distance between any pair of vertices in different classes is 1 and the distance between any

pair of vertices in the same class is 2. This leads to our next theorem.
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Theorem IL5.2. Let G = Ky, 5,, .5, t > 1, and let n = Y s;. Then

t
Egiop(G) =1~ 2(711—1) li i;s% - 1] . (IL5.1)

Proof. Let v be a vertex in a part with s; vertices. Then the shortest path from v to any vertex in the same part
is 2 and v is adjacent to all vertices in other parts. Hence for every vertex, v, in part i, the sum of efficiencies

including v is {@ + (n— si)}. Summing over all vertices in a given part and then over all parts gives

t t
)DEEDY {(5’2;1) + (n— si)} =Y s [@ + (n— si)] Normalizing and some algebraic manipulation gives
i=1vepart i i=1

the desired result. |
Remark IL5.3. If we increase the value of #, the efficiency doesn’t necessarily tend toward 1. It all depends

on the distribution of vertices within the classes. If one class is filled with nearly all the vertices, then the

efficiency will tend towards % Other ratios will tend toward different values in between % and 1.

For the small case of t =2, 51 = n, s, = m: complete bipartite graphs, we have great simplifications.
Theorem I1.5.4.

Eglob(Kn,m) =1- (I1.5.2)

1 n2+m2_1
2n+m—1) | n+m '

Another simplification due to symmetry is for K;, . ,: a complete multipartite graph with n classes, each with r
vertices. We will denote the complete multipartite graph K;,. , as K.;. An example is shown below in Figure

[L5]]

13
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vl w42

Y44 Y43

Figure IL5.1: A complete multipartite graph. K44

Theorem II.5.5.
r—1

Egiop(Kiin) =1~ 2r—1)°

(1L5.3)

Remark IL5.6. As the number of classes increases, the complete multipartite graph begins to approach the

appearance of a complete graph. Thus we have a global efficiency approaching 1.

nlgrolo Eglob (Krn) = 1.

Increasing the number of vertices in each class tends to decrease the global efficiency since this increases the
number of optimal paths of length 2 (the worst paths). However it also increases the number of optimal paths
of length 1 depending on the number of classes. Thus we arrive at a lower bound for the global efficiency
based on the number of classes. )

rh_)% Eq¢iop (Krn) =1— o

I1.6 Efficiency under the Euclidean Metric

When analyzing the efficiency of a transportation, it is natural to compare global efficiency under the graph

metric Eglob(G) versus a weighted metric E?I o»(G). We will refer to the former as unweighted efficiency and

14
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the latter as maximum weighted efficiency. In calculating the maximum weighted efficiency, we consider every
pair of vertices to be adjacent with the weight of an edge as the Euclidean distance between the corresponding
vertices. Note then that the weighted efficiency is highly dependent on the orientation of the graph as well as
the plane in which it is embedded.

Figure I1.6.1: Demonstration of the effect of considering Euclidean distance.

For the unweighted efficiency we have € (x,y) = 1, € (x,z) = 1, and € (y,z) = }. Hence Egiop(G) =
35 -2(14+ 1+ 1) = 2 ~ 0.83. However for the maximum weighted efficiency we have € (x,y) =1, € (x,z) = 1,

and € (y,z) = % Hence E;’lob(G) =25 2(14+1+ %) = 1v2+ %~ 090.

In Figure we compare the two types of efficiency of the graph G, drawn with a prescribed orientation.
By examining the ratio of the unweighted efficiency to the maximum weighted efficiency, we can compare how
efficient a graph network is compared to a Euclidean network. The ratio Eryio(G) = Eg10p(G)/ E;,”l ow(G) = 3/(
%\@ + %) ~ 0.92. Hence for the particular graph in Figure|l1.6.1} the graph is 92% as efficient as the completed

graph under the Euclidean metric.

The case where G = P, is straightforward since the shortest distance between any points is a straight line. This
assumes that the path is oriented in the “usual” fashion of a line. Hence

Theorem IL6.1. Egp(Pn) = Ezj’loh(Pn), and Eratio(Py) = 1.

IL7 Uniformly Subdivided Star Graphs: S;;

In this subsection we consider the efficiency of star-like networks. The graph Kj, is called a star and is a
complete bipartite graph with a single vertex in one part and r vertices in the other. We next recall the graph

operation known as an edge subdivision.

15
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Definition II.7.1. An edge subdivision is an operation that is applied to an edge uv where a new vertex w is

inserted, and the edge uv is replaced by edges uw and wv. A subdivision H of a graph G is a graph that can be

obtained by performing a sequence of edge subdivisions.

Hence we can define a subdivided star.

Definition I1.7.2. Let S;; be the subdivision of the star K;, where each edge is replaced by a path with [

vertices. The vertex of degree d will be referred to as the center.
The subdivided star S43 is shown in Figure[[.7.1

y V12

v Uy U3 % v s Vg

b U2

b Ug

b U10

Figure IL.7.1: An S, 3 graph. See the accompanying efficiency matrix below: Table

11.7.1
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Table I1.7.1: Efficiency matrix for S(4, 3).

Up U1 U2 U3 U4 Us Ug Uy Ug U9 U100 V11 U12
% 5o
g i
v i i
v i i
U4 % % %
U5 % % % % % %
v 0 % 1 5 s
o7 0 3 3 :
Ug 0 %

U9 0

10

o1

012 0

We first examine efficiencies between vertices on the same spoke including the center. Note that based on our
labeling, there are three blocks of four identical entries across the top row and each continues in a “downward

diagonal pattern”. The total sum of these diagonals is: @ + A@ + @.

Next we examine efficiencies between vertices on different spokes. There are “patches” of (%) = 6 identical
entries. There is one patch where the entries are equal to %, two patches where the entries equal %, three
patches where the entries equal 1, two patches where the entries equal 1, and one patch where the entries
equal %. This pattern is inherent from the labeling of our vertices. The vertices vy;11, Upitr2, Units, Unira, all have
distance / from the center. We will consider paths between vertices on different spokes. Paths of length 2 must
be between vertices where i = 1. Paths of length 3 must be between vertices where one vertex has 1 = 1 and
another has 1 = 2. Paths of length 4 must be between vertices where both vertices have h = 2, or where one
has i = 1 and the other has /1 = 3. Paths of length 5 must be between vertices where one vertex has = 2 and
another has i = 3. Paths of length 6 must be between vertices where i = 3. For each partition of a path length,
there will be (g) paths: picking the spokes to travel between.

4(3) 43)

The sum over all of the patches is 73 : % + 55+ @ : 1) .1

+ @ - £ 4 =5 - . Using symmetry about the

WIN
HS QG
ainN
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main diagonal, the total sum over all efficiencies is

4(3)  4(2)  4(1) 4(33) 1  4(33) 2  4(3) 3  4(3) 2  4(3) 1\ 967
2(1—’_2—’_3—'—22 23+24+25+26_15'
Dividing by the number of non-diagonal entries in our matrix gives: ﬁ : ? = 29—7 = 0.41325.
This example provides the structure for the proof of our next theorem.
Theorem I1.7.3. We have
2 1
E =— —1)(l+=)Hy—(d-2 1)H —1). 11.7.1
glob(Sa,1) [ +1) ((d ) ( + 2) 2 — (d=2)(I+1)H, ) (IL7.1)

Proof. First we consider the efficiencies between vertices on the same spoke including the center. Each spoke is
isomorphic to P, ;1. By Theorem |I.2.1] the sum of the efficiencies of this spoke is (I 4+ 1)H; — I. Hence the total
sum of the efficiencies over all d spokes is d[(I +1)H; — [].

Next we consider efficiencies between vertices on different spokes. In general the number of paths of length k
in 5;; will equal the number of partitions of k into 2 and b where a,b < I. Each partition k = a + b corresponds
to a path in S;; that travels through the center with a subpath of length a from the starting vertex to the center
and a subpath of length b from the center to the end vertex. These correspond to the patches with entries

equal to %

Each of the patches will contain (g) identical entries since this is the number of ways to choose the starting
and ending spokes. Considering the various partitions of k there will be i patches where all of the entries are
equal to 7 for 1 <i <[ and i patches where all of the entries are equal to 57— +1 cfor1<i<I-1

lld

1)
Tt Z T

The total sum is Z

The sum of the efficiencies for a subdivided star graph

with d spokes, each of length lis then (doubhng for the symmetry of the matrix):

%;Gij:2<d[(l+1)Hll]+;d(d2 D l+1 Z 21)'2z+11—1->,

=1

which can simplify to
24 ((d—l) (z+ ;) Hoy — (d — 2)(1 + 1) H, —z> .

Normalizing with n = dl + 1 completes the proof. |

I.7.1 Weighted Efficiencies

When applying these methods in a real-world situation, we consider edges weighted by the Euclidean distance

between the corresponding vertices (See Figure|ll.7.2). For the weighted version we will consider the distance

18
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between any adjacent vertices to be 1. Furthermore, we consider all spokes to be linear and spaced at equal

angles around the center vertex, vp in the plane. Weighted efficiency can effectively approximate real-world

networks such as a subway system. This is found by dividing the unweighted global efficiency by the maximum

weighted global efficiency.

3v2

012

011

07

03

Figure I1.7.2: An S, 3 graph partially completed.

The following, Table [l1.7.2} is a matrix of the efficiency of a subdivided star graph as if each pair of vertices
were connected with an edge weighted by the Euclidean distance between them, see Figure|l1.7.2l For example,

vg and v11; would be connected by an edge of weight equal to the Euclidean distance between the points,

V22 + 32 = \/13. Here the efficiency € (vs, v11) = \/%73

19
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Table I1.7.2: Euclidean efficiency matrix for S(4, 3).

W= W W= W=

Notice that the blocks of 4 identical terms with diagonals directed downward are identical to those appearing
in the non-weighted case. These are the efficiencies between vertices on the same spoke or the center. For the
pairs of vertices on different spokes, we focus on the squares which represent efficiencies between two vertices,
where one is distance i from the center and the other is distance j from the center. For box, i = 1 and j = 2, the
sum equals 8 - \/lg +4- % = \/ig + % + \/ig. In Figure 5, going from v; to vg requires a turn of an angle of 7. The
terms can be expressed using the law of cosines:
4 n 4 n 4 ‘
\/12+22—2-1-2-Cos(77f) V12+22-2-1-2-cos(m) \/12—|-22—2-1-2-cos(37”)

Theorem I1.7.4.

1 11 d-1 1
Egop (Sat) = 7 |20+ 1)H =21+ ) ) . (IL7.2)
glo l (dl + 1) i=1j=16=1 2 +]2 _ 21] cos (277I9)

Proof. The first step is to consider the orientation of the star graph. We assume that all spokes are straight
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lines in the Euclidean plane. We also assume that every spoke is spaced around the center vertex at equal

angle intervals.

The sum of the efficiencies for vertices on the same spoke including the center is almost the same as in the
proof of the previous theorem, 2d((I + 1)H; — I). We need to double this now as we are not doubling all terms
later. Next we consider the pairs of vertices that are found on different spokes. In general the number of paths
of length k in S;; will equal the number of partitions of k into a and b where a,b < [. Each partition k = a + b
corresponds to a path in S;; that travels through the center with a subpath of length a from the starting
vertex to the center and a subpath of length b from the center to the end vertex. These form entries equal
to m where 0 is the angle between spokes. We focus on the d x d submatrices which represent

efficiencies between two vertices, where one is distance i from the center and the other is distance j from the

center.

d
\/i2+72=2ij-cos( 20)
1 to d —1. We then sum over all 4 x d submatrices and add the diagonal terms to yield the sum of the

I 1 d-1
Euclidean efficiencies for S;;, ¥ € (v;,v;) = 2d((I+1)H, —1)+ ¥ ¥ ¥ d . Normalizing
i# i=1j=16=1 \/*+>~2ijcos(3f6)
with n = dl + 1 gives the result. |

The generic terms in a given d x d submatrix could then be written as where 6 varies from

An alternate formula for faster computation can be found in Corollary [VIIL1.

Instead of normalizing by the maximum number of edges, n(n — 1), we can normalize by the maximum
weighted efficiency. The efficiency ratio, Eg,, for a subdivided star graph S;; is found by dividing the
unweighted global efficiency by the maximum weighted global efficiency.

Theorem II1.7.5.
(d—1) (2l +1)Hy — (d—2)(21 +2)H; — 21

204+ 2)H, — 2+ YLyl yd-l 1
( + ) ! +Zl:12]:129:1 \/i2+j2—2ijcos(27”9)

ERatio (Sa1) = (IL7.3)

Remark IL.7.6. As expected, when d increases, the efficiency ratio decreases. In this case the spokes are getting
closer but travel between spokes still requires traveling to the center vertex. However, an interesting aspect of
this formula is that as [ increases, the efficiency ratio increases. To see why this is true note that a straight line
path has a weighted efficiency ratio of 1. We note that as the lengths of the spokes increases, the shape of a

subdivided star bears a closer resemblance to a path.
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IL.7.2 New Unweighted Global Efficiency and Double Sum Reduction

The method used to find the weighted global efficiency also gives us a different way to calculate the unweighted
global efficiency.
Corollary IL.7.7.

1 11
Eglob(sd,l)*m 2(I+1)H; - 21+1211211+]

Proof. The law of cosines term in Theorem [I.7.4] can be replaced with the graph path distance (i 4 j). Then the

triple sum reduces to the double sum above. |

We can now equate the two formulas to find a reduction for the double sum.

Corollary I1.7.8.

11
(21 +1) Hy — (21 +2)H; = 2 Z . (I1.7.4)

Proof. Equating the two formulas for the unweighted global efficiency of a star graph in Theorem [[I.7.3|and
Corollary [I[L.7.7] gives the following reduction:

2 1 1
@ <(d—1) (l—i—z)Hz,—(d—Z)(l—i—l)Hl—l) RICESY

(d—1) (21 +1) Hy — (d —2)(21 +2)H; — 21 = (2] +2)H; — 21+ZZ
i=1j=1

[
2(1+1)H, — 2l+22

11]1
dl

H
MN

(d—1) (21 +1) Hy — (d —1)(2] +2)H

i

1j=1

z+]

—~ |
—_
‘

(21 +1) Hy — (21 +2)H,

i

+

j

I1.8 Cartesian Products

Definition I1.8.1. The Cartesian Product of two graphs G and H is a graph G x H, with the vertex set
V(G) x V(H), where vertices {(i1,12), (j1,j2)} are adjacent if {i1,j1} € E(G) and iy = jp, or {ip, jo} € E(H)

and i; = jj.
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I1.8.1 K, x D"

In the figure below, we show the graph of the Cartesian product of K4 and P?.

011 12 021 2,2 U3,1 U32 U471 V42

01,4 013 024 02,3 U34 033 U444 04,3

Figure I1.8.1: The Cartesian product of a complete graph and a path power. The efficiency matrix is given in Table|IL.8.1

below.
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Table I1.8.1: The efficiency matrix for Ky x PZ.

011 012 013 014 | 021 U22 023 Up4 (U371 V32 U333 U334 | 041 V42 V43 V44
01,1 0 1 1 1

01,2 0 1 1
01,3 0 1

’01,4 0

02,1
02,2
02,3

024

03,1
03,2
03,3

03,4

041
V42 0 1 1
04,3 0 1

’04,4 0

We next extend to the general case.

Theorem II1.8.2.

n—1
Egiop(Kr x Py') = ﬁ i:Zl(n —i) FW + (IL.8.1)

Proof. Notice that the matrix is very similar to that of a path power. Each i now corresponds to a block. Each
block has r terms on the main diagonal of a block and these correspond to the pairs of vertices in the r adjacent
path powers. All other terms correspond to the distance between vertices in different path powers and then
within the copies of the complete subgraphs. For this, we have r vertices in the initial class to choose from and

r — 1 vertices in the final K;. Since each class is complete, it will only take one additional step to reach the final
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vertex, and so the efficiency is only slightly smaller. There are also ‘triangles” of 1s next to the main diagonal;

these correspond to movements within a single K;. The number of 1’s is then n times the number of edges in
r(r

K, which equals T_l) Averaging the efficiencies over all pairs yields Eq. (II.8.1). |

An alternate formula for faster computation can be found in Corollary [VIIL1.§

.82 K, xC™"

We next investigate the global efficiency of a Cartesian product of a complete graph and a cycle power. The

graph of the Cartesian product of K3 and C? is shown in Figure [I1.8.2

012 02,2

01,1 021
01,3 023

Up,2 031
U6,1 v
Ug,3 033 3.2
052 041
05,3 043
U511 042

Figure I1.8.2: The Cartesian product of a complete graph and a cycle power. Note that there is also a Cg between the v; ;

vertices and another C2 connecting the vj2 vertices. See Table |I1.8.2)for efficiency matrix.
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Table I1.8.2: The efficiency matrix for K3 x C2.

011 012 01,3 | U201 U22 U023 | 031 U332 033|041 U4p 043|051 Us52 053 | U1 Ue2 U3

01,1
01,2
01,3
02,1
022
023
U31
03,2
033
U4,1
U4,
U4,3
05,1
05,2
05,3
U6,1
06,2

06,3

For a Cartesian product between a complete graph K, and a cycle power C}, we must divide the global

efficiency into two cases where 1 is either odd or even.

Theorem II.8.3. If n = 2k + 1 then

Egiop(Kr X Cy') = . +r—1]. (I1.8.2)

ngm
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If n = 2k then
k _ _
Egrop (Kr x Cjt) = 2rk17—1 2; m + (;]il bro1- {:ﬂ + mj—l (11.8.3)

Proof. Each i corresponds to a single line of each block. Also, each i has one entry that falls on the main
diagonal of an r x r block that corresponds to pairs of vertices within a cycle power. All other terms correspond
to pairs of vertices that are in different cycle powers but in different copies of K;. There are also 1’s next to the
main diagonal; these correspond to movements within a single complete graph. The number of 1’s is then

r — 1: the number of vertices that are available for the final position. Averaging the efficiencies over all pairs of

vertices yields Eqgs. (I1.8.2) and (IL.8.3).

n—1
1 v

E K xCl)y=———-nr- |2
glob( r X n) nr(nr—l) nr 1221

1 r—1
+

et
1 &1 r-1
= 71 2 Z _—t
LA ]
For the even case, note that the term corresponding to the efficiency of moving across the diameter is counted

twice, so it must be subtracted to obtain Eq. (I.8.3). |

+r—1

+r—1

An alternate formula for faster computation can be found in Corollary [VIIL.1.9

I1.83 Ky, X Ky

Theorem I1.8.4.

_nm+m+n—3

Egtob(Ku x Kn) = — = T) (I1.8.4)
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Proof. We obtain the global efficiency for K, x Ky, using Egjop, (Ki X Pp~1) and Egjqp <Km X C,Lﬂ >

Eglob(Km X Kn) = Eglob(Km X ngl)

1 [n—1 )
n(nm—1) | ]

= () e
1

(m+1)+(m—1)]

We note that the ceiling functions were dropped since 1 <7 < n — 1 implies 0 < nlfl < ﬁ < 1 which makes

the ceiling terms always equal to 1. We can also use the Cartesian product of a complete graph and a cycle

power graph. If we use the case of an odd cycle power graph, we have:

Egloh (Km X Kﬂ)

n=1
Eglob <Km x Cy® )

[ n-1
1 & 1 -1
= 22 : + m +m—1
nm—11 & [ i W { i —‘_I—l
L = m-1)/2 n-1)/2
[ n-1
1 & (1 m-—1
= 2 — - —1
nm—1 1;(1+1+1>+m ]
1 :an 1
m+
nm—1 1; 2 +
1 :n—l
=1 (m—i—l)—!—m—l}
_nm+m+n—3
 2(mm—1)
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For the Cartesian product of a complete graph and an even cycle, we have:

Eglob(Km X Kn) = Eglob (Km X CE)

1
nm—1

nm—1
1 Lo 1
- 2y T 1 S(m+1
nm—1 l; 2 m 2(m—|— )
1 [n 1
= _2(m+1)+m—1—2(m+1)}
1 [n-1
- 1 1
nm—1{] 2 (m+1) +m }
_nm+m+n—3
2(nm —1)
All three derivations agree. Thus Egj,p, (Kin x Ky ) is given by Eq. (I1.8.4). [ ]

II.8.4 Grid Graphs: P, x Py,

Consider the grid graph Py, x P, which is embedded in the cartesian plane. The vertex in the upper left corner
is labeled v1; and v;; is used to label vertex that is obtained by starting at vertex v1; and travelling i — 1

positions to the right and then j — 1 units downward.

01,1 01,m—191,m
——-’-——
[}
1
U721 __+__
[} [} | [} [}
1 1 " 1 1
it Rl SEET T
| | | | |
| | | | |
Z)n—l,l ---+--- --
1
1
B
Un1 Un,m—1%,m

Figure I1.8.3: A generic grid Ggaph composed of P, x Py,.

Now consider the graph P; x Ps.
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\ 4 ® . 4 s 4
011 1,6
\ 4 . 4 . 4 ®
0 0
3,1 ¢ o o 3,6’

Figure I1.8.4: A Grid Graph composed of P3 x Pg.

The initial block of 9 vertices from vy ; to v33 creates the graph P; x P3. Adding sets of 3 additional vertices,
v14 t0 V34 Up to U1 to U3 We obtain the entire graph of P3 x Ps. This can be seen in Figure The
efficiency matrix in Table [I1.8.3]is divided into subsections of P3 x P, where n < 6.
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Table 11.8.3: The efficiency matrix for P; X Pg.

Our first goal is to sum the efficiencies of P, x P,,. We shall consider the copies of Py, to be ‘vertical” and the
Py, copies to be ‘horizontal’. To sum the efficiencies we begin by considering the n copies of P,. The sum

of efficiencies between a single Py, is simply Y3 ! "%, So our total for vertical connections is 1} ! = mk,

Similarly, our total for horizontal connections is m Z" ! ”kk.

Next we determine the remaining efficiencies. Consider two copies of Py,. There are n — i pairs of Py,
that are separated by a horizontal distance of i < n — 1. There are 2(m — j) pairs of points in separate Py,
that are separated by a vertical distance of j < m — 1. Thus the sum of efficiencies of the cross terms is

Z Zm 1 “;T(]m]) Since the total number of vertices is nm, our global efficiency is:
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) [ m—1 m—k n=1, | n-lm-1 Z(n _ i) (m _])
Eoiop (P X P ) = —F < |n — +m + -
gtob (P X Py mn(mn—l)_ k:Zl k k:Zl k 1;]; 1+]
2 (m—1 nm n=1 un n—1m—1 (1’1 . Z) (m _])
= — —n(m—1)+ — —m(n—1)+2
mn(mn — 1) k:Zl k =k 1:21 ]; 1]
2 i e S n—1m—1 (n . i) (m _])
=~ _|m+n-2nm+ Yy —+Y =42 ——
mn(mn —1) | k; k k; k z; ]; 1+
M m n n—1m—1 _ 4 I
__ 2 2@+2@—2nm+2 w .
mn(mn —1) ok Ak =5 1+]
We shall restate this in a theorem.
Theorem II.8.5.
2

Eglob<Pn x Pm) = m

Hn+Hm—2+71&1HM1.

Conjecture 11.8.6. Without loss of generality, assume m > n.

2 Imn? — 27mn + 1113 + 6n2 —5n + 6
Eg1op(Pn X P) = {

3nm(nm — 1) 6

(3mn+n —1) illc

P

B ELICELE

k=0

This formula was found to be consistent but is not called a theorem due to the inadequate description of

derivation.

Using a weight corresponding to the Euclidean distance, we can obtain the global efficiency ratio which
compares the efficiency using distances along the lines of the grid versus the ideal Euclidean distance.

Theorem I1.8.7. The global efficiency ratio is given by:
(Hn+Hm—2)Tlm+22 Zm 1 = 11)+(;fl ])

(Hy + Hy — 2)nm + 2502 %

ERatio(Pm X Pn) =

(1L8.5)
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Efficiencies of Grid Graphs

1.00 —
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> 095 + n=12 ]
g i — n=17 ]
é : — n=22 e o000 :
= o n=27 |
< |
2 0.90- \ = n=32 ]
o | G 1
= L 1 |
Q A\
.%n [ \\\.\‘ 4
= 0.85- \\ |
, W |
r \Q:s\::!‘iﬂ PR i
L \"{}s B8sssssssoses ot M ]
i 'Eﬁliilu!"'“'"'"’%’5’é!é!‘s‘!‘z‘!‘s‘!g‘-'g!g‘.’g!’g!g‘.’g‘.‘g‘.’g‘.’g‘.'g!‘g.g.g.g.§.§.§-§-§-§n§-§-§t§i§r§ 88 1
0.80 ‘ | | | L 1 1 I | I I I | | | | | |
0 10 20 30 40 50 60

Figure I1.8.5: A plot of Egyjo (P X Py) for fixed n as a function of m. Fixing n and increasing m tends to initially decrease
ERatip until around n = m and then increases asymptotically towards 1: resembling a path. The minimum
value is due to the extreme non-path like nature of a square grid. Note though that the minimum occurs

slightly past a square grid. Future research could be into why this is the case.

I1.8.5 Harary Index

We can use the close relationship between global efficiency and the Harary index, H(G) = "("{ 1 Egiop(G),
where 7 is the size of the vertex set, to obtain new results. Note that H(G) denotes Harary index of a graph
whereas H,, denotes the 1" harmonic number.

Corollary I1.8.8. Let H(G) be the Harary index of a graph G. Then:

1. H(Pr) =xk, 5L,

2.n=2kH(C") =k 22;;1[}?1_+

3. n:2k+1:H(C,T)=(2k+1)21'(:1[}jf
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-1
4 H(Ksy,.5) =" = § [Llqs? —n],
5. H(Kym) =nm+ % [n> —n+m?—m|,

6. H(Kyn) = %,

7. H(Sqp) =d ((d=1) (14 3) Hy — (d=2)(1+1)H - 1),

Hy
1 r—1 nr(r—1)
T + 7 + 7
( [l 1] ) 2

8. H (K, x P!y =ryk  (n—i)
9. n=2k: H(K, xCl") = rk {22 <

[ ]

10. n =2k +1: H(K, x CI') = r(2k + 1) {
3),

11. H (K x Ky) = snm(nm +m+n —

12. H (Py % Pu) = (Hy + Hy — 2)nm + 2577 Y7 %(T])

A listing of Harary index values using faster computation are available in Corollary |VIIL.1.10

I1.9 Applications
I1.9.1 Metropolitan Atlanta Rapid Transit Authority Subway

The Metropolitan Atlanta Rapid Transit Authority Subway has 38 stations (see Figure [IL.9.1). We note that 33
of the 38 stations fall within a subdivided star formation. Approximating the network as the graph Sy g, we

have
(4—1)(2-8+1)Hyg— (4—2)(2- 8+2)H8—2-8

2-84+2)Hg—2-8 8 1
( + ) 8 Jrzl 12] 129 1 \/124—]2 Zz]cos( 9)

ERatio (Sa8) = =0.91427.

Next, we put our estimate to the test by considering the actual MARTA network.
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Morth Springs &

Dome/GWCC/
Philips Arena/CNN Ce

Bankhead (=)

Dakland City (=]
ood,/Fi. McPherson

East Point

Figure I1.9.1: A scale map of MARTA: the Atlanta metro. Note the star-like design. Five Points Station serves as the central
vertex. The distance between North Springs station and Sandy Springs station is approximately 1 mile. Light

blue lines denote the city’s major interstate corridors. Used with permission from M. Casey.[17] 35
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After obtaining rail distances along each of the lines directly from MARTA, we calculated the rail distance
between every pair of stations. The distances are shown in Table [VIIL1.1| (Appendix). Using Google Earth we
determined the Euclidean distance between every pair of stations (see Table |VIII.1.2)in Appendix).

In our analysis we only consider distances between stations, and not the length of a track in a particular
station. Using Google Earth, we found the Euclidean distances (in miles) between every pair of rail stations.
For a map of the MARTA Subway network where the scale is Euclidean distance, see Figure The sum
of the maximum Euclidean efficiencies was then computed to be 379.8169. Using rail distances provided by
MARTA we calculated the actual efficiencies with total sum of 311.7036. Hence, Eg,t;o((MARTA)= g%:gggg =
0.8207.

This means that the MARTA system is roughly 82% as efficient (in terms of distance) as a system that has

every station connected to every other station by a direct rail line.

Our analysis shows that a main fingerprint of a subway network can be star-like in structure. We note that the
graph S, is a star that is perfectly “balanced”, meaning that all of pendant paths have the same length. As
noted earlier if / is fixed and d is increased then the efficiency ratio decreases as the number of pairs of vertices
on different spokes is increased. Also if d is fixed and [ is increased then the efficiency ratio increases, as the

network bears a closer resemblance to a path.

It would be a difficult problem indeed to generalize the result for balanced stars to stars where the pendant
paths are of arbitrary length. However it is reasonable to derive some approximations. If the pendant paths are
of similar lengths then the efficiency will be close to that of a balanced star. Given a star-like network where
the pendant paths have different lengths, it is tempting to consider S;; where [ is the average of the pendant
path lengths. However this will not work well in a case where there is significant variation in the path lengths.
For example the efficiency of 5455 is much different than the efficiency of a star-like graph with one pendant
path with 97 edges and three pendant edges. The latter will be much closer to 1. If there are a small number
of pendant paths and one of the paths is much larger than the others (e.g.. there are four pendant paths with
lengths 91, 1,1, and 1), this graph will resemble a path in structure and will thus have an efficiency close to

1.

There is also a further generalization where the pendant paths are replaced by pendant trees (as in the MARTA
network). We noted previously that the MARTA network is similar to S4 g, and the efficiencies are 82% and
91% respectively. There are two reasons for the discrepancy, the first being that distances from Five Points

Station to the last station on each line are not all the same. The second is that the lines leaving Five Points
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Station going north and west split into different routes. This split impacts the efficiency in a manner similar to

increasing d in S;; and decreases the efficiency ratio.

We conclude by posing a problem involving a broad generalization where the network is a tree and that
incident edges are separated by angles that are equal. It would be interesting to investigate not only bounds

but the complexity of this problem as well.

11.9.2 Brain Network

Anything that is relatable to our brains is an area of great importance and interest. Efficiency is another way of
measuring the effect of an event on a brain’s composition. RCBI scientists conducted functional MRI (fMRI)
scans of 25 volunteers to find blood oxygen level-dependent (BOLD) correlations of various regions of the
brain. Previous papers have looked at the BOLD correlation matrices of macaque brains[12]. They used binary
connections with a given correlation threshold to find regions of high connectivity. We noticed definitive "hot
spots” of communication in our matrices as well and divided the regions into cliques. We developed our matrix
with threshold correlations, computed the efficiency matrix and used a partitioning algorithm[I8] in order to
find the cliques. The algorithm ranks the regions based on the values of the eigenvector corresponding to the

second largest eigenvalue of the efficiency matrix.

2 4 =] 2 10 12 14 16

Figure I1.9.2: The average correlations between regions of the brain ordered according to the efficiency partitioning
algorithm. Warmer colors are more positively correlated. From left to right the regions are: LMTG, RME,

LMF, LMT, IPS, RFEF, LIP, RS, LM, LS, MPC, RM, LMLA, LPC, LLP.
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The algorithm proved valid visually in the matrix as well as by partitioning motor system regions, sensory
regions and left brain regions: expected high-connectivity cliques. Our preliminary findings demonstrated
that while most brains varied in one or two region assignments, partitions were nearly constant across the 25

matrices (see Figure [[1.9.3).

gt €

Figure I1.9.3: Partition of the brain into two groups using the average of absolute values. The width of the lines correspond

to the strength of the correlation. The difference is hard to see in most cases but the connection from LMF to

RMF is clearly stronger than LLP to RFEF. See Table [VIIL.1.4| for legend.

This is great evidence for a “normal” brain that can be used as a template. Disregarding the physical distance
between brain coordinates, the “average” brain graph in Figure was computed to have a global efficiency

of 0.294. If one considered the physical distance as well, the efficiency would undoubtable increase.
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Figure I1.9.4: Image of the graph created by the adjacency matrix for the average minimum matrix with a cut off of -0.2 and
the average maximum matrix with a cut off of 0.4. The nodes are plotted according to talairach coordinates of
the 15 measured regions in the brain. Notice that the regions of the brain tend to be connected to physically
closer regions. Using the weights of the correlations instead of strict cutoffs, these regions were partitioned

together as in Figure|l1.9.3

We did not exhaustively try to recreate the results from Honey et. al.[12] but simply include their data as a
comparison point. See Figure for their adjacency matrix of a macaque neocortex. Using their matrix
we obtained a value of 0.571 for the global efficiency of their corresponding graph. If one was more relaxed
in our cutoffs, the efficiency would likely approach that of the macaque’s. In our further study we actually

approached the same efficiency with a relaxed correlation cutoff of absolute value > 0.325.

We continued our brain investigation in collaboration with the University of Rochester. Again, an outside
source conducted BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations
in oxygen levels of various regions of the brain and modeled these as graphs. This time we received data from
52 regions of the brain (a superset of the above regions). We were then able to measure the “efficiency” of
each athlete. As was expected, the athletes who received the largest number of high-energy impacts during
the season also experienced the largest drop in brain efficiency. At a typical correlation cutoff of 0.325, one
patient lost nearly half of the connections. This reduced the efficiency from 0.555 to 0.478. The average loss
in efficiency (after removing the player who sat on the bench all season) was 0.047: a roughly 10% drop in

measurement.
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I11. LocAL ErrictENCY AND CLUSTERING COEFFICIENT

For simplicity of reading, we provide the definition of local efficiency and clustering coefficient again
here.
Definition IIL.0.1. Local Efficiency Consider a graph G with vertex set V(G). Let n = |V(G)|. Let G; denote
the neighborhood induced by vertex i.
EW:%Z:%MGJ (I11.0.1)
ieV(G)
The local efficiency is the average global efficiency of all neighbor induced subgraphs.

Definition III.0.2. Clustering Coefficient Consider a graph G.

CQQZ%ZQ, (I11.0.2)

where C; is the number of edges in G; divided by the maximum number of possible edges: (IV(ZGi >|).
Remark II1.0.3. Note that because of these definitions, Ej,.(G) > CC(G).
Lemma II1.0.4. A graph G contains a K3 subgraph if and only if E;,.(G) > CC(G) > 0.

Proof. =

If Ejoc(G) > CC(G) > 0 then there must be some neighborhood subgraph such that Eg,(G;) > 0. Thus G;
must contain an edge. Let this edge be between vertices 1 and v. Then {u,v,i} form a K.

—

If G contains a K3 subgraph, then taking the neighborhood induced subgraph of one of these vertices will
have an edge. Thus it will have nonzero C; and nonzero Eg,p. Therefore the local efficiency and clustering

coefficient (averages) must also be nonzero.

III.1 Graphs where the Clustering Coefficient and Local Efficiency Differ

In this section we analyze the claim made by Latora and Marchiori and show cases where it does not hold. That

is we present families of graphs where the local subgraphs are not sparse, but where CC and E, differ.

III.1.1 Clustering Coefficients vs. Local Efficiency for Complete Multipartite Graphs

A complete multipartite graph G = Kj, ,,..s, is composed of t classes each with s; vertices, 1 <i < t, where
each vertex in class i is adjacent to every vertex in class j # i, and is not adjacent to any vertex in class i. For

bipartite graphs, the clustering coefficient and local efficiency are clearly 0.
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Theorem IIL.1.1. Let G = K, where m,n > 1. Then CC(G) = 0.
Theorem IIL.1.2. Let G = Ky, , where m,n > 1. Then E;,.(G) = 0.

However, for general multipartite graphs this is not the case. Let v be a vertex in K, s,,...s,. Let v be in part 7.
The subgraph G, induced by the neighbors of v is isomorphic to K, ..
Theorem IIL.1.3. Let n = Zf:l S;.

Si—1/5i41---/5¢*

1 t
ElOC(Ksl,...,St) = E ZSiEngb(Ksl,...,S,',],S,'+],‘..,St)
i=1

1¢ S; t (si—1)

— S +(n—si—s)|. (IIL.1.1)
nl;(n—sl)(n—sl—l)]_l]# ] 2 ( i J)

Theorem I11.1.4. Letn =Y'_;s;.
e T sy s - 1) A, T 1

As before with the global efficiency, we shall look at a few special cases.

Lemma IIL.15. Let G = K, with r > 3. Then CC(Ky ) = 5 and Ejoc(Krpy) = 2(323:11).

Proof. Let V(G) be the union of the three classes of vertices {v11,v12,...,01,}, {v21,020,...,02,}, and
{v31,v32,...,03,}. Note that all vertices have isomorphic neighborhoods. Without loss of generality consider
the vertex v7 1. Then the neighbors of v1 1 are {v1,v22,...,v2,} and {v31,v32,...,v3,}. We first calculate

the clustering coefficient. The only pairs of neighbors of vy that are adjacent are (vy,,v3;). The number
N
(2)

of the clustering coefficient. Non-1 efficiencies create the difference between clustering coefficient and local

of these edges is r2. Dividing over the total number of possible edges gives = 5. This is the value

efficiency. Therefore, we next examine efficiencies of each pair of these vertices. We have € (vy, 02,]-) = %

and € (v3;, 03,j) = % foralli # j,1<j<r, and € (v, 03,]‘) =1forall 1 <i,j <r. Hence the sum of all

2 (1
efficiencies is (5)3 + (3)1 + 7% = r> + (}). Averaging over all efficiencies gives " (er,()z) . ]
2
We note the two small cases.
Corollary III.1.6.
. . r? r 1
Hm CC(Krrr) = rlggor(Zr 1) -1 2
_ P+ P+ir-1) 141 3
e Korr) = i == = 0= 7 =7 T ¥
. 1
rlglc}) (Eloc (Kr,r,r) - CC(Kr,r,r)) = 1
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We can then look at the case for general n.
Theorem IIL.1.7. Let K, denote the complete multipartite graph consisting of n parts of order r. Then Ejoc(Kyn) =
1 - 2[(”7%1}},_1] lli’ld CC(K;';”) - ]. - ﬁ
Proof. Let v be a vertex in K;.,;. The subgraph G, induced by the neighbors of v is isomorphic to K;.,_1. Then

we can use Theorem [II.5.5to directly find Ej,.
Next, we consider CC(Ky;;). The number of edges in a neighborhood subgraph is |E (K,,,—1)| = (";1)1’2 =
$(n—1)(n — 2)r2. The maximum number of edges that can exist on this set of r(n — 1) vertices is (("El)r) =

%(n —1)r-((n—1)r —1). Therefore CC(Ky,,) = T 2 r Z((n 1))r )= (n(z)zr)il =1
)

— =1

(n—1)r—1-
Corollary II1.1.8. Asn — oo, Ejp.(Kyn) — 1 and CC(Ky,,) — 1. The sizes of the parts have become negligible with
respect to the total composition of the graph: a complete graph.

Corollary III.1.9.
1
rh_}rgloCC(K”r) =1- T
. 1
Jimn Eioc(Krir) =1 = 50—75-
. 1
}g{}o (Etoc(Krrr) = CC(Ky ) = m

II1.1.2 Cycle Powers

A cycle power C}} is a graph with vertices vy, v, ..., v, and edges 0;0; where |i — j| <m mod n. In the next
two theorems we determine Ej,.(C}') and CC(CI').

Theorem III1.1.10.

1 when m<n<2m+1,
2 2
Epe(CH) = 16m +n4—7;%£nr:_21—)6mn—3n when 2m+2 < n < 3m,
21m?—15m—2
Tomm—1) when n>3m+1.

Proof. Because the cycle power graph is vertex-transitive, the average local efficiency is equal to the local
efficiency of any particular neighborhood subgraph. Thus we consider a single vertex v; with neighbors v;

wherei —m <j<i—1andi+1 <j <i4 m. We consider three cases.

Case (i). Let m < n < 2m + 1. Then all of the local subgraphs are complete and Ej,. (CII') = 1.

Case (ii). Let 2m +2 < n < 3m. See Figure|lll.1.1
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(%1
[ )

. .
On—m Om+2

Figure III.1.1: A cycle power with the local subgraph shown in black.

Keeping m constant but increasing # increases the distance separating v;_,, and v;,, until it becomes greater
than m; when n > 3m + 1. As a result, fewer edges are kept until a single edge remains. This prevents
G; from becoming a path. The single edge is between v;_,, and v;,,,. For each value of m, there are
(83m) — (2m + 3) + 1 = m — 2 different values of n that fall into this case. The greatest value of # in this interval:
3m, will yield a path power plus a connection between v;_,, and v;,,,. Then,

5 2m—1o,, o 3milon 1

2m (2m —1) k; [mil—‘+ k:Zl (3m+2—n—k) 1W

Eloc(czn) =

2m—2 _ 3m—n
L -k Y. Bm+2—-n—k) |1 !
k=1

m—1
The second double sum corrects the efficiencies that were changed by having a connection between v;_,
and v;,,. Once the final term is removed, we can use n > 2m+2, and 1 < k < 3m — n to see that

m+1<mn—-—m—2+k <2m — 2. Therefore the fraction term will always have denominator 2. Then

1 mlom—k 252 2m—k S 3m 42 —n—k
Eioc (Cy') = [Z + Y +14+ )y ————
ocn mQ2m—1) | & 2 =2 = 2
B 1 m  (2m—1) 3m+2—-n 3m-n+1
—m(zm_l){(m—l)(?)m—zl—2)+1+(3m—n)< 5 - 1 )]
_ 1 2 2
_4m(2m—1) {16771 +4m — 6mn +n 3n+2}.
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Case (iii). Let n > 3m + 1. Then the subgraph induced by the neighborhood of a vertex is a path power (see
Figure [[11.1.2). Specifically, it is Pé"mfl. The generic graphic is given by:

Uz‘—(7n+1) Ui+(7n+1)

Figure II1.1.2: A generic cycle power. Note the black edges indicate G; of C}! where n > 3m + 1

Then
2 2m—1 k 1
Eioe(C') =
oc\Ln 2m (2111*1) k:Z:l i— [ml—l-‘
1 m—1 k 1 2m—1
= -+ k—1+ k—m—i—l)
m(2m —1) = 1; 1 k;n ( ( )2

[ |
Next we investigate the clustering coefficient of a cycle power.
Theorem III.1.11.
1 when n<2m+1,
cc(ay) = 12"12*6’”4;”62"1';;"2—3”“ when  2m+2 < n < 3m, (II1.1.3)
% when n>3m+1.
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Proof. We consider three cases.
Case (i). n < 2m + 1 Then we have a complete graph and CC(CJ') = 1.

Case (ii). 2m+2 <n < 3m CC(C}) = 12m2+6m4;1gﬂinzj1—1n2—3n+2'

The adjacency matrix of a subgraph is similar to the matrix of Case 1, however additional ones must be
added since each subgraph is a path power with additional edges. Thus the clustering coefficient is found
by adding the sum of Case 1, and the additional edges. In Case 2 for local efficiency, we changed entries
equal to % to 1. Now, we must add 1 to the same entries since they are 0 in this case. Thus we are adding

(3m+2—n)(3m+1—n)
2

twice as much to the adjacency matrix as in Case 2 of local efficiency, yielding 2 . The sum

is2-3m(m—1)+ (3m+2—n)(3m+1—n) = 12m? + 6m — 6mn + n*> — 3n + 2. And normalizing yields Eq.
(111.1.3).

Case (iii). 7 > 3m + 1. Consider the subgraph created by C;;' where n > 3m + 1. Recall that this subgraph is
a path power: Pﬁ”mfl. Hence, the adjacency matrix is simply the efficiency matrix of a path power but with
every value less than 1 replaced by 0. Then the sum is %m(m —1). However, this quantity is doubled since the

summation only sums over the upper half of the symmetric matrix. Normalizing gives a clustering coefficient

.3 _
of CC(Cyr) = F2miny) = jmg. n

Remark II1.1.12. We note that when n > 3m + 1, lim CC(C!") = 3 and lim E;,.(Clt) = Z.
m—o0 m—o0

I11.1.3 Networks of the Brain

In 2007, Honey et al. [12] examined a large-scale anatomical data set known as a "macaque neocortex". This
consisted of a binary connection matrix of brain regions connected by interregional pathways (see Figure
in Appendix). The 47-node network was constructed by collating data from different macaques using
tract-tracing studies. The network consists of 47 nodes and 505 unweighted directed edges. Here each vertex
represents a particular region of the brain and each edge denotes the presence of a directed anatomical

connection.

We used MATLAB to verify the following properties: L = 2.0541, Egj,p = 0.5714, CC = 0.6098, and Ej,, =
0.7903. We note the local subgraphs are not sparse as CC > 0.5 and yet there is a significant difference between
CC and Ej,,.
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III.2 Graphs where C and E,, are equal

In this section we consider graphs that are the Cartesian Product of a complete graph and another graph H

where H is a cycle or complete graph.

III.2.1 Clustering Coefficients vs. Local Efficiency for Cartesian Products of Graphs
2
Theorem IL.2.1. Eje(Ky X Cin) = CC(Ky X C) = =242, i > 4,

Proof. We note that all vertices have isomorphic neighborhoods. Let v be a vertex in K, X Cp,. Then deg(v) =
n + 1. The vertex v has n — 1 neighbors in the clique that contains v, and two outside of this clique. Among

these neighbors in the clique there are 2(”;1) ordered pairs of adjacent vertices. The other two neighbors are

n—1
non-adjacent. Hence Ej,.(Ky, x Cp) = (an(rlz) (31) = ”1‘2:’;2. Since all of the efficiencies between vertices are
either 0 or 1, CC(Ky; X Cpy) = Ejpe(Ky X Cipy). [ |

Theorem IL2.2. Ejoc(Ky x Kpn) = CC(Ky x Kyy) = (=pUBin D),

Proof. We note that all vertices have isomorphic neighborhoods. Let v be a vertex in K, X Ky,. Then deg(v) =
(n—1)+ (m —1). The vertex v has n — 1 neighbors in the clique that contains v. Among these neighbors in
the clique there are 2(”51) ordered pairs of adjacent vertices. The other neighbors form a clique of size m —1,

z(n—1)+2(m71) .
n_1+m_21)(n_1j_m_1_1). Since all of the

2(n£1)+2(m271)
n—14+m—-1)(n—1+m—-1-1)"

with 2(", 1) ordered pairs of adjacent vertices. Hence Ejoc(Ky X Ky) = (

efficiencies between vertices are either 0 or 1, CC(K;; X Ky) = Ejpe(Ky X Kyy) = 0

II1.2.2 Removing an edge from Kj,.

Theorem II1.2.3. Let G = K;, —e. Then CC(K, —e) =1 — ﬁ and Ejpo(Ky —e) =1 — ﬁil)

Proof. Note that all but two of the entries in the C matrix are 1. In the Ej,. matrix, all entries are 1 except one

that is 3. m

Remark I11.2.4. Note that lim CC(Ky,—e) =1and lim Ejoc(Ky —e) =
n—oo n—oo

III.3 Summary of Differences in Local Efficiency and Clustering Coefficient

We identified graphs where the local efficiency and clustering coefficient were different. In Corollary [I11.1.6| we

showed that these two quantities can asymptotically differ by %. It would be interesting to see how much these

46



Efficiency and Betweenness Centrality of Graphs and some Applications

two quantities can differ. We formally state this problem in the future research section.

Latora and Marchiori mentioned that the clustering coefficient is a good approximation for the local efficiency
of a graph when it is sparse. More accurately, the clustering coefficient is a good approximation when the

vertices of neighborhoods of every vertex have low eccentricity.
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IV. BETWEENNESS CENTRALITY

IVl Introduction

IV.1.1 Definition and Example

Let G be a connected graph. The betweenness centrality of a vertex v € G, denoted bc(v), measures the
frequency at which v appears on a shortest path between two other distinct vertices x and y. Let oy, be the
number of shortest paths between distinct vertices x and y, and let 0y, (v) be the number of shortest paths
between x and y that contain v. Therefore

Definition IV.1.1.

be(v) = Y. ‘T’Z (yv), (IV.1.1)
X,y X

for all distinct vertices x, and y.[19]

Note that oy, # 0yx. This definition can then be used for directed graphs. It can also be generalized to the

components of disconnected graphs.

Example IV.1.2.

Figure IV.1.1: Here we have bc(a) = be(c) = 0 and be(b) = 2.

IV.1.2 Bounds on Betweenness Centrality

Lemma IV.1.3. Consider a graph G(V,E) with |V(G)| = n and |E(G)| = m. Then
min {bc(v)|v € V(G)} >0, (IvV.1.2)

max {bc(v)[v € V(G)} < (n—1)(n—2). (IV.1.3)

The lower bound occurs for vertices that do not lie on any optimal paths. This happens with vertices that are
pendants or lie on cycles with chords that bypass it: in complete graphs, etc. The upper bound only occurs if

the vertex to be considered is the central vertex of a star graph: Kj ,.
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Remark IV.1.4. If the graph G is a tree, then all vertices will have integer betweenness centrality. Note that
there are no cycles so an optimal path either always contains a given vertex, or never does: contribution of 0 or

1.

IV.2 Betweenness Centrality for Various Graphs

Because betweenness centrality is a measurement of a particular vertex, we choose to examine graphs with
high vertex transitivity (few group orbits). This reduces the total number of derivations to completely analyze

a given graph.

IV.2.1 Cycle Powers

Lemma IV.2.1. Consider a cycle power graph C}}'.

n—1
diam (C)}') = . Iv21
i (CF) = | "5 | av21)
Example: with C3,, every vertex is reachable from any spot in at most 3 steps. For C3, going across the circle

requires a minimum of 4 steps.

Proof. This can be seen by picking one vertex to look at: v;. The furthest vertex from v; is the vertex
halfway around the circle: once you move further clockwise or counterclockwise, you could simply choose
to approach from the counterclockwise or clockwise direction respectively. Now we look at the odd or

even cases. If n is odd, the distance along the circle would be ”T_l The minimum number of steps is then

(n=1)/2 n
m

. If n is even, the distance along the circle would be 7. The minimum number of steps is then

y2] = [l _ [eohs] m

m m

Theorem IV.2.2. Consider a cycle power graph CI' and a vertex v € CI'. Let d = diam (CI}') = P‘Z—jnl—‘ Assume

n > 2m + 1 otherwise we have a complete graph. This also means d > 2. Then

be(v) = (d—1) (2 {”;w —dm). (IV.2.2)

Proof. Consider C}}. Let d = diam (CII') = [”Z—ZH and pick r = — ["T_ﬂ mod m such that m > r > 0. Then
r=dm— [’%11

d is the maximum number of steps between vertices so d — 1 is the maximum number of stepping stones used.
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Let P; be the set of unique optimal paths of length I: m +1 <[ < d. The upper bound is the largest distance
possible in C}! and the lower bound is so that we ignore pairs of adjacent vertices. The number of steps in
each optimal path is {%W . Finding |P;| = p; is equivalent to finding the number of partitions of an integer
with restriction on number of integers and values of said integers[20]. It turns out that an explicit formula for
p; is not necessary in our search for bc(v).

Consider a vertex v € C;}' and paths that use s number of stepping stones: 1 < s < d. For every unique path of
length [ with s = {%—‘ — 1 mid-steps, there exist s pair(s) of vertices such that the unique path passes through
v: s term(s) of % Since we can reverse the order of vertices, this doubles the term. Counting all unique paths
of length [, the sum of betweenness centrality for v will get a total contribution of 2p, % = 25. Summing over

all values of | gives:

2 (5] )

(o5 o).

There is one key point we glossed over. For the paths of the lengths with the largest number of steps, there are
also possibilities of moving the opposite way around the cycle. The reason these are not separately considered
is that we have already accounted for those paths. Moving ! around one way is the same as n — [ around
the other way. In the original counting method, we looked at s pairs of vertices for p; paths each having
a contribution of %: total term of s. Instead, we actually have p; + p,,_; paths and s pairs of vertices that

5. still a total term of s. So we arrived at the same answer. |

contribute terms of TETE
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IV.2.2 Subdivided Star Graphs

Theorem IV.2.3. Consider a subdivided star graph with arms of lengths s1, ..., s, and vertices labeled vy : k' vertex

from vg on 1" arm. vy is the center vertex. Then
nj—1
bC(Z)O,()) =2 ZS] Z Si,
j=2 " i=1

be(vp) =2 (51— k) <Z i+ k> ) (IV.2.3)
il

Proof. The central vertex will lie on an optimal paths if and only if the path is between vertices on different
spokes. Thus we sum the number of pairs of vertices between spokes. Vertices on an arm will lie on an optimal
path if and only if the path is between a vertex further along the same arm (s; — k vertices) and a vertex closer
to vg or on a different arm (), s; + k vertices). Simply using multiplication to find the number of ways to

choose these pairs gives us our result. Doubling is to account for moving in either direction. u

Note that bc(v;s,) = 0. These are the pendant vertices.

IV.2.3 Subdivided Triangle Star Graphs

Theorem IV.2.4. Consider a subdivided triangle star graph with arms of lengths sg < 51 < sp: a C3 with arms appended
to each vertex of the cycle. Label vertices v; x: k™ vertex from v; g on I'" arm. k = 0 indicates a vertex on the cycle. By

symmetries of Cs, the order in which we append the arms is irrelevant. Then

bC(Ul,k) =2 (Sl — k) (k +24 ZSZ') . (IV.2.4)
i#l

lth

Proof. v; will lie on an optimal path if and only if the path is between a vertex on the ["* arm further from the

G5 (s; — k vertices) and a vertex closer to the C3 or on a different spoke (k + 2+ }_;.; s; vertices). Simply using
multiplication to find the number of ways to choose these pairs gives us our result. Doubling is to account for

moving in either direction. |

IV.2.4 Ladders

A very useful reduction from double sum to single sum is given in Lemma [IV.2.5

Lemma IV.2.5.
1 " on—k+1 Lk
P Y, ——+)Y;-L (IV.2.5)

k
= i=n—k+1 i=k

n

1

j=li=k
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Proof. We will proceed with proof by induction. Let S(k;n), 1 < k < n, be the statement

k41 Lk
1—¢—+2;—L

i=k

py o oyy !
S5i-jtl mEi-jrl
1
T1-1+41
-1
_1-141 1
T1-1+41 1
1 1
1-1+1 1
-y iy
i=1-1+1 ! i1t

Thus the base case is proven.

Assume S(k;n) is true. To prove: S(k;n + 1) is true. Let 1 <k <n+1.

k n+41 k n 1
];lgki—j—f—l_]; lzzkz—]—kl n+l—j+1
k n k 1
];z;’{z—ﬁ-l Zn—]—i—z
n k_|_ 1 n
- ¥ SR i
i=n—k+1 n _] +2
n —k 1 'rl+1 k n+1 1
-y heEEl R R D
i=n—k+1 i j=n—k+2 j
n+1 n+l n+1
n—k+1 n—k+1 n—k+1 k 1
-y == k* -y D M-
i=n—k+2 ! n—kKk+ n+ n+ j=n—k+2 J
! k+2 Hre  H 1 n—k+1 n—k+1 &k (A2 |
= L Z*_ L n—k]fﬂ T ik R Vi
i=n—k+2 i=n—k+2 ! n + n+ n+ j=n—k+2 J
n+1 k + 2 n+1 n+1 1 n—+1 1 n4 1
- ¥ L S ) a8
i=n—k+2 j=n— k2] i=n—k+2
n+1 n+1
n+1)—k+1 k
= nt1) +) -1
i=(n+1)—k+1 ! i=k !
Thus S(k;n + 1) is true. By induction, the Lemma holds for all n € IN. |
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Lemma IV.2.6. Let L, be a ladder graph on 2n vertices. Label the vertices so that the “top” vertices read v1,va, ...,y

and the “bottom” vertices are v1/,Vy, ..., v,y. See Figure|lV.2.1l Then,

n _ n
be(op) = be(vg) =2 |2k(n —k+1) —2(n+ 1)+ Y = k+1 ZE
i=n—k+1 i=k 1
! 2 3 (n-2) n-1 n
1’ 2/ 3/ (n_z)r (n_l), n’

Figure IV.2.1: L,. Note there are 2n vertices.

Proof. In summing the betweenness centrality, we will only consider paths moving from left to right and then
double the final sum. Consider vy € L,. First, the betweenness centrality from paths beginning on the top side
of the ladder. There are (k — 1) vertices to the left of v; and (n — k) to the right. Picking one vertex from each
side, the optimal path will be a straight path that passes through v;: a contribution of 1. From picking any
pair, we get the term: (k—1)(n — k).

Next we look at optimal paths that begin on top and end on bottom. The path can start at any vertex v;,
1 < j <k —1. The ending vertex must be v;, k <i < n, otherwise the optimal path could not pass through vy.
The optimal path can drop from the top to bottom at any point of moving along the ladder. Thus there are

i — j + 1 distinct paths. However, we want the path to go through v;. This means the drop must occur after

passing vg: i — k + 1 total options. The proportion of optimal paths that go through vy is then ll ’]‘I} Summing

n  i—k+1
i=k i—j+1°

over all possibilities gives E._

k—j+1
i=k+1 7—j+1°

the three terms and simplifying using Lemma [[V.2.5 yields the final result of Lemma [[V.2.6 u

Similarly we can consider moving from bottom to top and obtain the term: Z] N Then summing

IV.2.5 Pendant Ladders

Lemma IV.2.7. Let L, be a ladder graph. Append another vertex, which will be labeled vertex vy, to vertex vy. Let Uy,
describe this graph. See Figure

53



Efficiency and Betweenness Centrality of Graphs and some Applications

0 1 2 3 (n-2) n-1 n

1 2’ 3’ (n-2)’ (n-1)’ n’

Figure IV.2.2: U,;. Note there are 21 4 1 vertices.

Proof. The expressions for bc(vy) and be(vy ) use Lemma as the “base”.

Note that by adding vy, we have not changed any optimal paths between existing vertices: it is trivially seen
that no optimal path would use vy as a midpoint. This means that bc(vg) = 0. The only difference from
Lemma is that we have contributions from the optimal paths that include vy as an end point. For the
betweenness centrality of a top vertex, vy, every optimal path from vy to v;, k +1 <1 < n will go through vy.
Hence we have an extra contribution of (n — k) for top vertices. There is also the contribution for optimal
paths to a bottom vertex. The fraction is explained in Lemma though there are slightly restricted options
since the first step from vy MUST be to v1. The contribution for the betweenness centrality of bottom vertices
is also very similar and only differs by some slight restrictions.

We also make use of Lemma [IV.2.5|to simplify our expressions. u

IV.3 Unique Betweenness Centrality

Definition IV.3.1. Let a graph G(V, E) be said to have unique betweenness centrality if for all v;,v; € V(G), we

have bc(v;) = be(v;) implies i = j. i.e. the betweenness centrality function is injective.

IV.3.1 Necessary Conditions

Theorem IV.3.2. If a graph, G, has unique betweenness centrality, then Aut(G) = {id}.
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Proof. Suppose a graph, G, has unique betweenness centrality. Automorphisms preserve edge connectivity
and thus preserve path connections. Therefore the betweenness centrality of a vertex is preserved across orbits
of automorphisms. Thus two similar vertices have the same betweenness centrality. Then each vertex must be

in its own orbit: |Aut(G)| =1" = 1. |

Theorem IV.3.3. If a graph, G, has unique betweenness centrality, then there is at most 1 pendant vertex.

Proof. Suppose a graph, G, has 2 distinct pendant vertices u, v. Then it is clear that each pendant vertex does
not lie on any optimal paths between other vertices. Thus bc(u) = 0 = bc(v). Therefore G does not have

unique betweenness centrality. |

Corollary IV.3.4. If a graph, G, of order n > 2, has unique betweenness centrality, then it is not a tree.
IV.3.2 Infinite Family of Graphs with Unique Betweenness Centrality

Conjecture IV.3.5. U, has unique betweenness centrality for n > 2.

Proof. Our goal is to prove that bc(vy) = be(v;) implies k = I. We also need to prove be(vy ) = be(vy) implies
k =1 and bc(vy) can never equal be(vy ). Clearly every vertex has nonzero betweenness centrality except for vy.

The cases n = 3,4,5,6,7,8 are enumerated in Table |VIIL.2.1] Thus we may consider now that n > 9.

For1 <1< [5]—1,bc(v,_141) < be(vy) < be(v,_p).
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be(v,_ ) =2 |2(n—N(n—(m—1)) -1+ i w_h i 1]

I i=n—(n—1)+1 i=(n-1)
i n 1 n
=2(2(n-1)—-1+ ) ” + ) ]
L i=l+1 i=n—I
[ I+1 I1+1 noo 1
=2 |21(n—1) —1+2 LR Yoo+
1 ) i n—1
| i=n—I+1
[ nol A n —141 n 11 141
=22in—-1)-1+Y - +Y -+ ) Ul y g l—Jlr
i L L A" | ! i=n—l4+1 ! n-—
[ n 141 &1 n 11 141
=22n-1)—-1+ Y el oyl oyl ) Ty Z—Jlr
i i=n—1+1 ! Fy L L ey S R n-—
] 1 —1 1 I+1
:bc(vl)+2 Zi— Z n, + l_ <|l>
Ry N n-
> be(vy)
n l+1 n
=2(2i(n—-1) -1+ Y, +Z%l]

=2

[ i=n—I+1 i=
n _ l 1 n

l2lnl ) -1+ ), noitl +Zl]bcvn 1+1) +be(v,_141)
i=n—I+1 i=l

1 —1+1 "1
=bc(v,_j11)+2(2i(n—1)—1+ Z u"’Z?

FE——" ! i=l

i=n—(n—1+1)+1 !

—(2(n—l+1)(n—(n—l—|—1))_1+ i "—(H—ZH)HJr

" I+1 & n
=be(vy_111) +2 |2i(n—=1)+ ), f—l—zf—Zn—l—l-l)(l—l) Y-
i=n—I1+1 i=l

n n
=bc(vy_141) +2 |2In 22+ ) 1 l+21—l—2n1+212 20 +2n —21+2
imnie1 b i !
"on-1 &l1-1
=bc(vy_i+1) +2| ), — =) —— +2n—4l+2
li=n—1+1 ! i1 !

> bc(vn—l—i-l)'
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This uses Lemmas [VIIL.2.2] and [VIIL.2.5]in the bounding lines. Also note that if # is even

(i-By-1e y MERL gl

i—p_ 1 j—1
i=n—5+1 i=5

_n_
2 2(%+1) (n_z_l)_1+in§l+li+i§+1i
n—-5+1 X1

Tl
=3

L n—g5—1+1 L 1}

“2(3H1) (g ) Hi- Y - Y

n
bc(v%) — bc(v%ﬂ) =2 25

i=n—3-1+1 i=5+1
n | "1 n noz "1
—2n(5)+ ¥ =ty - (5-1)-p - ) -
2 |~ i — i 2 ~ i
i=5+1 i=5 i=5 i=5+1
n Tl+2 n n n n 2
=+ Y —+Y-n+2)n-2)-Y - Y =
& i - e P
i=5+1 i=5 i=5 i=5+1
L N " n 2 o2
—nz—n2+4—|— Z T —Zf+ZT_ Z -
=541 ! i=% ! i=4 ! i=2+1 !
o2 "'n n " n "2 "2 2
=4+ Y THLa - LitLiLitw
i=g+1 ' =2 z2 =t =3t =2 2
L) 4
=41} n
4 noo2
ot
>0

Thus we can state that 0 = be(vg) < be(vy,) < be(v1) < be(v,—1) < be(vp) < be(vy—p) < -+ < bc(v[ﬂ ). Thus

if be(vy) = be(vy), then k = [ since the vertices are completed ordered by betweenness centrality.

For 1 <1< [5] =1, be(v(,_j11y) < be(v) < be(v(_y)-
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bc(v(nl),)—Z[2((71—1)—1)(11—(11—1))—3—}—' 2 Mui ni—l]

1

2[2(71—1—1)1—34— Z bl
i=I+1 i

2n—1-1)1-3+ ) f 2y ot

i=l+1 i=

_ (2(1—1)(n—l)—3+ Y ”‘f“+zziﬂ

i=n—I+1

= bC(U[/) +2

"opn—1
+2 Z - —bC(ZJy)—FbC(Up)
i=n—I !
1 n
—~ i

1

= bC(Ul/) +2

2n—1-1i+ Y s 12y Mo
T

i=l+1 i

—2n+22+2m—20— Y

1 l+1
2n—4l+ ) 22
i=l+1 i=n—I i=n—I+1

&1 1+1 "]

2n—4l+z;;+2f———221
1= 1=
n—1 "1 n—-1+1

n—1
2 ), - i *Z?+ -

n n I
2n— 4l — 271 —1—7+ y - Zl 1+1+nll]
i=l i=n—I o

Ly g | " pn—-1-1 1 1
m—4l-Y —— 4 -+ -7
z'; ! i:;l ! !

= bC(U[/) +2

= be(vy)+2

'[\1: Il

~

= bC(U[/) +2

= be(vy)+2

> bC(Ul/)

non—1+1 "]
=2 [2(1—1)(n—1)—3+ Y i+22.] = be(v(u—141y) +be(v—_i11y)

i—n—1+1 =1

2-1n-1)-3+ Y Ll,“uf]é

= bc(v(y141y) +2 1
i=n—I+1 i=l

— <Z(n—l+1—1)(n—(n—l+l))—3

n —(n—14+1)+1 non—141
S = =L RS NP SR e

=n—(n—I+1)+1 i=n—I+1 !

Ly 1 n—1+1
‘ZT;Z i

)
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This uses Lemmas [VIIL.2.4] and [VIII.2.3]in the bounding lines. Again, if # is even,

" " n Tl—ﬂ‘i‘l n n
) —be(o,, ) =2 2(f—1)( —7)—3 — 42y 2
bc(v(j)) C(U(EH)) 2 "2 +i*n§+1 ! ! i= !
= 2 -2
n n—=o_141 L |
—22(5+1-1) (n=2-1) -3+ } I o4 5
i=n—2—141 ! i=g+1 !
n o+l En
=2 (——1)11—3—{— Y, —+) -
2 n 1 i—n 1
177+1 =7
"oz Lon42
—2(n(5-1)-3+ 1 2+ )
2 '7nl —n 1
172 1774‘1
L nooy n 2n+4
DR T Vi s bl iy
=541 i=3 i=5 i=3+1
—iﬁ— i n+2
=1 b=
LD VT W
=1 ! i:gﬂi i:gﬂi
n 2
2 =it
1
=2(1- n
3 z-)
i=5+1

> 0.

by Lemmas [VIIL.2.6 and |VIIL.2.7, Thus we can state that bc(vg) = 0 < be(v),) < be(vy) < be(v(,_1y) <

be(vy) < be(v(y_gy) < -+ < bc(v(%)/). Thus if be(v},) = be(v}), then k = [ since the vertices are completely

ordered by betweenness centrality.
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i i=n—[3]+1 i=[4]
afa(2) ) (ue[E]) e [M] a3 nlELL j]
i i=n—[3]+1 i=[3]
SR HEDICEIRE I S

| oy L
S EIE IR ’
= bc (UW') +2 [—2 '%1 %1 + ‘%1 s+2m—2][7] +2]

> bc (v[ﬂ/) .

The last step uses Lemma [VII1.2.9} Thus we have bc(vy) < be(v P,T) < bc(v[ﬂ ) for all k.
2
|

We have shown that betweenness centrality is injective when considering only the top or bottom vertices
separately. Only a few cases of distinct values have been shown for inter-row consideration. Initially we
though of attempting to order every vertex like the top and bottom rows had been. Problems arose in much

higher cases of n when suspected orderings would change, seemingly randomly.
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V. FUTURE RESEARCH

Though I have tried hard to complete as much as I could, there is always more that could be done. This section
is a list of possible avenues for research or fiddling around.

Problem V.0.6. Let T be a tree. Determine Eg,p,(T), E;’loh(T), and Eggatio(T). One might have to begin by restricting
to specific trees.

Problem V.0.7. Find global efficiency for some families of directed graphs: tournaments, directed cycles, etc.

Problem V.0.8. Find the asymptotic nature of Eqjo,(P)') for various values of ;. Or other values of m such as /n.
Problem V.0.9. The minimum value for the global efficiency of P, X Py, does not occur exactly at a square grid. Why is
this the case and what n — m ratio produces the minimum value? Also, what is the asymptotic value of this worst grid as
n— oo?

Problem V.0.10. Consider the efficiency of a graph PER EDGE. This would be useful as usually roads have a cost
attributed to them. What size/graph maximizes this value?

Problem V.0.11. Determine the maximum value of E;,.(G) — CC(G) over all graphs G. I suspect that the difference
has to be less than or equal to %

Problem V.0.12. Determine the betweenness centrality for C, star graphs. Trouble in defining the graph begins to
appear as the order of appending arms matters: less automorphisms.

Problem V.0.13. Complete the proof of unique betweenness centrality for U,: hooked ladder graphs. Or find other
families of graphs with this property.

Problem V.0.14. One could find the average difference for the graphs discussed in this thesis by going through the same

processes and taking the reciprocal of each vertex-to-vertex efficiency term.
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VI. CONCLUSION

VI.1 Efficiency

In this thesis, we are concerned with several measures of connectivity of graphs: global efficiency, local

efficiency, clustering coefficient and betweenness centrality.

We determined the global efficiency for path power graphs P}, cycle power graphs C})', complete multipartite
graphs Ky, », star and subdivided star graphs, and the Cartesian Products K, x P!, K, x Cl,, Ky, x K, and
Py, x Py. As a consequence, we also determined new results involving the Harary index for these families of

graphs.

Just as Latora and Marchiori explored the global efficiency of the Boston Subway (MBTA)[8], we investigated
the global efficiency of the Metropolitan Atlanta Rapid Transportation Authority (MARTA) Subway network.
Motivated by the design of MARTA (see Figure[[[.9.1), we investigated the global efficiency of subdivided stars.
We showed that networks of this type have a high level of efficiency. We applied these ideas to an analysis of
the MARTA Subway system and show that their network is 82% as efficient as a network where there is a

direct line connecting each pair of stations.

RCBI scientists conducted functional magnetic resonance imaging (fMRI) scans of 25 volunteers to find blood
oxygen level-dependent (BOLD) correlations of various regions of the brain. We constructed graphs with
edges based on correlation cutoffs and then partitioned the brain using efficiency. The partitions were found
to be consistent with functionality and physical location within the brain. We also used these measurements to
analyze the effects of a season of hard-contact football on University of Rochester athletes. Again, an outside
source conducted BOLD pre and postseason fMRI scans of the players. We received matrices of the correlations
in oxygen levels of various regions of the brain and modeled these as graphs. We were then able to measure
the “efficiency” of each athlete. As was expected, the athletes who received the largest number of high-energy
impacts during the season also experienced the largest drop in brain efficiency. For comparison, we calculated

the measurements of a macaque brain using data from Honey et al[12].

It was stated by Latora and Marchiori [1] that “It can be shown that, when in a graph, most of its local
subgraphs G; are not sparse, then C [clustering coefficient] is a good approximation of Ej,.. In summary, there

are not two different types of analyses to be done for the global and local scales, just one with a very precise
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physical meaning: the efficiency in transporting information”. However we provided an in-depth analysis of
this statement, identifying graphs where the clustering coefficient and local efficiency are in fact non-negligibly
different. We also identified certain graph families where the two quantities are the same. In this thesis, we
compared and contrasted the two quantities, local efficiency and clustering coefficient. We included results
of these local measurements for complete multipartite graphs K;, »;, cycle power graphs Cj/, and Cartesian

products K;; X K, and K, X Cy,.

VI.2 Betweenness Centrality

In this thesis, we examined betweenness centrality for vertices in C);'. By the symmetry of C;!, every vertex
will have the same betweenness centrality. We also include results for subdivided star graphs and Cs star
graphs. We also describe the betweenness centrality for vertices in ladder graphs, P, x P,, and appended
ladder graphs U,: a P, x P, with a pendant vertex attached to an “end”. We conjectured that the infinite
family of appended graphs has unique betweenness centrality. We were able to construct a partial proof but

were forced to leave the completion as future research.
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VIII. APPENDIX

VIIIL.1 Efficiency

VIII.1.1 Sum Simplifications

Lemma VIILL1. Let n,m € N and pick d = |

n
m

d

Proof. Letn,m € N and pickd = [%]| and r = —n mod m such that m > r > 0. We can write ras —n+ [ 2] m,

|. Then
1

M-

— m(Hy—1) + g. (VIIL1.1)
1

orr=dm—n.

Consider the sum Y , ﬁ The first m terms of the sum, i = 1,...,m, will have a value of % The second m
terms will have a value of % and so on up to terms of % Thus the total is almost the same as mH;. We did
however over count the number of terms of %. The number of terms of % should be = n mod m. Thus we

need to subtract 5 =m— %. [ |

Lemma VIIL1.2. Let n,m € N and pick d = [Z]. Then

i
Proof. Let n,m € IN and pickd = [%] and r = —n mod m such that m > r > 0. We can write r as —n + {%] m,

or r = dm — n. This proof is similar in thought to the proof of Lemma [VIIL.1.1

Consider the sum Y} ; —L_. The first m terms of the sum will have a denominator of 1 and the numerators

[ ]

will be 1,...,m. The second m terms will have a denominator of 2 and the numerators willbe m +1,...,2m.

n(n+1)

. (VIIL1.2)

[dmz —m(m—1)H; —m+

N =

n
i=1

S

In general the ith group, 1 <i <d, of m terms will have denominator i and numerators m(i —1) +1,..., mi.

Thus the total numerator for the it group is

mi m(lfl)
(mii—1)+1)+(m@i—1)+2)+...+(mi—1) 4+ (mi) =) k— )Y &k
k=1 k=1
_omi(mi+1)  m(i—1)(m(i—1)+1)
N 2 2
_ m?i% +mi — m?i2 + m?i— mi +m?i—m® +m
B 2
2. m(m—1)
= m“i S
Our sum now is almost equal to
d 2 m(m=1) -
y ”“% — dm? — de_

i=1
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However, again we over counted the final terms with denominator 4. Thus we need to subtract off the last r

terms:
1 md 1 md md—r
=md—r+1 k=1 k=1
~ md(md+1) — (md —r)(md —r+1)
B 2d
_ m2d® 4+ md + mdr — 2 4+ r — m?d?* + mdr — md
B 2d
=r(m-"= !
N 2d
dm—n—1
= (dm —n) (m—zd)
g Ao dmn —n® —n
n 2 2d
B LmZ m _ n(n+1)
2 2 2d
Subtracting this yields the final formula. |

Because of the number of times the following combination of Lemmas|VIIL.1.1jand [VIII.1.2]is used, we should

write it as its own separate corollary.

Corollary VIIL.1.3. Let n,m € N and pick d = [”7’1—‘ Then

n-1_, - —
v (s ey A L D) (VIIL1.3)
LT 2 72 2d

i=1 m

Lemma VIIL14. Let f : N x N — R with the property that f(i,j) = f(j, i) foralli,j € N. Let | € IN. Then

1
L) fid) =21

=1 ]:1

i

]

-1 1 -1 1 l
_1f(i,j) - ;f(i,i) =2Y Y flij)+ ;f(i,i). (VIIL1.4)

i=1 j=i+1

Proof. The left hand sum can be thought of as a bunch of ordered pairs (i, j). Since f(i,j) = f(j,i) we are able
to count only those pairs which have i > j (middle sums) or j < i (right hand sums) and then double them.

We also must then add in the sum for i = j. |

VIII.1.2 Faster Efficiency Formulae
We begin by simplifying the formula for global efficiency of a path power in Theorem [II.3.1
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m

Corollary VIIL.1.5. Consider a path power graph P))'. Pick d = [”—*1-‘ Then

m[2n+m—1)H; —2n—dm+1] 1

Egop(P') = - VIIL1.
glob( n ) 11(71—1) +d ( 5)
Proof. This formula follows immediately from Corollary |[VIII.1.3 |

Just as for the path power, we can somewhat simplify the expressions in Theorem [[1.4.5
Corollary VIIL.1.6. Consider a cycle power graph C;'. We have n = 2k or n = 2k + 1. Pick d = [%—‘ . Then

2m 1
s (2Hg — 1) + 5 if n = 2k,
Egiop(Chy') = ze1He =)+ g (VIIL1.6)
PQHi—1)+3 ifn=2k+1
Proof. A consequence of using Lemma [VIIL.1.1 u

Corollary VIIL1.7. Consider a star graph S;;. If d = 2k + 1,

’ k Hl I i—1 2
EYp (Sap) = i |1+ 1)H —1+2 ) +2 ) '
glo 1(dl+1) 051\ \/2(1—cos (36))  =2/71\/i2 + 2 —2ij cos (36)
(VIIL1.7)
Ifd = 2k,
Ew (S ): ; (2[+1)H —(l+1)H —1
stob \541) = T 2 :
k—1 1 i—1
H, 2
+2y +Y Y . (VIIL1.8)
6=1 <\/2 (1—cos (36)) i=2j=1 \/iz‘l'jz—ZijCOS(zére))

Proof. The triple sum of Theorem [I.7.4| can be slightly reduced by noting that the denominator is symmetric
with respect to 7 and j. Then we can use Lemma [VII.1.4 We can also use the symmetry of cos and break
the formula into even (an angle of 7 is counted) and odd (an angle of 7t is not counted) cases. In reducing,

Corollary [I1.7.8| proved to be useful. u

Corollary VIIL.1.8. Consider a complete graph crossed with a path power, K, x P}}'. Pick d = ["m;ﬂ Then

2 3m—1 dm 1
E K, xP") = ———— - H;—r|2 2 — -1 2m — —
glob (Kr X Py") n(nr —1) [m([r<n+ > ) m} d r[ n+2m 4 = }+n+ m 2)
n(n—1) n? —n+4dnm + 4m? — 2m r—1
T T 2(d+1) nr—1
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Proof. We can simplify the expression in Theorem |I1.8.2

Egloh(Kf’ X Prrzn)

Pmkdz[ii

m

2 = [ r—1 r—1
_”(W_l)zz%(n_l)<LH+Lﬂ+l>+”r_l
B 2 -”*111—1' B i r—1
= 2D B [ﬂ +(r—1) L [ﬂ +1] +o—
_ 2 (= . mmely (i —m) r—1
~on(nr—1) = LZ"jL( 1>i:;r1 {%-I ]+nr—1
_ 2 -'En—z+(_1)”+i_1n+m—i_(_l)in+m—i +r—1
=1 | 5 T4 Y 4 ] L 3] nr—1

—‘. Then [”J“Tm_ﬂ = d + 1. Then implementing Corollary

always has denominator 1,

Eglob(KT X P;T)

\VIIL.1.3

twice and noting the final sum

n(nrz—l) m{(n—i—mz_l) Hd_n_d;”+;]+”(”2;1)
+(r1)(m[(n+3m2_1)Hd+1 ni(d—l—z?’)m ﬂ+(n+r;zt(in+—|—1;n—l)>
Cr—1) [(n+m) m(m2+ 1)} T:r—_ll
—l—(r—l)(m[n—i—mz_l}Hd—i—msz—l-dTl{n—l—c’)mz_l}—nm
dm?>  3m*> m n*4+2nm+m?—n—m r—1
“ 2 T2 ta 2[d+ 1) )]+nr_1
n(m’z_l)[rm(n—i—mz_l)Hd—(Zr—l)mn—rdziz—i-gl+n(nz;1)+(r—1){m—Zmz]
+(r-1) (msz_'_nZ_n—f—;L(r;m—i_—f—l;LmZ_zm)] +nrr—_ll
n(nrz_l)lm([r(n+3m2_1>—m}Hd—r[ZrH—Zm%—d;n—l]+n+2m—;)
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m

Corollary VIIL.1.9. Consider a complete graph crossed with a cycle power, K, x CIt. If n = 2k + 1 then let d = {k—‘

and
1 k rm+k
Egiop (Ky x Cy') = r2kr1) -1 {2rm(Hd—2)+T—1+2m+2d+2 | }
If n =2k then let d = [ £] and
1 2k—1  r(2m—1)+2k+1
m —_ —_— —
EglOb(KrXC”)_Zrk—] [Zrm(Hd 2)—|—1’ 1+2m+ 7 T :|

Proof. Begin with Theorem [I1.8.3] Using Lemma |VIIL.1.1} if n = 2k 4 1 then let d = {%1 and thus

} 1 k 1 r—1
Eglob(K”XC”):m 2; (M+MH) +r—1]

L m
! _ k k+m
T2k -1 _2<m<Hd—1>+d+<r—1>m<Hd+1—1>+dH_<r_1)m>+r_1]
L _ k rm+k
_m _Zrm(Hd2)+r+2m1+2d+2d+1l

And if n = 2k then let d = {5—‘ and therefore

m

my_ 1 S PRt S P (R S et O
Egzob(KrXCN—Zrk1_22([H+“‘J+1)+ ! (M]Jr[,’ﬂﬂ)]

1 [ k m+k 1 r—1
= k-1 _2’m<Hd‘2>+’+2’“—1+2d+2m‘d—m}
1 T 2k—1  r(2m—1)+2k+1
- |2rm(Hy -2 2m—1
ok —1 |2M(Ha = 2) Frd2m =1+ =3 d+1 }

Using the formulae for faster computation that we just discovered, we repeat the list of Harary indices in
Corollary [L1.8.8| with updated values.
Corollary VIIL.1.10. Let H(G) be the Harary index of a graph G. Then:

1 H(PM) =2 [(2n+m—1)Hy —2n —dm+1] + "0=1,

2. n =2k H(CJ') = 2mk(2Hy — 1) + *&-1,

3. n=2k+1: H(C") =m(2k+1)(2H; — 1) + k(zlf:z_l)'

1
4. H(Kslz---/st) = n(nz ) — % [ le Sz2 - 1’1],
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10.

11.

12.

. H(Kym) = nm+ % [n2 —n+m?—m],

. H(Kpy) = M

CH(Sgp) =d ((d=1) (14 3) Hy — (d = 2)(1+1)H - 1),
H(erP,T)—rlm({r<n+3mz_1>—m]Hd—r[Zn—i-Zm—{—d;n—l}+n+2m—;)
n(n— n? —n +4nm + 4m? — 2m nr(r—1)
T et ) ] o

n=2k+ 1 H (K x Cf) = r(2k+1) [rm(Hy —2) + 51+ m+ & 4 2]

n =2k H(K x C") = rk [2rm(Hd—2)+r+2m—1+%T—l+%],

H (Ky x Ky) = tnm(nm +m+n—3),

H (Py % Py) = (Hy + Hyp — 2)nm + 2 iyt edmsl),
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VIII.1.3 MARTA

NS S D MC BH:LC LNX BHOG CH DRA

Arts MT NA CVC PCH:SPT G5 K | EW

EL DCT AVD KNS INDGNT WE OAK W EP

(OL APT DOME VC ASH:WL HAM BNK

01120 3077:99 118 133 160 180
009 19 66:88 107 122 149 163
0105779 98 113 140 160
047:69 88 103 130 150

022 41 56 83103
0w M

C0 154282

027 47

020

0

131 131 137 141 146151 155 162 176 184
120 120 126 130 135140 144 151 165 13
111 111 117 120 126131 135 142 156 164
104 101 107 1.1 116121 125 132 146 154
5454 60 64 6974 78 85 99107
3237 43 47 52057 61 68 82 90
51 51 57 61 66171 75 82 96 104
66 66 72 76 81186 90 9711 119
93 93 99103 108:113 117 124 138 146
113 113 119 123 128133 137 144 158 166

204 214 22 U1 54155 170 185 196 215
190 203 201 130 243144 159 174 185 204
181 194 202 201 B4:135 150 165 176 195
171 184 192 211 224'125 140 155 166 185
124 137 145 164 177: 78 93 108 119 138
107 120 128 147 160; 61 76 81102 124
124 134 142 161 174: 75 90 105 116 135
136 149 157 176 189; 90 105 120 131 150
163 176 184 203 206:117 132 147 158 117
183 186 204 223 236137 152 167 178 197

B3 WL 155159 166183 198 180
zmmmmwmmm
13 01 135 139 146163 178 160
03 211 125 129 136:153 168 150
156 164 78 82 83:106 121103
139147 61 65 72089
53161 75 79 86103
mm9mmM3
195 203 117 12.1 128145
15 N3 137 141 148:165

118 100
133 115
160 142
18.0 162

104 86

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 05 11 15 20025 29 36 50 58
0 06 10 15120 24 31 45 83
0 06 09:14 18 25 39 47

0 05010 14 21 35 43

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

15 88 96115 128:29 44 59 70 89
70 83 91110 123 24 39 54 65 84
B4 77 85104 117: 18 33 48 59 78
13 81100 3] 14 29 44 55 74

115
129
137

15
10 89
67 78 97

44
52

59

107115 29 33 4057
102110 24 28 3552
96104 18 22 29: 46
92100 14 42

12 54
67 49
61 43
57 39

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

93 101
107 115
115 123

33
41

57
6.5

1
8.0

54
6.2

I
48

|54 69 84 95114
L6782 97108 127
115 90 105 116 135
13' 94 109 124 135 154
01107 122 137 148 167
IR LT
015 26 45
011 30

019

0

65: 82
178195
19 861103
94 98 105:122
107 111 18:135
08 12 19736
23 27 34 51
38 42 49: 66
49 53 60: 17
68 72 19:96

132 140
105 153
153 161
112 180
185 183
18 86
63 11
48 56
31 45
18 26

58 97 19
100 92
118 100
137119

150 132

66 48
81 63
9 74
10193

5133

008
0

86 90 97:114
94 98 105122
004 11028
00724 39 21
0:17 32 14
01531

0 45

129 11.1
137119
43 25

0

HAM
BNK

Table VIIL.1.1: A table of the rail distances between all 38 stations of the MARTA network[21]. Distances are in miles. See

Table [VIIL.1.3|for acronym key.
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NS §§ D MC BH ' LC LNX BHOG CH DRA

As MT NA CVC PCH:ISPT G5 K | EW

EL DT AVD KNS IND 'GNT WE OAK W P

COL APT DOME VC ASH WL HAM BNK

0 104 186 231 6761841 693 598 497 531
0 085 130 580730 531 490 394 449
0 068 SI8,684 525 419 320 358
0455620 467 367 315 436

D167 058 185 448 626
LB 3T

0 15

0 261 444

017

!

1090 10,44 12.07 1245 12911334 1358 1355 12.98 1269
1002 1039 1121 1457 1200 1245 1266 1262 1200 171
939 995 1057 1094 1137 1079 1200 1188 1127 104
873 930 991 1028 1073 1015 1136 1131 1089 1039
420 476 537 575 620: 663 682 679 630 613

(257 312 3B 410 4551497 536 502 467 4315

420 475 535 ST 6161 657 675 667 606 58
15 616 673 734 758,79 808 1% 116 680
824 872 930 962 10.04'1046 1055 1036 940 890
95 1041 1088 1021 1191208 1214 1091 1086 1031

120 1230 1252 1339 142011372 1479 1619 1738 1934
1167 1125 1149 1236 1319:1084 B3 1525 1634 183
1038 1044 1086 1134 2371219 B3 135 158 10
1039 1001 1028 1120 211055 1266 1408 157 1104
B9 705 844 983: 701 815 959 107 1233
53608 761 B85 53 655 800 916 1094
B53 789 906! 6B 817 982 1078 1256
675 747 891 436 940 1005 100 1347
149855 9301088 1215 361 1473 1630
B8 817 948:50 1 125 13 41

2007 1168 1324 1330 132411421 14568 1264
203 084 1236 1248 10661346 1392 1186
1950 2034 1073 1182 12.08.1294 1346 1133
1886 1857 1108 1116 11.41:1226 1277 1065
135 1505 635 663 694.7% 864 631

170 38 49 505 541658 741 4%

3T 1505 654 666 703! 814 B8 648
576 1640 795 809 830 966 1042 80
1827 1892 1050 1087 1810 1232 1309 1066
1986 2049 1244 1234 12811106 1484 1240

D058 124 161 208245 270 241 297
008 100 147147 202 200 234
0030 084115 150 166 28
005208 18 13 20
0045 067 096 201

L0 05 0% 225 301) A0

005 1% 1
0 14 18
0078

0

619 785 819! 240 397 542 638 8%
B0 776 3001235 34 490 605 18
613 178 0110163 24 433 546 14
BIB 780 010 L 25 401 583 690
65 T8 914108 219 383 47 648
635 611 9401 041 175 318
627 700 908 059 186 321
§76 79 836! L4 234 381
430 587 715025 31 502
395016401332

13 5%
456 626
59018
665 8.

ENL

1% 603

1007 108 235 246 287438 53 267
U103 180 1%5 245038 S0t 29
B T LD LG 236 4T 2
869 935 090 118 18]35 470 240
86 8% 063 099 17434 464 251
18 84 039 0% 130300
M 8% 08 118 1400382
197 838 130 L0 2831 407
90 913 260 298 374542
985 1040 330 371 448! 616 138 515

47 29
530 340
664 449

RN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

g
3047 60490 611 15
D 0% 29 391 59 120 83 811 087
166 299° 685 809 923 938 114
1341 840 950 1086 1132 1289
0: 967 1083 1485 125 15
Bk R
D15 260 43
D118 29
0178

0

805 957

=N

108 157 4%5 531 607776 4% 69
08 1266 593 631 1061 87 9% 138
030 BB 6% 13 19961 1081 832
00 142 B4 BRL 4SHI1L26 240 1005
1501 1836 974 1041 10881256 1378 1148
4L B 053 073 137,255 489 248
G0 60 166 152 131207 342 265
AT S8 30 2% 2711075 385 376
360 431 426 412 3036 43 43
13 256 60 590 S66:529 560 66t

I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0077 18 170 14800 15 88
D 830 840 815780 800 935

0 038 1428 405 208

0 0750 245 366 175
00168 291 155
”””””””””” 0 1M 166
028

0

DONE
e
]

W
H
BK

Table VIII.1.2: A table of the Euclidean (Earth) distances between all 38 stations of the MARTA network[22]]. Distances are

in miles. See Table [VIIL.1.3|for acronym key. There is error in these measurements but our analysis was not

concerned with this.
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Table VIIL1.3: Acronym key for MARTA stations of distance matrices.

Acronym MARTA Station Acronym MARTA Station

NS North Springs SS Sandy Springs

D Dunwoody MC Medical Center

BH Buckhead LC Lindbergh Center

LNX Lenox BHOG Brookhaven/Oglethorpe Univ.
CH Chamblee DRA Doraville

Arts Arts Center MT Midtown

NA North Avenue CcvC Civic Center

PCH Peachtree Center 5PT Five Points

GS Georgia State K King Memorial

I Inman Park/Reynoldstown EW Edgewood/Candler Park
EL East Lake DCT Decatur

AVD Avondale KNS Kensington

IND Indian Creek GNT Garnett

WE West End OAK Oakland City

LW Lakewood/Ft. McPherson EP East Point

COL College Park APT Airport

DOME Dome/GWCC/Philips Arena/CNN Center | VC Vine City

ASH Ashby WL West Lake

HAM H. E. Holmes BNK Bankhead
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VIII.1.4 Brain Network

Table VIIL.1.4: Acronym key for the Regions of the Brain in Global Efficiency Analysis. See Figure

Acronym Part of Brain

LMF Left Medial Fusiform Gyrus
RMF Right Medial Fusiform Gyrus
LMTG Left Middle Temporal Gyrus
LMT Left Motion Selective Cortex
LIP Left Inferior Parietal Cortex
IPS Intra Parietal Sulcus

RFEF Right Frontal Eye Fields
MPC Medial Prefrontal Cortex
LPC Left Posterior Cingulate

LLP Left Lateral Parietal

RS Right Somato

LS Left Somato

LM Left Motor

RM Right Motor

LMLA Left Medial Leg Area

11.9.3
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A structural connections
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Figure VIIL.1.1: This is the adjacency matrix of a graph corresponding to regions of a macaque neocortex. Black cells
indicate a connection from row to column. Note that the matrix is not symmetric; the graph is directed.

The corresponding graph has global efficiency 0.571. Used with permission from Honey et al.[12]
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VIIL.2 Betweenness Centrality

VIIL2.1 Unique Betweenness Centrality Lemmas and Table

Table VIIIL.2.1: Demonstration of unique betweenness centrality for small U,, graphs.

n o |3l4l5 6| 7 | 8
be(vg) | 0| O | O 0 0 0
be(vy) | R | Z || 28 | 28 | &
be(vyp) | 11 % % % %9 %%3
be(vs) | 5 | 3| % 28 | %) 1L
be(vg) | — | § | 0| 352 | 2t | 28
be(vs) | — | — | B | 38 | A | 2B
be(ve) | — | — | — | % | 39 | 137
be(vr) | — | = | — | — | B | &
be(og) | = | = | - | = | = | &
be(vy) | 8 | 8| 28| 32 | 1066 | 4969
be(oy) | — | B | 2 | 137 | 1488 | 258
be(ug) | — | — | % | 3¢ | &5 | B3
be(og) | = | = | - | B | B | &
be() | — |- | - | - | B | B8
be(vg) | — | — | — | — _ 481

We use some bounding properties of the Harmonic numbers in a few places of this thesis:

Theorem VIIL.2.1. Forn € N,
1 1
< H, -1 _ il
3y < i =y <o

where v = 0.5772. .. is the Euler-Mascheroni constant[23]].
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(VIIL2.1)

Lemma VIIL.2.2. Forn >9and1 <1< 75 -1,
1 —1 1 1
n — 10

n
l
Li i:rg-&-l i n—i 1

i=l

Proof. This relies initially on Theorem [VIIL.2.1

First we shall remove the cases wherel =1 and | = % -1
L | n -1 1 1 -1 1
) DT P s 1=H,-1"4 —2
Fc R PR n—1 1 n n—1
1 1 1
1 — = - 3.
>n(n>+7+2(n+1)+n+n71 3

+ % + ﬁ — 3. When n = 9,10,11, h(n) ~ 0.06,0.13,0.20 respectively. And

1

Let h(n) = In(n) + v+ D)
when n > 12, h(n) > In(12) + v — 3 > 0. Thus the case of I = 1 has been shown.
Forn=2kand! =7 -1,
Lo5-1 oo+ 2 2 n %1 n L
2 2
- - =2 )Y 1 (Z24+1) Y S +1
._; i .~ i +n—4 n—2 (2 ).;i+ <2+).;i+
i=5-1 i=5+2 i=4 i=%
Z+1 2 2
2 — —
+n/2+n—4 n—2 1
12 2 2
=2-2y - 472 -
i;i+n+n—4 n—2
-2
2 2.2
n—2

2-2(1 -
> ()+n+n—4

> 0.

The last step made use of Theorem [VII1.2.6

Now it is important to remember throughout this proof that n > 9and 2 <1 < ”T_3 In the case n = 2k,
I = %5 —11is taken care of above. If n = 2k + 1, these are the effective bounds anyway. Now considering the
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other cases,

] on—1 1 1 1
;E—i:ngﬂ i +n_ll1—Z<HnH1+l>(nl+1)(Han_l)+n_lll
1

!

1
=1+20Hy + (n =1+ 1)Hy — [IH + (n+ D Hy] + — —

)+ (n—1+1) (1n<nl>+7+z<n—11+1>)

—l<1n(l)+7+211> —(n+1)(1n(n)+7+%)+n1_l—

> 2l(In(n) + v + 2(711_._1)

— =

= (21—(n+l))1n(n)+;+(n—l+1)ln(n—l)

n+1
n+1 1 1
—n(D) - 2n n—1 1
_ ! _l_i_;_(zl—(n+1))ln(n)+(n—l+1)1n(n—l)
T n+1 2 2n
1 1

Thus we have created a continuous expression of a lower bound for our discrete expression. Consider a function
of l and n: f. Let f(I,n) = HLH —t—F+@—-m+1)In(n)+ (n—1+1)In(n—1) —IIn(l) + -2, — }. For

notation, let & f = f and 2 f = f*. Then

1 1 1 2 2
U=t e 1T -1p B

C2+4n+n?—1-2nl+12—(n—1)>31%2+2)
B(n—1)3

g 24n+n?—1—2n+1% —(2)°(1242)
Bn—1)3

_1-nt+(3-§n)n’

B(n—1)3

< 0.

Therefore f”(1,n) < 0: concave down, over the domain of I. And so we can say that for a given #, for all
x,y,z€[1,5—1],if x <y <z then f(x,n) < f(y,n) or f(z,n) < f(y,n).
Note that

f2n) = nil*%*%H‘“(”+1))1“(”)+(”*2“)1“("*2)*21n(2)+m—§
= n_2|_1_%"‘niz_(”—3)1n(71)+(n—1)1n(n—2)—1—21n(2).
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And taking the derivative with respect to n this time we can see

2 1 1 n—3 n—1
f*(Z,n):—m+2—rlzfm—ln(n)—T+ln(n—2)+n_z
3 2 1 1 2 n—1
:n_(n—i-l)2+2nz_(n—2)2+ln<1_n)+n—2_l
UL S I |
2n2  n (n+1)2  (n—2)? 1-2 n-2
1 3 2 1 n n—1
:@—Fﬁ_(n+1)2_(n—2)2_n—2+n—2
_ 4n® —17n* — 213 4 7n% + 28n 4 4
2(n—2)2n2(n+1)2
n*(2n —17) +2n3(n? — 1) +7n? +28n + 4
2(n—2)2n2(n+1)2
> 0.

since n > 9. The logarithmic bound came from F. Topsee, [24]. Thus f(2,n) is a monotonically increasing
function of n. And f(2,9) = 4 — 5 + % (6)In(9) + (8) In(7) — 1 — 2In(2) ~ 0.285 > 0. Thus f(2,1n) > 0 for
( —

all n > 9. The goal is to show that f (%2, n n) >0 as well.

Now if we remember that f(I, 1) as a function of ! is concave down over the domain, we now know that if
2<1< 83 f(l,n) > f(2,n) or f(I,n) > f (“52,n). Either way f(I,n) > 0. Combine this with the boundary

cases for | and we have proven the lemma. |

Lemma VIIL.2.3. Forn >9and1 <[ < ——1.

n n _
Zé y nolrl oy (VITL2.2)
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Proof. This uses Lemmas VIII.Z.Z"VIII.2.6 and [VII1.2.7
il_ i n_l+1le_ i n—l_ i 1
i i Ty 1 ) j

i=l i=n—I+1 i=l i=n—I1+1 i=n—I+1
"] " on—1 L 1
i~ L o L5
i=l i=n—I+1 i=n—(4-1)+1
I
=t = b =gt
l on—1 |
>Lim XL o L
i=l i=n—I+1 i:[%"l
I "opn—1
> - — — —1
Li L o
i=l i=n—I+1
"] on—1 1 1
>y -—- ) -1
i=l ! i=n—I+1 ! n—1 !

A better bound of 0.898 was found for this expression using the same method as the proof of Lemma [VII.2.2

It was not included as it was not needed.

Lemma VIIL.24. Forn >9and 1 <1< 5 —1.

-1 “on—1-1 1 1
2n—4l—) —— —=>0. VIIL.2.
! z; i +i:;1 IS A ( )
Proof. By the same method as Lemma [VIII.2.2| except for the opposite bound. |

Lemma VIIL25. Forn >9and 1 <1< 5 —1.

“on—-1 &il-1
2n—4l+24+ )y —— ) — >0 (VIIL2.4)
i=n—l41 ' = !
Proof.
1 -1 &i-1 “on—1-1 N R |
m—al+2+ Y Py S sop—wmgo—o1+ Y Py Sy
. 1 . 1 . 1 . 1 : 1
i=n—I+1 i=l i=n—I i=n—I i=l
Lon—-1-1 &I1-1 1 1
2n —4l - —=
> Zn +._2 i Z i +n—l l
i=n—I i=l
> 0.
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Lemma VIIL.2.6. Forn > 1,

o1 3n+15
| Z - <In@)+ T3] (VIIL2.5)
i=[4]
Proof. This uses Theorem [VIII.2.1
L 1
L 7= Hp+
i=[4] 2
1 n 1 1
<In(n)+y+—-In(|= v — +
w2 an
1 n 1 1
<1 ——In(=)—
"0 5 () argren g
1 1 1
<InQ2Q)+ 55—+ 7
R AT TR
3n+15
]
Lemma VIIL.2.7. Forn > 1,
3n+15 2
In(2) 3n(n 5 3) 1+ .
Proof.
d In(2) + 3n+15 |  3(2n(n+3)) — (4n+6)(3n + 15)
dn 2n(n+3)] 4n%(n + 3)?
_6n(n+3)—6(n+3)(n+5)
N 4n2(n + 3)?
_ 3n—-3(n+5)
- 2n2(n+3)
15
- 2n2(n+3)
< 0.

Thus In(2) + % is monotonically decreasing for n > —3. We can then use this to say that

n | Lemma[VIIL2.6|Bound | 1+ %

1 2.943 3

2 1.743 2

3 1.360 1.666

4 1.175 1.5

5 1.068 14

6 0.999 1.333
>7 <1 >1
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And therefore In(2) + 23;}:;2) <1+2 foralln € N. |
Corollary VIII.2.8. Forn > 7,
L
Z =<1
‘ i

Lemma VIIL.2.9. Forn > 9

> 0. (VIIL2.6)

2n—2[7]+2-2 y %LL y %
SO

1 2

2n—2[g—‘+2—2‘i Pfi+ y 122n—2”;1+2—(2[ﬂ—1) y %

ST AT T
S <2”;1 —1) <ln(2)+m>
>n+1-—n(1)
> 0.
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