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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

Degree    Doctor of Philosophy    Program  Microsystems Engineering__     

Name of Candidate __Meng Zhao_ 

Title: THERMAL ANALYSIS AND DIELECTRIC SPECTRAL CHARACTERISTICS OF 

POLY(IONIC LIQUIDS): Towards exploration of their utility in capacitive electrochemical devices  

It has been proposed that the function of lithium ion batteries, fuel cells, capacitors, solar cells 

and actuators might be improved if membranes impregnated with organic salt solutions or 

conventional ionic liquids were replaced by film-forming ionic liquid polymers like those derived 

from 4-vinylimidazolium (4-VIm+) salts. 4-VIm+ polymers with a methyl substituent at the 2-

position of the imidazole ring may have greater chemical and electrochemical stability than 

poly(ionic liquids), PILs, derived from 1-vinyl- and 4-VIm+ polymers with a hydrogen at the 2-

position of the imidazole ring. The utility of PILs, in capacitive devices, however, is limited by 

poor ion mobility caused by incorporation of anionic and/or cationic components in the polymer 

chain. The ionic conductivity of PILs can be improved by lowering the glass transition temperature 

and/or reducing the dimensions of the ion-conductive phase. In the present research, 4-VIm+-based 

PILs were designed and synthesized with six different anions. The effect of anions of differing 

kind on the thermal properties of these polymers was evaluated and dielectric characteristics of 4-

vinyl- and 1-vinylimidazolium polymer salts were compared. The glass transition temperature of 

the PF6
− and trifluoromethylsulfonylimide, TFSI−, salts of polymers derived from1-butyl-2,3-

dimethyl-4-vinylimidazolium (23D4VIm+) triflate  polymers were found to be anomalous 

(substantially invariant) as compared to those of PF6
−, TFSI−, and triflate salts of 4-vinyl- and 1-

vinylimidazolium polymers. The invariance in the glass transition of poly(23D4VIm+) with 

different anions was attributed to increased separation between ion pairs, enforced by having 

substituents on the 1, 2, 3,and 4 positions of the imidazolium ring. 
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Chapter 1 Introduction 

Optimal capacitive electronic devices would employ thin-film polymer electrolytes.  

Unfortunately, with ion motion generally being correlated with segmental motion in the polymer, 

covalent incorporation of an ionic moiety (cation or anion) in a polymer composition invariably 

results in dramatically reduced ion mobility and conductivity. [1] This limitation can be addressed 

to some degree by lowering the glass transition temperature of the polymer and reducing the 

dimensions of the ion-conductive phase. [2], [3], [4], [5] It has also been suggested that ionic and 

segmental dynamics in solid polymer electrolytes can be decoupled. [6] There have been a 

number of reports detailing the synthesis, glass transition properties, and ion conduction in 

poly(ionic liquids, specifically N-vinyl- and 1-acryloyloxyethylimidazolium polymers. [3], [4] 

The goal of the present research is to better understand how the relative degree of freedom 

and the accentricity of the imidazolium moiety tethered to the polymer backbone influences 

the glass transition and molecular relaxations in poly(ionic liquids) derived from 4-

vinylimidazolium polymers.  The size and character of the counterion in these polymers, which 

can also have a dramatic impact on the glass transition of the polymer and the accentricity of 

imidazolium salt, has also been studied. 

This dissertation is comprised of six chapters.  

The first chapter provides context for, and briefly presents the objectives of this research. 

Chapter 2 provides background on three types of capacitive electrochemical devices, batteries, fuel 

cells and capacitors. 
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Chapter 3 provides relevant history on solid polymer electrolytes. It contains three sections 

introducing the topics of ion transport in polymer, solid-phase electrolytes and ion conductivity of 

solid-phase electrolytes, respectively 

The Chapter 4 is the experimental section. It contains information on materials and methods 

used in this project and detailed procedures for synthesis of the monomers and polymers utilized 

in this research. 

In Chapter 5, the results of thermal analysis, including the glass transition temperatures of the 

two families of polymers synthesized in this project, are presented. In section 2 of Chapter 5, 

comparative thermal characteristics of poly(1-ethyl-3-vinylimidazolium) and poly(1-ethyl-3-

methyl-4-vinylimidazolium) salts, and poly(1-butyl-2,3dimethyl-4-vinylimidazolium) and poly(1-

ethyl-3-methyl-4-vinylimidazolium) salts are presented. 

Chapter 6 provides the results of dielectric measurements on the two families of polymers. 

The first section in Chapter 6 gives a brief introduction on dielectric relaxation. The second section 

provides information on models for understanding dielectric relaxation phenomena in polymer 

systems. The third section of Chapter 6 gives the results of dielectric measurements for poly(ionic 

liquids) derived from 4-vinyl- and N-vinylimidazolium polymers with no substituent at the 2-

position of the imidazolium ring and dielectric properties of imidazolium polymers derived from 

1-butyl-2,3-dimethyl-4-vinylimidazolium triflate. 

The appendix contains the DSC thermograms of N-vinylimidazolium polymers, poly(1-ethyl-

3-methyl-4-vinyl imidazolium salts) and poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts. It 

also contains some theoretical information of dielectric relaxation.  
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Chapter 2 Background 

2.1 Overview 

Energy production that relies on the combustion of fossil fuels is forecast to have a severe 

impact on global economics and ecology [7]. Electrochemical energy storage and production is a 

key element in managing energy consumption in a more sustainable and more environmentally 

friendly way. Systems for electrochemical energy storage and conversion include batteries, fuel 

cells, and electrochemical capacitors (ECs). Common features are that the energy-storage or 

generation processes take place at the phase boundary of the electrode/electrolyte interface and 

that electron and ion conduction are separated [7], [8]. Figure 1 (a ,b, and c) shows the basic 

structure of the three systems. They all consist of two electrodes separated by an ion-conductive 

electrolyte. The anode and cathode in these devices must be electronically conductive and may be 

ion-conductive. The electrolytes must be ion-conductive but not electronically conductive [9].  

 

(a) 
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(b) 

 

(c) 

Figure 1 Three electrochemical systems: (a) battery (b) fuel cell (c) supercapacitor [1] 

(Figures reprinted from reference 1 with permission of M. Winter) 

2.2 Introduction 

Electrochemical energy production entails reactions which convert chemical energy to 

electrical energy. These reactions, which take place at the interface of an ion-conductive material 

and electron conductors, often involve electron transfer between an anode (negative electrode of 

a cell associated with oxidative chemical reactions that release electrons into the external circuit) 

and a cathode (positive electrode of a cell associated with reductive chemical reactions that gain 
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electrons from the external circuit). Batteries and supercapacitors are capacitive electrochemical 

devices that produce and store energy.  

In batteries electrical energy is generated by conversion of chemical energy via redox 

reactions at the anode and cathode. Batteries are closed systems, where the anode and cathode 

are the charge-transfer medium and take an active role in the redox reaction as “active masses.”[7], 

[10], [11] In other words, energy storage and conversion occur in the same compartment.  

2.2.1 Supercapacitors 

In supercapacitors (or electrochemical capacitors), redox reactions may not be involved in 

the energy generation process; and, thus the common practice of using the terms anode and 

cathode may not strictly be appropriate. By polarization of electrolyte ions at the 

electrode/electrolyte interface, so-called electrical double layers (EDLs) are formed.  When 

charge stored in these electrical double layers is released, parallel movement of electrons in the 

external  occurs, and stored electrical energy is delivered. [7], [12] Supercapacitors differ from 

conventional capacitors primarily in the mechanism of energy storage. Supercapacitors store 

electrical charges in electric double-layers that form at the interface between each electrode and 

a common electrolyte. Therefore they are also called electrochemical double layer capacitors, or 

EDLCs. [7], [13-16] EDLCs typically have energy densities 300 times that of the conventional 

capacitors and one tenth that of batteries. However, their power density is typically 10 times that 

of the most batteries. [16] By offering high power and energy density, the supercapacitors are a 

suitable intermediate power source between batteries and conventional capacitors. [15], [16] A 

typical structure of an EDLC is shown in Figure 2. [13] 
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Figure 2 Electrochemical double layer capacitor: The activated carbon granules are in 

electrical contact with each other to constitute a "plate" with a huge surface area. The 

separator is permeable to the electrolyte [13]. 

It has been demonstrated that the performance of supercapacitors is determined by the 

composition of electrodes and the electrolyte. [17], [18] The predominant electrode materials are 

activated carbon [13] and graphene. [14] The properties of electrode materials that affect the 

EDLC’s performance are porosity, pore size distribution, wettability and specific surface area (a 

measurement of the total surface area per unit of mass). [14]-[19]  

Electrolyte materials that have been described in the literature include aqueous salt solutions, 

organic salt solutions, ionic liquids and polyelectrolyte materials. [20-25] Given that energy 

density is proportional to the square of the operation voltage; because of their greater electrical 

stability window (ESW), (4V versus 1V), which enables higher operation voltage, organic salt 

solutions, have proven to be better electrolytes than aqueous salt solutions. [20] Because of safety 

concerns, ionic liquids are being explored in EDLCs as “solvent-free” electrolytes. [21-23] 

Polymeric materials have long been of interest as film-forming electrolytes. [22], [24], [25]  

These solid-phase electrolytes can improve the power density of EDLCs by lowering the mass of 

http://en.wikipedia.org/wiki/Surface_area
http://en.wikipedia.org/wiki/Mass
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devices. Additionally, thermally stable polymeric materials can have a higher temperature-use 

range. [22], [24] 

2.2.2 Batteries 

Lithium-ion batteries are a class of rechargeable batteries in which lithium ions move from 

the negative electrode to the positive electrode during discharge, and back when charging. [7], 

[26] As compared to other types of batteries, they provide significantly higher energy density and 

lighter weight. During discharge, lithium ions carry the current from the negative to the positive 

electrode, through the non-aqueous electrolyte and separator diaphragm. During charging, an 

external electrical power source (the charging circuit) applies a higher voltage (but of the same 

polarity) than that produced by the battery, forcing the current to pass in the reverse direction. 

The lithium ions then migrate from the positive to the negative electrode, where they become 

embedded in the porous electrode material by a process known as intercalation. [7], [26-28] The 

structure of a lithium ion battery is illustrated in Figure 3. 

 

Figure 3  Rechargeable Li-ion battery with porous cathode and anode as a lithium-ion 

source 
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The choices of materials for cathodes, anodes and electrolyte are particularly important in 

lithium-ion batteries. A major concern regarding performance of lithium-ion batteries is safety, 

specifically the reactivity of electrodes in organic solvent electrolytes. [26-28] Ionic liquids have 

been widely investigated as solvent-free electrolytes for lithium ion batteries with a large 

electrochemical stability window. [29-31] Plasticized polymer films are also an option for safe, 

high-energy-density, and, environmental-friendly designs. [32-35] The so-called lithium-

polymer battery (LPB) contains thin layers of laminated material that is flexible and may be 

shaped into non-planar geometries. [28], [33], [34] As mentioned in the previous section, the 

issue with the LPB is the low conductivity of solid-phase electrolytes and their reactivity with 

electrode in presence of plasticizer. [32-35]  

2.2.3 Solar Cells 

Because solar energy is essentially unlimited, photovoltaic devices are considered as an 

alternative to fossil fuels for energy-production. As shown in Figure 4, multi-junction solar cells 

based on semiconductor compounds give the highest efficiency, around 40%. However, because 

of the high cost of the materials and processing difficulties, these solar cells have, so far, only 

been employed in space applications. Solar cells based on polymers have been reported to give 

conversion efficiency as high as 12%. Compared to semiconductor-based devices, polymer solar 

cells are lightweight (which is important for small autonomous sensors), potentially disposable, 

and inexpensive to fabricate and have lower potential for negative environmental impact. They 

have been fabricated using printed electronics, are typically flexible, and their design can be 

customized. [36] 

http://en.wikipedia.org/wiki/Printed_electronics
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The Solar cell is an electrical device that converts the energy of light directly into electricity 

by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics—

e.g. current, voltage, or resistance—vary when light is incident upon it) which, when exposed to 

light, can generate and support an electric current without being attached to any external voltage 

source. [37] Polymer solar cells usually consist of an electron- or hole-blocking layer deposited 

on top of an indium tin oxide (ITO) conductive glass followed by electron donor and an electron 

acceptor (in the case of bulk heterojunction solar cells), a hole or electron blocking layer, and 

metal electrode on top. The nature and order of the blocking layers – as well as the nature of the 

metal electrode – depends on whether the cell follows a regular or inverted device architecture. 

[36] 

 

Figure 4 Chronological record energy-conversion efficiencies of solar cells. [38] 

http://en.wikipedia.org/wiki/Solar_cell  

 

http://en.wikipedia.org/wiki/Solar_cell
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Chapter 3 Solid Polymer Electrolytes – Relevant History 

3.1 Ion Transport in Polymers 

In 1973, Wright and co-workers [39] reported the complexation of alkali metal ions by 

poly(ethylene oxide), an important discovery that led to the development of new polymer/salt 

complexes known as solid polymer electrolytes [40]. Berthier and co-workers [41] demonstrated 

that in these semi-crystalline systems, ion transport occurs through the amorphous regions. 

Angell and co-workers [42] studied the conductivity of polymer electrolytes and observed an 

Arrhenius relationship between conductivity and temperature which suggested a similarity in 

behavior between the viscosity [43] and conductivity [44] of super-cooled molten salts.  

Ion transport in glass-forming polymer electrolytes has been understood by fitting the data 

to the Vogel-Tammann-Fulcher (VTF) equation [45] where equivalent conductance, σ, is a 

function of temperature.  

 σ = σ0T−
1
2exp (

−K

T − T0
)                                                            Equation 3.1 

In Equation 3.1, σ0 is the constant term and K is a term analogous to activation energy in the 

Arrhenius behavior. T0, also known as the Vogel temperature, corresponds to the absolute zero 

of the Arrhenius theory or the temperature at which ions cease to transport. Experimentally, T0 is 

difficult to obtain and has been suggested to be 50K below the glass transition temperature, Tg, 

[46], [47] determined by differential scanning calorimetry (DSC). T0 might also be obtained from 

the three parameter fit of Equation 3.1. But according to Angell, [42] accurate determination of 

T0 by regression requires measurement of transport properties that span 1.5 orders of magnitude, 
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corresponding to a temperature range between T0 and 2T0. Barreira and Barreira [43] noted that 

at temperatures much greater than T0, the behavior becomes Arrhenius-like. 

σ = σ0exp (
−Ea

RT
)                                                        Equation 3.2 

In Equation 3.2, R (=8.314 J/mol K) represents the gas constant and Ea (J/mol) is the 

activation energy in Arrhenius relationship. The activation energy can be rationalized as the 

resistance to diffusion jumps and for the Arrhenius equation this does not change with 

temperature. Bartholomew [48] proposed that an equivalent activation energy for Equation 3.2 

might be obtained by taking its derivative with respect to temperature, yielding Equation 3.3. 

Ea,VTF = −R
∂lnσ

∂(1
T⁄ )

= − 1
2⁄ RT + KR (

T

T − T0
)

2

                        Equation 3.3 

Equation 3.3 shows the temperature dependence of activation energy in VTF equations. 

When the temperature, T, equals Vogel temperature, T0, the activation energy goes to infinity; 

this is consistent with the definition of T0 as being the temperature at which the ion transport 

ceases. 

The VTF equation can also be used in understanding the plots of ion conductivity against 

temperature as shown in Figure 5. [4] This model has three fitting parameters instead of two in 

Arrhenius model, which gives better accuracy when being used in analyzing large, complicated 

systems like polymer electrolytes. The ability to extract physical meaning from the fitting 

constants provides a means of comparing the conductivity data from different samples.  
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Figure 5 Arrhenius plot of the conductivity of various polymer/lithium salt[48] 

(Figures reprinted from reference 48 with permission of Armand, M. B.) 

The difference between Arrhenius model and VTF models lies in the fitting parameter, T0, 

which is also called Vogel temperature. This parameter may provide a clue on how the polymer 

chain dynamics influence the ion transport process. In both models σ0 is related to the 

conductivity at infinite temperature (or when T is much greater the T0) and K is the activation 

energy related to the diffusion jump in polymer electrolytes.  
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Another well-known protocol to describe the temperature dependence of mechanical and 

electrical properties of polymers is the Williams, Landel, and Ferry (WLF) model. [49] This 

model is shown in Equation 3.4. In Equation 3.4, aT is the shift factor. As presented here, the 

shift factor is defined as the ratio of the temperature dependent viscosity, η(T), and the viscosity 

measured at a chosen reference temperature, Ts, so that it is a ratio of relaxation times at the 

temperature of the measurement versus the relaxation time at the reference temperature. 

Log(aT) = Log [
η(T)

η(Ts)
] =

−c1(T − Ts)

(c2 + T − Ts)
                                    Equation 3.4 

Williams, Landel, and Ferry [49] made the observation that among seventeen different 

polymers, polymer solutions, and glass-forming liquids, plots of the shift factor, aT, versus T-Ts 

yielded plots which superimposed on each other. They found that the universal constants are C1= 

-8.86 and C2 = 101.6. In addition, Ts was often found to be equal to Tg + 50K. [60] Since the 

reference temperature, Ts, is arbitrary, the substitutions, Ts= Ts + δ, C1=C1C2/(C1 + δ) and C2=C2 

+ δ, where δ = 50K can be used to transform Equation 3.4 into a form, as shown in Equation 3.5, 

that is a function of Tg with C1=17.44 and C2=51.6. 

Log(aT) =
−c1(T − Tg)

(c2 + T − Tg)
                                      Equation 3.5 

Equation 3.5 can be related to conductivity using Nernst-Einstein equation, shown below in 

Equation 3.6, where σ is the conductivity at temperature T, D is the diffusivity of ions, N is the 

number of charge carriers, and q is the charge constant. Since viscosity is inversely proportional 

to conductivity, Equation 3.6 can be converted to Equation 3.7 to describe conductivity. 

σ =
DNq2

kT
                                                  Equation 3.6 
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Log(aT) = log [
η(T)

η(Ts)
] = Log [

σ(Ts)

σ(T)
]                          Equation 3.7 

Adam and Gibbs [50] proposed a molecular kinetic model explaining the temperature 

dependence of relaxation in glass-forming liquids based on thermodynamic arguments. This work 

is of particular interest because while based on theory, it predicts behavior that is described by 

the empirical WLF equation. The glass transition temperature is described by Adam and Gibbs 

[50] as a quasistatic temperature below which the time-scale related to establishment of 

equilibrium is beyond physical realization of most experiments. This was suggested to be due to 

an increase in relaxation times due to the small number of configurations available to the system, 

suggesting the smallness of equilibrium entropy as the glass transition temperature is approached. 

Extrapolation of equilibrium data collected above the glass transition temperature to temperatures 

below the Tg resulted in negative configurational entropies, a thermodynamic “catastrophe”. 

Besides the VFT and WLF behavior of polymer/salt systems described above, there are other 

cases in which ion transport in polymers is better described by the Arrhenius equation. An 

example is proton transport in sulfonated polymers (i.e., polymers containing sulfonic acid). The 

most popular example is a perfluorinated sulfonic acid polymer membranes referred to as Nafion 

(DuPont), which show high water-saturated proton conductivities of >10 mS/cm at room 

temperature. Nafion consists of a poly(tetrafluoroethylene) (PTFE) backbone with perfluoroether 

side chains terminated in sulfonic acid moieties. The backbone is hydrophobic, while the acid 

containing side chains are hydrophilic. This difference is a likely reason for the interesting co-

continuous microphase separated morphology observed in these polymer membranes. 
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3.2 Ionic Liquids in solid polymer electrolytes 

Batteries addressed to small and light-weight electronics require film-like electrolyte 

materials such as polymer electrolytes. The choice of solid electrolyte materials implies several 

advantages: (1) the absence of liquids or gases which may leach out, damaging the cell; (2) the 

possible realization of low-specific-capacity electrochemical devices; (3) a long lifetime due to 

the high mechanical resistance of the materials; and, (4) a utilization temperature range larger 

than that for liquid electrolyte systems. [51] ILs are an important option in this respect because 

their unique physical and chemical properties meet the requirements of plasticizing salts for 

polymers. Furthermore, ILs may expand the temperature range where flexible polymers can be 

used. 

Ionic liquids (ILs) are are typically: (1) liquid over a wide temperature range - with low 

melting points, (2) nonvolatile, (3) thermally stable, (4)  nonflammable, (3) high in ion content, (5) 

high in ionic conductivity, and (6) chemically and electrochemically stable. [52-54] Typical ionic 

liquids are comprised of tertiary or quaternary sulfonium, phosphonium, or ammonium 

(imidazolium, pyridinium, pyrrolidinium) cations in combination with anions that have low Lewis 

basicity, such as BF4
-, PF6

-, CF3SO3
-, (CF3SO2)2N

-, etc. [52]  

The modern era of ionic liquids stems from the work, in the late 1970’s, on alkylpyridinium 

and dialkylimidazolium salts. [55] The discovery, in the early 1990’s, of hydrolytically stable, 

liquid, 1,3-dialkylimidazolium tetrafluoroborate and hexafluorophosphate salts, led to an 

explosive growth in the number of publications relating to the synthesis, properties and 

applications of this unique class of materials that came to be known as room temperature ionic 

liquids (RTILs). [56] Because of frustration in packing, salts derived from large, irregularly shaped 
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cations and anions, have low melting points, typically less than 100C and often below room 

temperature. Common cations in RTILs (shown in Figure 6) are quaternary ammonium salts, such 

as tetralkylammonium [R4N]+ or cyclic amines, both aromatic (pyridinium, imidazolium) and 

saturated (piperidinium, pyrrolidinium). [57], [58]  Large inorganic or organic anions like  
4BF , 

6PF , 
6AsF  

2N(CN)  
4 9 3C FSO  , 

3 2CF CO  , 
3 3CFSO   etc. are also crucial to formation of salts with 

low-melting points.  

The conductivity of RTILs, at ambient temperature, falls into a broad range of 0.1–14 mS/cm, 

which is lower than that for aqueous solution (500–700 mS/cm) or organic solvent solution (60 

mS/cm) electrolytes. The conductivity of ionic liquids, however, may be comparable to that of 

lithium solution electrolytes (10 mS/cm). [52], [53], [54-57]. 

 

Figure 6  Common Cations and Anions for ionic liquid 
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Given the almost unlimited structural variation that can be realized with organic ions it is 

possible to engineer the structure of ionic liquids to get a wide range of physical and chemical 

properties. It has also been postulated that the function of capacitive electrochemical devices might 

be further improved if conventional ionic liquids were replaced by film-forming poly(ionic liquids) 

in which only the target ion is mobile. [51] However, covalent incorporation of an ionic liquid 

moiety in a polymer backbone invariably results in dramatically reduced ion mobility and 

conductivity. [1] This limitation can potentially be addressed by reduction in the dimensions of 

the ion transporting phase. [2], [3] Reduced dimensions can be realized by incorporating the 

poly(ionic liquid) in a polymer blend, [4] or precision block copolymer whose morphology can be rationally 

designed. [5]  

There are two general methods to obtain an ILs-based polymer electrolyte. The first is the 

incorporation of the IL as a solvent or plasticizer for a nonionic polymer or by in-situ 

polymerization of a nonionic vinyl monomer in an IL solvent. [59-62] The resultant solid gel 

electrolytes provide the structural advantages of the nonionic polymer and thermal stability and 

ion conductivity of the IL salt. [60] Another way to make a film-forming ionic liquid electrolyte 

is synthesis of a homogeneous ionic liquid polymer. Such a polymer can be realized by 

introducing a polymerizable group into the cationic or anionic moieties of the ionic liquid. In 

such poly(ionic liquids), only the target ion is mobile. [63-65]  

3.2.1 Polymer/Ionic Liquid Mixtures 

The polymer electrolyte options introduced above may be broadly categorized as either solid 

polymer electrolytes (SPE) or gel polymer electrolytes (GPE). SPE’s are based on high molecular 

weight polymers which perform the dual purpose of solvating the ions and providing mechanical 
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strength. GPE’s are polymer gels in which the polymer is plasticized by a liquid electrolyte. Due 

to their higher conductivity GPE’s, have received more attention and the literature reports 

numerous studies of polymer/IL gel electrolytes. [52-54], [51], [63] Poly[(vinylidene-fluoride)-

co-hexafluoropropylene]/1-ethyl-3-methylimidazolium trifluoromethylsulfonate [52], [53] and 

poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate-co-dimethylacrylamide)/1-ethyl-3-

methylimidazolium dicyanamide [64] gel electrolytes were reported to exhibit high conductivities 

at room temperature (~1 mS/cm). The conductivity of these gels was found to decrease with 

increasing polymer content due to increasing viscosity and glass transition temperature of the 

mixture. [60] The stability of high-IL-content polymer/IL gels is improved by cross-linking. 

Susan et al. [66] reported that a lightly cross-linked polymer/IL gel prepared by in-situ 

polymerization produced materials having conductivity around 10 mS/cm at room temperature. 

3.2.2 Polymerized Ionic Liquid/Ionic Liquid Mixtures 

Poly(ionic liquids) synthesized by polymerization of ionic liquids with vinyl or acrylic 

groups incorporated in their molecular structure have also been investigated as candidates for 

solid-state electrolytes. [63-68] A schematic showing possible structures and architectures of 

poly(ionic liquids) (PILs) [1] is presented in Figure 7. Poly(ionic liquids) can have either the 

cation or anion tethered to the polymer chain with the counterion being bound by ionic attraction 

to the cation. One can also envision polycation/polyanion systems and zwitterionic- polymers in 

which both the cation and anion are covalently tethered to the polymer chain, either in 

zwitterionic copolymers or polymerizable zwitterionic moieties.  
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Figure 7 Options to make a solid-phase electrolyte based on PILs [1] 

The ionic conductivity of polymerized ionic liquids has been studied by a number of 

researchers. [66-68] Ionic conductivity is reduced significantly after polymerization. The 

conductivity of a small molecular, monomeric, ionic liquid based on an imidazolium cation is on 

the order of 10 mS/cm. After polymerization the ionic conductivity is reduced to 10-2mS/cm or 

less. [1] 

3.3 Ion Conductivity of Solid-phase Electrolyte 

As mentioned in previous sections, because of their film forming characteristics and higher 

temperature use range, polymerized ILs can be advantegeous in capactive electrochemical 

devices. It has been reported that the ionic conductivity of a poly(ionic liquid) is increased when 

doped with lithium salts. The conductivity of poly(1-vinylimidazolium tetrafluloroborate), 

P(VyImBF4), doped with LiCl, LiBF4 or LiTFSI was increased substantially as the lithium salt 

content was increased, up to the solubility limit of the salt in the polymer (see Figure 8). [62] 

Above the solubility limit, ionic conductivity starts to decrease due to phase separation. 
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Figure 8 The ionic conductivity of P(VyImBF4) as a function of salt concentration ● LiCl;  

∆ LiBF4; ■ LiTFSI [62] (Figures reprinted from reference 65 with permission of H. Ohno) 

3.3.1 Glass Transition Temperature 

As discussed in Section 3.1, the ionic conductivity of solid polymer electrolytes is a function 

of the glass transition and viscoelastic properties of the composition. The glass transition, Tg, is 

a key characteristic of an amorphous polymer. When the polymer is heated above Tg, there is a 

substantial increase in the free volume of the polymer (the space in polymer that is not occupied 

by polymer molecules) and, with the onset of large scale segmental motion in the polymer 

backbone, the polymer becomes soft and flexible. In this rubber-like state, the polymer molecules 

are able to move and ionic conductivity is higher.  

Ohno et al. [72] have shown that the glass transition temperature and the ionic conductivity 

of poly(ionic liquids) can be linearly related. Figure 9 displays the relationship between ionic 

conductivity and Tg for poly(ionic liquids) with imidazolium, piperidinium, and other onium 

cations. [72] This figure clearly demonstrates that PILs having lower glass transition temperatures 

exhibit higher ionic conductivity. 
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Figure 9 Relationship between ionic conductivity and Tg for PILs. Imidazolium cation (о), 

piperidinium cation (□), other onium cation ( ∆) [72] (Figures reprinted from reference 72 

with permission of H. Ohno ) 

Ohno et. al. also sythesized and polymerized ionic liquid monomers with an alkyl spacer between 

a polymerizable acryloyl group and an imidazolium cation. [63], [72] The ionic conductivity of 

polymers with longer alkyl spacers was increased by two orders of magnitude.  

The glass transition temperature of poly(ionic liquids) can also be lowered by making 

copolymers. The Tg of a copolymer is predicted by Flory-Fox equation (Equation 3.8), where W1, 

and W2 are the weight fractions of two components.   

 1 2

,1 ,2

1

g g g

W W

T T T
                                Equation 3.8 

From this equation, it can be seen that by copolymerizing an ionic liquid monomer with a non-

ionic monomer that would yield a low-Tg homopolymer, one can obtain copolymers with lower 

glass transition temperatures. Even though the ion concentration is lower, in nonionic 

monomer/ionic liquid monomer copolymers, the conductivity is typically higher than that of a 
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homopolymerized ionic liquid. Elabd et al. [69] synthesized a random copolymer of hexyl 

methacrylate (HMA) with methacrylate-based imidazolium tetrafluoroborate (BF4) or 

bis(trifluoromethane sulfonyl) imide (TFSI) monomers, shown in Figure 10.  Up to 50 mol% 

HMA, copolymers showed increasing ionic conductivity with increasing HMA content.  

O

O

CH3

N

N

CH3

O

O

+

BF4

-

 

Figure 10 Poly(methacryloylethylbutylimidazolium tetrafluoroborate-co-

hexylmethacrylate)  

3.3.2 Anion effect 

Few papers have been published relating to the effect of the counterion on ionic conductivity 

in poly(ionic liquids). [70], [71] Factors affecting ionic conductivity include the size and 

symmetry of the counterion and the dissociation energy of ion pairs. Elabd et. al. prepared the N-

methacryloyloxyethyl imidazolium bromide homopolymer and ion exchanged the homopolymer 

with bis(trifluoromethanesulfonyl) imide (TFSI), tetrafluoroborate (BF4), 

trifluoromethanesulfonate (CF3SO3), and hexafluorophosphate (PF6) anions.[70] Figure 11 

shows the structure of the homopolymer, counterions and ionic conductivity data. 
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Figure 11  Ionic conductivity versus 1000/T (K-1) of PILs: poly(MEBImeBF4) (blue 

diamonds), poly(MEBImePF6) (green squares), poly(MEBImeTriflate) (magenta triangles), 

poly(MEBImeTFSI) (red circles)[70].( Reprinted from reference 70 with permission from 

Elsevier)  

It can be seen from Figure 11 that the conductivity of PILs follows the order: 

TFSI>Triflate>BF4>PF6. This is opposite order of glass transition temperatures of the respective 

polymer salts, [72] poly(MEBImePF6), 367K > poly(MEBImeBF4, 358K > 

poly(MEBImeTriflate), 337K > poly(MEBImeTFSI), 280K.  

3.3.3 Reduced Dimensions for Ion Conduction 

Although the conductivity of polymerized ionic liquids can be improved by properly 

designing the structure of cations, making copolymers and choice of anion, it is the influence of 

these factors on Tg that effectively determines or limits ionic conductivity. Given the viscoelastic 
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character of polymers (or polymer gels) ionic conductivity is too low for utility in many 

electrochemical devices.  

Recently, ion conduction has been found to be anisotropic in self-organized nanostructured 

compositions. [2], [3] The proposition that reduced dimensions will result in higher ion 

conductivity is supported by literature reports of two-dimensional ionic conductivity in a smectic 

liquid-crystalline structure containing a lithium salt complexed with tetraoxyethylene moieties. 

[2] Enhanced ionic conductivity has also been reported in one dimensional channels of a 

polymerized liquid crystal having a tethered 1,3-dialkylimidazolium functional group in the one-

D channel. [3] The one-dimensional ion-conductive film was fabricated by photopolymerization 

of aligned columnar liquid crystals of a fan-shaped imidazolium salt. In the columnar structure, 

the ionic moiety self-assembles to the inner part of the column. The column was oriented 

macroscopically parallel to a glass surface by mechanical shearing. Anisotropic ionic 

conductivities were observed for the oriented films stabilized by photopolymerization. The data 

showed that ion conduction in the parallel direction was higher than that in the vertical direction 

by about two orders (Figure 12). 

 

Figure 12  One-dimensional ion-conductive polymeric films: anisotropic ion conduction [3] 

(Figures reprinted from reference 3 with permission of H. Ohno ) 
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Poly(ionic liquid) block copolymers, poly[styrene-b-4-vinylbenzylalkylimidazolium 

bis(trifluoromethanesulfonyl)imide] [PS-b-PVB-alkylIm+TFSI]; alkyl = CH3, n-C4H9, n-C6H13, 

were designed and synthesized by Yossef A. Elabd et. al. [73] The polymer structure is shown in 

Figure 13(a). The morphology of the block copolymer was found to be a mix of cylindric and 

lamellar phases [see Figure 13(b)] which provide nanoscale channels for ion transport. The ionic 

conductivity for this block copolymer was measured to be 0.1 mS/cm-1 at 150 ºC, which is 

comparable with small-molecule ionic liquid. [1] Ionic conductivity was also found to increase 

with the increasing molar percent of the ionic component. [73] 

   

(a)                                                       (b) 

Figure 13 (a) Chemical structure of [PS-b-PVB-alkylIm+TFSI] (b) TEM images of 

cylinders and lamellae phase coexistence exhibited by solvent-cast [PS-b-PVB-

alkylIm+TFSI], scale bar is 200 nm [73] 
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Chapter 4 Experimental 

4.1 Materials and Methods 

4.1.1 Materials 

Unless otherwise noted, all chemicals were used as received, without further purification. 

1,1,1,3,3,3-hexamethyl disilazane (99.9%), 1-vinylimidazole (99+% distilled in vacuo), AIBN, 

(98%, recrystallized from methanol), 4-imidazoleacrylic acid (99%), calcium hydride (coarse 

granules, 95%), ethyl trifluoromethane sulfonate (99%), lithium hexafluorophosphate (LiPF6, 

98%), lithium trifluoromethanesulfonimide (LiTFSI, 99.95%), picric acid (99+%), and 

tetrafluoroboric acid (48 wt% solution in water) were purchased from Sigma-Aldrich. 

Ammonium chloride (99.5%, analysis ACS), ammonium sulfate (reagent ACS), iodomethane 

(stabilized, 99%), isopropanol (IPA, analysis), methyl alcohol (reagent ACS, 99.8%), potassium 

carbonate (reagent grade ACS, anhydrous), sodium bicarbonate (p.a.), and sodium dicyanamide 

(97% pure), were purchased from Acros Organics. Ethyl acetate (EA, AR ACS), hydrochloric 

acid (AR ACS), dichloromethane (AR ACS) were obtained from Mallinckrodt Chemicals. 

Sodium hydroxide (pellets), silica gel (40-140 Mesh), magnesium sulfate (Anhydrous Powder) 

were obtained from J.T. Baker. N,N-Dimethylformamide (Spectrograde), benzene (GR ACS), 

acetonitrile (GR ACS), hexanes (GR ACS) were obtained from EMD. Methanol (GR ACS), 

hexanes (GR ACS), Spectra/Por Membranes (MWCO 6-8,000) were purchased from VWR Inc. 



 

28 

 

4.1.2 Instruments 

NMR 

Proton NMR spectra were obtained using a Bruker, DRX-300 spectrometer.  Unless noted, 

all samples were dissolved in chloroform-d (Aldrich, 99.8 atom % D, 0.05% v/v TMS).  

Differential Scanning Calorimetry (DSC) 

Glass transition thermograms were obtained under nitrogen using a TA Instruments DSC 

Q100 equipped with a liquid-nitrogen cooling system. All samples were prepared in an Ar-filled, 

Vacuum Atmospheres glove box. Polymer samples were placed in an open, hermetically-

sealable, aluminum pan and heated to 100oC for 15 minutes on the surface of a digital hot plate 

in the glove box. The aluminum pan was then capped and sealed. In the DSC, samples were 

ramped to 200oC then cooled to -50oC at a rate of 20oC/min. Each sample was subjected to at 

least three heating and cooling cycles and held at -50oC and 200oC, respectively, for 1 minute in 

between each heating and cooling cycle. It was generally found that the DSC traces for the second 

and third heating cycles were identical and could be overlaid.  Data recorded in the tables in this 

thesis were taken from the second of the three heating cycles. Tg values are reported as midpoint 

glass transition temperatures, Tg-mid.  The analysis was a 7-step process: (1) heating from 22oC 

to 200oC at 20oC/min; (2) holding for 1 minute at 200 C; (3) cooling from 200 to-50oC at 

20oC/min; (4) holding for 1 minute at -50oC; (5) heating from -50oC to 200oC at 20oC/min; (6) 

holding for 1 minute at 200C, and; (7) cooling from 200oC to -50oC at 20oC/min. It cannot be 

emphasized too strongly that obtaining accurate, repeatable measures of the glass transition in 

poly(ionic liquid) 1-vinyl- and 4-vinylimidazolium salts requires substantial diligence and care.  

In the present research, rough correspondence in heating cycle and cooling cycle heat capacity 
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changes was generally required to validate a heat capacity change as a glass transition. Additional 

validation was garnered by way of a final heating cycle from -50 to 200C, heating at 40C per 

minute. Under these conditions heating cycle heat capacity changes associated with the glass 

transition will be amplified and shifted to a somewhat higher temperature. 

Size Exclusion Chromatography 

Molecular weight and polydispersity were determined using an Agilent 1100 series gel 

permeation chromatograph with two Agilent Zorbax PSM 60-S columns (in series). The samples 

were eluted at 35oC, using N,N’-dimethylformamide as the solvent. Molecular weight values 

reported are styrene equivalent molecular weights based on hydrodynamic radius. 

Dielectric Spectroscopy 

Dielectric properties were measured with an ARES rheometer system from TA Instruments 

coupled with an Agilent LCR Meter 4284A. Polymer films whose thickness ranged from 250 µm 

to 1600 µm were prepared by solution casting from ethanol or DMF on Al foil substrates at 

ambient temperature. The films were dried in a fume hood at room temperature and cut to 22 mm 

by 24 mm before a final drying process in which they were further dried at 120 ˚C on the surface 

of a digital hot plate for at least 24 h. The dried films were then stored in a desiccator until use. 

The samples were placed between two stainless steel electrodes in the ARES and isothermally 

measured as a function of frequency, between 20 Hz and 106 Hz. The temperature was controlled 

by the ARES with liquid nitrogen and compressed air as the gas at low and high temperatures, 

respectively. 

The Havriliak–Negami (HN) model [74] is used to analyze the dielectric relaxation 

measurements.  The complex dielectric function, *() = ’ – i'', is written as: 
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 Equation 4.1 

where  = 2f is the radian electric field oscillation frequency;  is the high frequency limit 

of the dielectric constant; ε is the relaxation strength, defined as  = s - .   is the relaxation 

time which is the reciprocal of the radian frequency of maximal loss, max.  β and γ (0 < ≤1, 0 

< ≤1) are the shape parameters of the relaxation spectra. For a purely Debye relaxation process, 

both  and would be equal to unity.  The added term, –is), refers to effects of conduction, 

where 0 is related to dc conductivity and 0 is the permittivity of vacuum.  The exponential 

parameter, s, is equal to 1 for ohmic conductivity and less than 1 for non-ohmic effects in the 

conductivity [74]. The relationship between frequency at maximum loss, fmax, which is known as 

the relaxation rate, and the corresponding temperature can be described by an Arrhenius function.  

The frequency of maximum loss, fmax, was most often evaluated directly from plots of tan  (= 

''/') vs. frequency.  In three instances [poly(1-ethyl-3-methyl-4-vinylimidazolium PF6
-), poly(1-

ethyl-3-vinylimidazolium PF6
-) and poly(1-ethyl-3-methyl-4-vinylimidazolium BF4

-)] additional 

data were obtained by fitting plots of '' vs. frequency, according to Equation 4.1, with , , , 

, 0 and s as fitting parameters. 

4.2 Synthesis of imidazole and imidazolium monomers 

4.2.1 Synthesis of 4(5)-Vinylimidazole and 1-Methyl-5-vinylimidazole 

4(5)-Vinylimidazole (1) 

4(5)-vinylimidazole (1) was synthesized by decarboxylation of urocanic acid (4-imidazole 

acrylic acid (99%), Sigma-Aldrich). The procedure employed was analogous to that of 
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Overberger, et al. [75] Thus, in a typical procedure, urocanic acid (3.70 g, 26.8mmol) was 

decarboxylated in vacuo (10 µm Hg) at 230oC to yield 1.46g (58%) of crude 4(5)-vinylimidazole. 

The process was repeated as required to provide sufficient material for subsequent reactions.  

1-Methyl-5-vinylimidazole (2) 

The synthesis of (2) was carried out, as described in the M.S. Thesis of Darren Smith, using 

crude 4(5)-vinylimidazole. The 1-pot, regiospecific alkylation process was run in acetonitrile; a 

sub-stoichiometric (1:0.95 equivalent of 1-trimethylsilyl-4-vinylimidazole to methyl iodide) 

amount of methyl iodide was used.  This process differs from those reported by Kawakami and 

Overberger [76] and Wang and Smith [77] in that an excess of methyl iodide was not employed.  

The process is outlined in Reaction Scheme 1.    
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Reaction Scheme 1    Single pot synthesis of 1-methyl-5-vinylimidazole 

4.2.2 1-ethyl-3-methyl-4-vinylimidazolium trifluoromethane sulfonate (3) 

The synthesis of (3) was also carried out, as described in the M.S. Thesis of Darren Smith. 

The process is outlined in Reaction Scheme 2. Thus, freshly distilled (1) (4.22g, 39.1mmol) and 

dichloromethane (50mL) were charged to a 250 mL three-neck round bottom flask, equipped 
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with gas inlet valve, Teflon adapter with thermometer, addition funnel, and magnetic stir bar.  

The solution was cooled to 0oC, by immersion into an ice-water bath, and stirred under an Argon 

blanket. Ethyl trifluoromethane sulfonate (28.38g, 0.16mol,) and dichloromethane  

(50 mL) were charged to the addition funnel.  This solution was added to the reaction vessel drop-

wise over a 30 minute period and the reaction mixture was stirred at 0oC for 2 hours.  The addition 

funnel was then replaced by a short-path distillation head and the solvent was removed in vacuo, 

at 0oC, yielding 10.64g, 99%, 3-ethyl-1-methyl-5-vinylimidazolium trifluoromethane sulfonate 

as a white crystalline solid melting at 41C.    1H NMR (in THF-d8) 1.47 (3H, t, N-CH2CH3), 

3.81 (3H, s, N-CH3), 4.18 (2H, q, N-CH2CH3), 5.54 (1H, d, 3J 11.31Hz, cis-vinyl H), 5.88 (1H, 

d, 3J 17.46Hz, trans-vinyl H), 6.54 (1H, 3Jcis 11.31, 3Jtrans 17.46, vinyl H-C), 7.75 (1H, s, C-4H), 

8.92 (1H, s, C-2H), see Figure 14. 
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Reaction Scheme 2  Synthesis of 1-ethyl-3-methyl-4-vinylimidazolium trifluoromethane sulfonate 
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Figure 14  1H NMR of 1-ethyl-3-methyl-4-vinylimidazolium triflate 

 

4.2.3 Poly(1-ethyl-3-methyl-4-vinylimidazolium trifluoromethane sulfonate) 

1-ethyl-3-methyl-4-vinylimidazolium trifluoromethane sulfonate (3) was polymerized as 

outline in Reaction Scheme 3. Thus, monomer (3) (5.3g, 39mmol) was dissolved in ethyl acetate 

(30mL) and transferred to a polymerization tube at 0oC, under an Argon blanket.  One ml of a 

solution of AIBN (0.03g, 0.183mmol) dissolved in ethyl acetate (10mL) was added to the 

polymerization tube and mixed.  The solution was then degassed in three freeze-thaw cycles.  The 

tube was sealed in vacuo and immersed in a water bath at 65oC for 20 hours.  The resulting 

polymer was isolated by dissolution in methanol and precipitated in methyl-tert-butyl ether.  The 

precipitate was air dried on a hot plate at 90oC for 1 hour.  Yield = 3.07g, 88%,  

Mn = 8730 g/mol, Mw = 14,722 g/mol, PD = 1.7.  The 1H-NMR spectrum of the polymer is shown 

in Figure 15. 
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Reaction Scheme 3  Polymerization of 1-ethyl-3-methyl-4-vinylimidazolium triflate 

 

Figure 15  1H NMR of poly(1-ethyl-3-methyl-4-vinylimidazolium triflate) 

 

4.2.4 Anion exchange of poly(1-ethyl-3-methyl-4-vinylimidazolium salts) 

Poly(1-ethyl-3-methyl-4-vinylimidazolium triflate) (4), 3g, was dissolved in   30mL of  

methanol. 5mL aliquots of this solution were used in the ion-exchange processes detailed below.  

Poly(1-ethyl-3-methyl-4-vinylimidazolium tetrafluoroborate) (5) 

5mL (1.84mmol) of the stock solution of (3) was added to a centrifuge tube, to which 5mL 

of 48% tetrafluoroboric acid (79.5mmol) in water was added.  The solution was shaken 

vigorously and a precipitate formed.  The solution was centrifuged, decanted, and rinsed several 
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times with methanol to remove excess HBF4, in order to prevent the decomposition of the 

polymer; the tube was transferred to a glove box with inert atmosphere for further drying.   

Tg onset: heating cycle = 178-186oC, cooling cycle = 198oC. 

Poly(1-ethyl-3-methyl-4-vinylimidazolium hexafluorophosphate) (6) 

5mL (1.84mmol) of that the stock solution of (3)  was added to a centrifuge tube, to which 

a 25mL methanol solution containing LiPF6 (1.39g, 9.14mmol) was added.  The solution was 

shaken vigorously and a precipitate formed.  The solution was centrifuged, decanted and the tube 

was transferred to a glove box with inert atmosphere for further drying.  Tg onset: heating cycle 

= 187oC, cooling cycle = 200oC. 

Poly(1-ethyl-3-methyl-4-vinylimidazolium hexafluoroarsenate) (7) 

5mL (1.84mmol) of that the stock solution of (3) was added to a centrifuge tube, to which a 

5mL methanol/water (50/50) solution containing KAsF6 (2.1g, 9.18mmol) was added.  The 

solution was shaken vigorously and a precipitate formed.  The solution was centrifuged, decanted, 

and the tube was transferred to a glove box with inert atmosphere for further drying.  Tg onset: 

heating cycle = 206oC, cooling cycle = 234oC. 

Poly(1-ethyl-3-methyl-4-vinylimidazolium trifluoromethylsulfonylimide) (8) 

5mL (1.84mmol) of that the stock solution of (3)  was added to a centrifuge tube, to which 

a 25mL methanol solution containing LiTFSI (2.64g, 9.15mmol) was added.  The solution was 

shaken vigorously and an oil separated out on the bottom.  The top layer was removed and the 

tube was transferred to a glove box with inert atmosphere for further drying.  The oil turned into 

a brittle film.  Tg onset: heating cycle = 72oC, cooling cycle = 92oC. 
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Poly(1-ethyl-3-methyl-4-vinylimidazolium dicyanamide) (9) 

5mL (1.84mmol) of that the stock solution of (3)  was added to a centrifuge tube, to which 

a 25mL methanol solution containing sodium dicyanamide (0.82g, 9.2mmol) was added.  The 

solution was shaken vigorously and a precipitate formed.  The solution was centrifuged, decanted, 

and the tube was transferred to a glove box with inert atmosphere for further drying.  Tg onset: 

heating cycle = 73oC, cooling cycle = 114oC. 

4.2.5 1-Butyl-2,3-dimethyl-4vinylimidazolium triflate) (14) 

1-Butyl-2,3-dimethyl-4-vinylimidazolium triflate) (14) was provided by Fan Yang and was 

prepared as described in her published M.S. Thesis [78], by alkylation of 1-butyl-2-methyl-4-

vinylimidazole (13) with methyltriflate,. The 4-vinyl monomer (13) was prepared by butylation 

of 2-methyl-4(5)-vinylimidazole (12) which was prepared by hydrolysis of 1-trityl-2-methyl-4-

vinylimidazole (11). (11) was obtained by lithiation and methylation of 1-trityl-4-vinylimidazole 

(10) which was prepared from 4(5)-vinylimidazole (1). The process for tritylation of 4(5)-

vinylimidazole was analogous to that published by Schiavone et al. [75]  

The entire process is outlined in Reaction Scheme 4.  The 1H-NMR spectrum of 1-butyl-2,3-

dimethyl-4-vinylimidazolium triflate) (14) is shown Figure 16. 
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Reaction Scheme 4   Synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate 

 
Figure 16  1H NMR of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate 
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Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) (15) 

1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate (14) (1.68g, 

5.80mmol) was dissolved in ethyl acetate (8mL) and ethanol (2mL) and charged to a 

polymerization tube at 0oC. A 0.012 molar solution of AIBN in ethyl acetate (1mL) was added 

to the polymerization tube; and the reaction mixture was degassed in three freeze-thaw cycles, 

flame sealed, and immersed in a water bath at 65oC for 20 hours. A viscous polymer solution was 

formed. The polymerization tube was opened and the reaction mixture was precipitated in 300ml 

of diethyl ether. The product was isolated by centrifugation and dried in an inert atmosphere to 

yield 1.68g, 100%, of a fluffy white polymer, Mn  39,600 g/mol, polydispersity = 1.75.  The 1H-

NMR spectrum of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) is given in Figure 17. 

 

Figure 17 1H-NMR of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) 
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Formation of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) by anion exchange 

A “stock solution” with a concentration of 0.02 g/mL of poly(1-butyl-2,3-dimethyl-4-

vinylimidazolium trifluoromethane sulfonate) (15) in methanol was prepared and 10 ml aliquots 

of this solution were used in the ion-exchange processes detailed below.  

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium hexafluorophosphate) (16) 

10 mL (0.70mmol) of the above stock solution was added to a centrifuge tube, to which 10 

mL of ammonium hexafluorophosphate (0.90mmol) in methanol was added.  The solution was 

shaken vigorously and a precipitate formed.  The suspension was centrifuged, decanted, and 

rinsed twice with methanol to remove excess NH4PF6. The precipitated polymer was dried in the 

vacuum anti-chamber of a glove box. Elemental analysis (Galbraith Laboratories, Knoxville, TN 

– report Number 64747) indicated 77% ion exchange. 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethylsulfonylimide) (17) 

10 mL (0.70mmol) of the above stock solution was added to a centrifuge tube, to which 10 

mL of lithium trifluoromethylsulfonylimide (0.90mmol) in methanol was added.  The solution 

was shaken vigorously and a precipitate formed.  The suspension was centrifuged, decanted, and 

rinsed twice with methanol to remove excess LiTFSI. The precipitated polymer was dried in the 

vacuum anti-chamber of a glove box. Elemental analysis (Galbraith Laboratories, Knoxville, TN 

– report Number 64747) indicated 84% ion exchange.  

4.2.6 Copolymerization 

Copolymerization of 1-ethyl-3-methyl-4-vinylimidazolium with ethyl vinyl ether 

A solution of monomer (14) in ethanol (7mL) at 0C was charged to a polymerization tube. 

AIBN (0.04g) was dissolved in cold ethyl vinyl ether (0.66g, 9.11mmole, about 3.5mL) and this 
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solution was added to the ethanol solution of monomer (14). The resulting reaction mixture was 

degassed in three free-and-thaw cycles. The polymerization tube was sealed and. was immersed 

in water bath (65˚C) for overnight. The resulting polymer solution was only slightly viscous. A 

brittle brownish colored solid was isolated by precipitation in t-butyl methyl ether. Yield=0.35g  

Copolymerization of 1-ethyl-3-methyl-4-vinylimidazolium with n-butyl acrylate 

0.72g (2.5mmol) of monomer (14) and 0.64g (5mmol, 0.71mL) of n-butyl acrylate were 

dissolved into 7mL of ethyl acetate together with 0.013g of AIBN. The solution was charged into 

a polymerization tube and degassed in three freeze-and-thaw cycles. The tube was sealed and 

immersed in water bath (65˚C) for overnight. The polymer solution was precipitated in  

t-butyl methyl ether to yield a white solid. Mn = 37,000 g/mol, Mw = 80,000 g/mol, PD = 2.15.  
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Chapter 5 Thermal Properties of Imidazole Polymers 

Derived from Ionic Liquid 4-vinylimidazolium Monomers 

5.1 The Glass Transition in Ionic Polymers 

It is often said that the glass transition in polymeric liquids is a poorly understood 

phenomenon. This is particularly true for ionic polymers whose glass transition characteristics 

have received only limited attention since the early analysis by Eisenberg et al. [79] in which 

the glass transition of ionic polymers was found to be proportional to the ratio of the counter 

ion charge, q, to the distance between the centers of cations and anions, a.  Following on the 

work of Eisenberg, Tsutsui and Tanaka [80] reported that the glass transition temperatures of 

ionic polymers could be correlated with cohesive energy density, 
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Equation 5.2 

where NA is Avogadro’s number, e is the electronic charge, ρ is the polymer density, M is the 

molecular weight per skeletal ion, and a is the equilibrium distance between the center of the 

anion and the cation.  Equation 5.2 shows that the glass transition temperature is approximately 

equal to the cohesive energy density multiplied by a coefficient, K1.  The coefficient varies from 

polymer to polymer; and, in keeping with the analysis by Eisenberg, the glass transition 

temperature is predicted to be inversely proportional to the distance between the anion and the 

cation. Upon approaching the glass transition temperature, segmental relaxation slows down by 
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many orders. To quantify the steepness of the temperature dependence of the segmental 

relaxation time, τα, close to Tg, Angell [81] introduced a fragility parameter, m, that 

characterizes the deviation of the temperature dependence of τα from Arrhenius behavior.  
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  Equation 5.3 

Systems that have highly non-Arrhenius temperature dependence of τα with steep variations 

close to Tg are called “fragile”, and the systems that show nearly Arrhenius dependence of τα are 

called “strong”.  Agapov has studied the effect of polar interactions on the temperature 

dependence of structural (segmental) and chain dynamics in polymeric liquids [82]. The glass 

transition temperature, Tg, and fragility index, m, were found to depend on the monomer’s 

polarity and the relative position of the polar group. The effect of polar interactions on Tg and m 

was discussed in terms of a balance between changes in the cohesive energy and conformational 

rigidity. 

5.2 Thermal Properties of Imidazolium-based poly(ionic liquid) 

In this research, the thermal and dielectric properties of the family of 4-vinyl- imidazolium 

polymers has been examined. As compared to the more widely studied  

1-vinylimidazolium polymers [71-73], the pendant imidazolium group in  

4-vinylimidazolium polymers exhibits additional degrees of freedom, increased free volume 

and enhanced lateral overlap between proximate imidazole residues that may be situated 1,3 or 

1,5 with respect to each other on the carbon chain.  Moreover, increased degrees of freedom 

and greater asymmetry may allow for greater free volume and greater ability for the 
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imidazolium moiety to interact cooperatively in the transport of target ions.  Figure 18 displays 

a pentad of a poly(1-ethyl-3-methyl-4-vinylimidazolium salt) in which the counterion is 

sandwiched between pendant functional moieties positioned 1,3 on the polymer backbone.  
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Figure 18  Pentad segment of the 1-ethyl-3-methyl-4-vinylimidazolium polymer 

The cylindrical volume displaced by a rotating imidazolium group tethered to the polymer 

backbone at the 4 and 1 positions of the imidazolium ring and the bonds around which rotation 

is possible are depicted in Figure 19.  
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Figure 19  Asymmetry and rotational degrees of freedom in P4VIm+ and P1VIm+ 

In 1-vinyl- and 4-vinylimidazoliuim polymers, the hydrogen at the 2-position of the 

imidazole ring is somewhat acidic (pKa 21-23) [83], [84]. This acidic character can be the 

source of chemical and electrochemical instability. [85] In 2-methyl imidazolium moieties, this 
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problem is mitigated. [86] The present research is specifically concerned with the synthesis and 

polymerization, of 1-ethyl-3-methyl-4-vinylimidazolium and 1-butyl-2,3-dimethyl-4-

vinylimidazolium triflates and the thermal and dielectric properties of polymers derived  

therefrom. (See Figure 20.) 
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Figure 20 Structures of poly(1-ethyl-3-methyl-4-vinylimidazolium triflate) and  

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) 

5.2.1 Differential Scanning Calorimetry (DSC) 

DSC thermograms were obtained under nitrogen using a TA Instruments DSC Q100 

equipped with a liquid-nitrogen cooling system. All samples were prepared in an Ar-filled, 

Vacuum Atmospheres glove box. Polymer samples were placed in an open, hermetically-

sealable, aluminum pan and heated to 100oC for 15 minutes on the surface of a digital hot plate 

in the glove box. The aluminum pan was then capped and sealed. In the DSC, samples were 

ramped to 200oC then cooled to -50oC at a rate of 20oC/min. Each sample was held at  

-50oC and 200oC, respectively, for 1 minute in between each heating and cooling cycle.  

Tg values are reported as midpoint glass transition temperatures, Tg-mid.  The analysis was a 7-

step process: (1) heating from 22oC to 200oC at 20oC/min; (2) holding for 1 minute at 200 C; 

(3) cooling from 200 to-50oC at 20oC/min; (4) holding for 1 minute at -50oC; (5) heating from 
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-50oC to 200oC at 20oC/min; (6) holding for 1 minute at 200 C, and; (7) cooling from 200oC 

to -50oC at 20oC/min. Steps 5-7 represent the first heating/cooling cycle. Each sample was 

subjected to at least three heating/cooling cycles with the requirement that the second and third 

heating cycles overlay each other.  Correspondence in heating cycle and cooling cycle heat 

capacity changes were generally required to validate a heat capacity change as a glass transition.  

Additional validation was garnered by way of a final heating cycle from -50 to 200 C, heating 

at 40 C per minute. (At increased heating rates, heating cycle heat capacity changes associated 

with the glass transition will be amplified and shifted to a somewhat higher temperature.) It 

cannot be emphasized too strongly that obtaining accurate, repeatable, measures of the glass 

transition in poly(ionic liquid) 1-vinyl- and 4-vinylimidazolium salts requires substantial 

diligence and care. 

5.2.2 Comparative Thermal Characteristics of Poly(1-ethyl-3-vinylimidazolium) and Poly(1-

ethyl-3-methyl-4-vinylimidazolium) salts 

The glass transition in 4-vinyl- and 1-vinylimidazolium polymers was evaluated, as 

described above. The results of the comparative DSC analysis of the glass transition 

temperatures of a set of ion-exchanged 4-vinylimidazolium polymers and 1-vinylimidazolium 

polymers are presented in Table I where heating-cycle and cooling-cycle glass transition values 

are tabulated. Cooling cycle Tg-mid values are somewhat lower than the heating cycle Tg-mid 

values.  This may be a result of a longer time constant for the reformation of the glass, which 

results in a heat capacity change over broader temperature range in the cooling cycle [87]. 

Figure 21 displays the second heating cycle and subsequent cooling cycle in the DSC 

thermogram for P4VIm+TFSI-. The thermogram is typical of those observed across the series 
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of poly(4-vinylimidazolium salts). DSC thermograms for all P4VIm+ salts are displayed in the 

Appendix. 

 

Figure 21   DSC scans of P4VIm+TFSI− during heating and subsequent cooling. 

The correspondence of heating-cycle and cooling-cycle data provides significant support 

for the validity of the reported Tg values. Tetrafluoroborate, BF4
−, hexafluorophosphate, PF6

−, 

and hexafluoroarsenate, AsF6
−, comprise a set of complex fluoride anions of increasing size. In 

the 1-ethyl-3-methyl-4-vinylimidazolum polymer set, the heating cycle Tg-mid increased from 

186C to 200C and 213C when the polymer was ion-exchanged to BF4
−, PF6

− and AsF6
−, 

respectively. This result cannot be rationalized on the basis of the change in the ratio of the 

counter-ion charge, q, to the distance between the centers of cations and anions, a. Enhanced 

intersegmental and intramolecular interactions (bridging, by the anion, between imidazolium 

Tg-mid 

45c45o45o45

l45i45n45g 

Tg-mid 

heating cycle 



 

46 

 

moieties position 1,3 or 1,5 along the polymer chain) is likely to be the dominant factor 

governing the Tg increase in this series.  

The 4-vinylimidazolium polymers with TFSI− and C2N3
− anions exhibit the lowest glass 

transition temperatures. The lower glass transition temperatures of these two polymers may be 

a result of plasticization by large solvating anions, which, because of their soft nucleophilic 

character, allows for association between anion and cation over a larger distance. 

Table 1 - Glass transition temperatures of poly(imidazolium salts) 

                   P4VIm+ Salts P1VIm+ Salts 

Anion 

Heating 

cycle 

Tg – mid 

(℃) 

Cooling 

cycle 

Tg – mid (℃) 

Heating 

cycle 

Tg – mid 

(℃) 

Cooling 

cycle 

Tg – mid 

(℃) 

BF4
− 186 178 106 97 

PF6
− 200 180 141 113 

AsF6
− 213 208 122 ----- 

CF3SO3
− 153 140 140 124 

(CF3SO2)2N− 88 63 97 74 

C2N3
− 89 103 105 95 

 

As a complement to our studies of poly(1-ethyl-3-methyl-4-vinylimidazolium salts), the 

glass transition characteristics of corresponding poly(1-vinylimidazolium salts), IUPAC or 

CAS identity being poly(1-ethyl-3-vinylimidazolium), were also evaluated.   

Table 1 displays the results. Heat capacity changes in the cooling cycle, consistent with the 

heating cycle glass transition temperatures, were observed in the BF4
−, PF6

−, CF3SO3
−, TFSI− 
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and C2N3
−. In the AsF6

− salt of the 1-ethyl-3-vinylimidazolium polymer, a heat capacity change 

that can be attributed to the glass transition was not observed in the cooling cycle. 

The first difference of note between the glass transition characteristics of the 1-vinyl- and 

4-vinylimidazolium polymers is that, in spite of the greater free volume required for the 1-ethyl-

3-methyl-4-vinylimidazolium moiety, the glass transition temperatures of the  

4-vinylimidazolium BF4
−, PF6

−, AsF6
− and CF3SO3

− salts are higher than those of the 

corresponding 1-vinylimidazolium salts.  Another difference of note is that, in the  

1-vinylimidazolium polymer set, the glass transition of the BF4
−, PF6

−, AsF6
− series does not 

increase monotonically with increase of anion size. Instead, while the glass transition in this 

series of non-nucleophilic complex fluoride anions increases significantly in going from the 

BF4
− salt to the PF6

− salt, the Tg of the AsF6
− salt is dramatically lower than that of the PF6

− 

salt. This difference, no doubt, results from the fact that lateral overlap of imidazolium moieties 

is greater in the 4-vinylimidazolium polymer family and lesser in the  

1-vinylimidazolium polymer family.  Comparing the PF6
− and AsF6

− salts of the  

1-vinylimidazolium polymer one sees the expected decrease in Tg with increasing anion size. 

The glass transition temperatures of the TFSI− and dicyanamide, C2N3
−, derivatives of the 

1-vinylimidazolium polymer are slightly higher than those for the corresponding 4-

vinylimidazolium salts. As with the TFSI− and C2N3
− salts of the 4-vinylimidazolium polymers, 

the 1-vinylimidazolium salts with soft, polarizable TFSI− and C2N3
− anions exhibit the lowest 

glass transition temperatures.  

Thermal gravimetric analysis of 4-vinyl- and 1-vinylimidazolium polymers 

The comparative thermal gravimetric analysis (TGA) of the triflate polymers, presented 

in Figure 22, show that the 4-vinyl imidazolium polymer has greater thermal stability than the 
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1-vinylimidazolium polymer. The TGA results that were obtained in the present research for 

poly(1-ethyl-3-vinylimidazolium triflate), P1VIm+CF3SO3
−, correspond well with those 

published by Marcilla et al. [88] Under nitrogen, P1VIm+CF3SO3
− suffers extensive mass loss 

at 400oC to 448oC. Significant mass loss in poly(1-ethyl-3-methyl-4-vinylimidazolium triflate), 

P4VIm+CF3SO3
−, occurs in the 467oC to 527oC temperature range. The increased thermal 

stability is apparently due to the difference in the tethering point of the imidazolium ring to the 

polymer back-bone.  The energy required to break the carbon-carbon bond is some 40 kJ/mol 

[89] greater than that required to break a carbon-nitrogen single bond. The modest reduction in 

mass below 400C is due to loss of absorbed moisture.   

 

Figure 22 TGA of P1VIm+CF3SO3− [dashed blue line], and P4VIm+CF3SO3− [solid 

violet line]. 
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5.2.3 Thermal Characteristics of Poly(1-butyl-2,3dimethyl-4-vinylimidazolium salts) 

Glass transition characteristics of poly(1-butyl-2,3dimethyl-4-vinylimidazolium+) Tf−, 

PF6
−, and TFSI− salts were also evaluated by differential scanning calorimetry. Second cycle 

DSC thermograms for the triflate polymer are shown in Figure 23 where plots of change in heat 

capacity in 20°C/min heating and cooling cycles are shown. An auxiliary 40°C/min rapid 

heating cycle, that served to validate the change in heat capacity as the glass transition [87], is 

included in the figure. Comparative TGA plots of poly(1-butyl-2,3-dimethyl-4-

vinylimidazolium triflate) and poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI) and DSC 

thermograms for all poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) are provided in the 

appendix.  

 

Figure 23  DSC scans for P23DMVIm+Tf −: solid blue line (20C/min – heating cycle), 

dotted red line (20C/min – cooling cycle), dashed green line (40C/min – rapid heating 

cycle).  

The appearance of the thermograms for P23DMVIm+Tf −, PF6
−, and TFSI− are similar to 

each other with the heat capacity change around glass transition temperature for all salts in this 

group of 2-methyl imidazolium polymers exhibiting an unexpected “excess enthalpy” peak 
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often seen in aged polymer glasses [90]. The excess enthalpy peak in aged glasses is a result of 

densification of the glass. Extremely rapid aging of the 2-substituted imidazolium polymers is 

unexpected and one might speculate that it is related to the ionic liquid character of these 

polymers and the greater separation between the anion and cation in the 2-substituted polymer 

set. In the heating cycle, the mid and peak glass transition temperatures of the triflate salt are 

98ºC, and 102ºC, respectively. At 99C and 102C, the mid and peak glass transition 

temperatures of the trifluoromethylsulfonylimide salt are virtually identical to those of the 

triflate salt. The heating cycle mid and peak glass transition temperatures for the 

hexafluorophosphate salt are only 84ºC and 90ºC, respectively. The glass transition 

temperatures of all three polymers are thus very close to each other. In light of the substantial 

differences in the glass transition temperatures of the corresponding P4VIm+ salts, the 

proximity in the glass transition temperatures of the poly(1-butyl-2,3-dimethyl-4-

vinylimidazolium) salts is particularly surprising. For comparison, the mid-point glass 

transition temperatures of 1-ethyl-3-methyl-4-vinylimidazolium polymers and 1-butyl-2,3-

dimethyl-4-vinylimidazolium polymers are displayed in Table 2.  

Table 2 - Comparative Tg of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium)  

and poly(1-ethyl-3-methyl-4-vinylimidazolium) salts 

Polymer 

composition 

Triflate TFSI− PF6
− 

P23D4VIm+ P4VIm+ P23D4VIm+ P4VIm+ P23D4VIm+ P4VIm+ 

Heating 

cycle  

mid-point Tg 
98C 153C 99C 88C 84C 200C 

 

As shown in Table 2, the glass transition temperatures for the P4VIm+ salts vary from 

88ºC for the TFSI− salt to 200ºC for the PF6
− salt. Those for P23D4VIm+ salts are between 84C 
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and 98C. In the case of PF6
− and triflate, the glass transition temperatures for the  

2-methylimidazolium polymer salts are substantially lower than those for the corresponding 4-

vinylimidazolium polymers. In the case of the TFSI− salts, the Tg for the two polymers are 

similar. The TFSI− anion is the largest in the set and it is likely that the glass transition in both 

imidazolium TFSI− polymers is not elevated by attractive forces between the anion and cation. 

Given no other molecular factors, it might be expected that, in accordance with historic 

analyses by Eisenberg [79] and Tsutsui and Tanaka [80], the glass transition temperature of an 

ionic polymer would be determined, as delineated in Equation 5.2, by the separation between 

the ionic moieties on the polymer and its counterion. The imidazolium polymers with a methyl 

group at the 2 position of the imidazolium ring, may force steric separation of the cation and 

anion to a degree that dramatically diminishes the contribution of counterion size to the 

equilibrium distance between the center of the anion and cation. Indeed the separation may be 

large enough that the onset of motion of the polymer backbone is decoupled from counterion 

motion.  Figure 24 shows space-filling molecular renderings, created with ChemSketch-3D, of 

1-butyl-2,3-dimethyl-4-vinylimidazolium triflate (B) and  

1-ethyl-3-methyl-4-vinylimidazolium triflate polymer triads (A), wherein the position of the 

triflate anion relative to the 2-position of the imidazolium ring is depicted. 
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 (A) (B) 

  

Figure 24  Space-filling molecular renderings of (A) 1-ethyl-3-methyl-4-vinylimidazolium 

triflate and (B) 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate and polymer triads 

While the proximity of the triflate anion to the imidazolium group is hindered in both 

triads, it is apparent that the 2-methyl substituent in P23D4VIm+ forces the triflate anion to be 

further removed from imidazolium moiety. It may thus be reasonable to attribute the invariance 

in the glass transition of P23D4VIm+ with different anions to steric separation enforced by 

having substituents on the 1, 2, 3, and 4 positions of the imidazolium moiety.  
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Chapter 6  Dielectric Properties of Imidazole Polymers Derived from 

Ionic Liquid 4-vinylimidazolium Monomers 

Dielectric spectroscopy provides simultaneous measurements of dc conductivity and 

molecular relaxation modes.  In broadband dielectric spectroscopy, the dipole moments of 

different materials can be observed at different frequencies. Molecular relaxations of larger 

molecules can usually be observed at lower frequencies. In Figure 25, it can be seen that the 

materials involved in this project, polymers or macromolecules, fall into the frequency regime 

between 1Hz and 1MHz. In this frequency regime different types of relaxation modes can be 

observed and these relaxation modes give us information on different properties of the materials 

tested. 

 

Figure 25 Frequency distribution for different types of molecules in  

Broadband Dielectric Spectroscopy 
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Figure 26  Different types of dipole relaxations in dielectric spectroscopy of polymers 

In Figure 26, the relaxation modes that appear at high frequency are local dipole motions, 

sometimes called β or γ relaxations. This type of dipole motion is related to the mechanical 

properties of the material. At lower frequency one may observe segmental relaxation or α 

relaxation. This type of relaxation is usually related to the dynamic glass transition process which 

reflects the movements of the polymer backbone or large side-groups. At even lower frequency 

one may also observe electrode polarization and ionic conductivity. 

Nakamura et al. have studied the relaxation characteristics of poly(1-ethyl-3-vinyl 

imidazolium trifluoromethylsulfonimide) (PNVIm+TFSI−) in the frequency range of 10 mHz to 

2 MHz, and the temperature range of -90 to 90C by dielectric spectroscopy [91] and dynamic 

mechanical spectroscopy. [92] Three relaxation modes were observed and identified as β, α, and 

EP (electrode polarization). The  relaxation mode, which is observed at low temperature  

(-90 to 0C), was attributed to rotation around the C-N bond that tethers the imidazolium moiety 
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to the polymer main chain. The -relaxation was attributed to ion-pair motion  

(see Figure 27). 

 

Figure 27 Relaxation modes for poly(1-ethyl-3-vinylimidazolium 

trifluoromethylsulfonimide) including ion-pair motion (α mode) , side-chain rotation (β 

mode) and segmental motion (not observed). Anion rotation was observed at very low 

temperature.  

In a subsequent study of viscoelastic and dielectric relaxation behavior of poly(ionic 

liquids). [92]  These workers reported on the influence of counterions on the dynamics of 

poly(1-butyl-3-vinylimidazolium) salts wherein the counterion was tetrafluoroborate (BF4
−), 

hexafluorophosphate (PF6
-), triflate (Tf −), or bis(trifluoromethylsulfonylimide (TFSI−). All 

poly(1-butyl-3-vinylimidazolium) salts also exhibited two dielectric relaxation modes. The 

faster mode derived from side chain rotation, and was independent of the nature of the anion 

and the glass transition, if X− was not bulky.  The slower mode reflected the lifetime of the ion 

pair formed between anion and the cation. Dielectric relaxation modes related to ion-pair 
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relaxation and rotational motions of the TFSI− anion were not observed. No relaxation modes 

were specifically associated with segmental motion of the imidazolium polymer chain. 

In the present research, the dielectric relaxation behavior of a series of ionic liquid polymers 

derived from 1-ethyl-3-methyl-4-vinylimidazolium triflate [P4VIm+ CF3SO3
−, TFSI−, C2N3

−, 

BF4
−, PF6

−, and AsF6
−]; 1-ethyl-3-vinylimidazolium triflate [PNVIm+ TFSI−, C2N3

−, and PF6
−], 

and 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate [P2,3DM4VIm+CF3SO3
−, TFSI−, and PF6

−] 

have been evaluated in the frequency range of 20 Hz to 1x106 Hz and the temperature range of 

30-210C. In three instances, [poly(1-ethyl-3-methyl-4-vinylimidazolium PF6
−), poly(1-ethyl-3-

vinylimidazolium PF6
− and poly(1-ethyl-3-methyl-4-vinylimidazolium BF4

−)] dipolar relaxations 

were analyzed by fitting the dielectric loss, ε′′, using the Havriliak-Negami model, embodied in 

Equation 6.1, with , , , , 0 and s as fitting parameters. Figure 28 shows experimental ε'' vs 

frequency data, the deconvoluted relaxation peaks, and the fit to Havriliak-Negami equation for 

poly(1-ethyl-3-methyl-4-vinylimidazolium PF6
−) (P4VIm+PF6

−) at 90C.   

In order to find crucial information such as the position, shape and dielectric strength of a 

loss peak [93], [94], several model functions have been developed to characterize the dielectric 

spectroscopy of polymers.  Using these methods, the measured information can be extracted and 

the physical properties of the tested polymer samples can be analyzed and compared with 

predictions. Moreover, separation and extraction of overlapping relaxation processes or 

conductivity contributions is possible. [95] Widely accepted model functions include Cole-Cole, 

[96] Cole-Davidson, [97], [98] and the Fuoss-Kirkwood-functions. [99] The most popular 

empirical model function is the Havriliak and Negami function, or HN-function [93], [100] which 

is defined in Equation 6.1: 
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𝜀𝐻𝑁
∗ (𝜔) − 𝜀∞ =

∆𝜀

(1 + (𝑖𝜔𝜏𝐻𝑁)𝛽𝐻𝑁)𝛾𝐻𝑁
                 Equation 6.1 

In Equation 6.1, 𝛽𝐻𝑁  and 𝛾𝐻𝑁 are the fractional shape parameters, with 𝛽𝐻𝑁 > 0 , and 

𝛽𝐻𝑁𝛾𝐻𝑁 ≤ 1 , due to the symmetric and asymmetric broadening of the loss peak. These two shape 

parameters are related to the slopes of 𝑙𝑜𝑔(𝜀′′) versus 𝑙𝑜𝑔 (𝜔). 𝜏𝐻𝑁 is defined as relaxation time, 

related to the peak frequency fp and the shape parameters. [101]  

 

Figure 28  ε'' vs frequency for poly(1-ethyl-3-methyl-4-vinylimidazolium PF6-) at 90 C.  

Points refer to measured data. Solid blue curve is the summation of individual fitted curves 

for the α' and α relaxations and dc conductivity reflecting the best fit to the data.  Dashed 

red curve - deconvoluted α'-relaxation peak (∆ε = 6.4, τ = 1.9×10-3 s, β= 0.83, γ = 0.6); 

dashed blue curve - deconvoluted α relaxation peak (∆ε = 0.18, τ = 3.0×10-6 s, β = 0.74, γ= 

0.86); dashed green line - dc conductivity (σ = 2.1×10-9 S/cm; s = 0.76).  

The frequency of maximum loss, fmax, was most often evaluated directly from plots of tan  

(= ''/') vs frequency. There was excellent correspondence between fmax values obtain from plots 

of tan  vs frequency and fmax values obtained by fitting the dielectric loss, ε′′, using the Havriliak-

Negami model. 
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6.1  Comparison of dielectric characteristics of poly(ionic liquids) 

derived from 4-vinyl and N-vinylimidazolium polymers with no 

substitutent at the 2-position of the imidazolium ring 

Figures 29 (a-f) display dielectric spectra (', '' and tan  versus frequency at 30 - 210C) 

for P4VIm+PF6
− and PNVIm+PF6

−. Figures 29a and 29b show plots of dielectric constant, ', 

versus frequency. Below 150C, the dielectric constant in these two polymers is of the order of 

70 and is substantially invariant with frequency. Above 110C, the dielectric constant increases 

dramatically at frequencies below 105 Hz and is indicative of one or more relaxation processes.  

These relaxation processes are apparent in both the '' and tan  spectra, however, relaxation 

peaks are most clearly resolved in the tan  spectra. In the '' and tan  spectra of PNVIm+PF6
− 

(Figures 29c and 29e) one relaxation mode distinct from that for electrode polarization is 

observed in the temperature range of 30-130C. The single peak in the dielectric spectra of the 

PNVIm+ PF6
- set may correspond to the relaxation that Nakamura assigned as the relaxation 

[91] in PNVIm+TFSI- and attributed to ion-pair motion. [96] 

In the P4VIm+PF6− spectra set, (Figure 29d and 29f) two relaxation modes, distinct from 

that for electrode polarization, are apparent, the -relaxation (observed in the 30-150C 

temperature range) and a new relaxation peak (observed at lower frequency in the 130-210C 

temperature range) that is labeled as '.  
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Figure 29(a) Frequency dependence of dielectric constant, ', of PNVIm+PF6
− . [−blue 

solid, 30C; −red solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 

110C; ---red dashed, 130C; ---green dashed, 150C. 

 

 

Figure 29(b)  Frequency dependence of the dielectric constant, ', of P4VIm+PF6
−. [−blue 

solid, 30C; −red solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 

110 C; ---red dashed, 130C; ---green dashed, 150C; ---purple dashed, 170C; ···blue 

dotted, 190C; ···orange dotted, 210C. 
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Figure 29(c)  Frequency dependence of the dielectric loss, '', of PNVIm+PF6
−. [−blue 

solid, 30C; −red solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 

110C; ---red dashed, 130C; ---green dashed, 150C. 

 

 

Figure 29(d) Frequency dependence of dielectric loss, '', of P4VIm+PF6
−. [−blue solid, 

30C; −red solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 110C; 

---red dashed, 130 C; ---green dashed, 150C; ---purple dashed, 170C; ···blue dotted, 

190C; ···orange dotted, 210C. 
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Figure 29(e) Frequency dependence of tan , of PNVIm+PF6
−. [−blue solid, 30C; −red 

solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 110C; ---red 

dashed, 130C; ---green dashed. 

 

 

Figure 29(f) Frequency dependence of tan , of P4VIm+PF6
−. [−blue solid, 30C; −red 

solid, 50C; −green solid, 70C; −black solid, 90C; ---blue dashed, 110C; ---red 

dashed, 130C; ---green dashed, 150C; ---purple dashed, 170 C; ···blue dotted, 190 

C; ···orange dotted, 210 C. 
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Nakamura [91], [92] has clearly shown that there are additional -relaxation modes in the 

lower temperature regime. In our work, the temperature range examined was 30-230C, and the 

lower temperature -relaxation modes were not accessible. 

Because of its greater asymmetry and higher glass transition temperature, the ' relaxation 

is revealed in P4VIm+PF6
− (but not in PNVIm+PF6

−). At the highest temperatures, 190C and 

210C, the dielectric spectra of poly(4VIm+PF6
−) show a third peak at lower frequency (103-104 

Hz) that, at this time, has neither been labeled, nor attributed to any specific relaxation 

phenomenon.  P4VIm+ polymers, whose glass transition temperatures are lower than that of 

P4VIm+PF6
-, do not show this third lower frequency peak. 

Plots of tan δ versus frequency for P4VIm+C2N3
−, P4VIm+BF4

−, P4VIm+CF3SO3
− and 

P4VIm+TFSI− are displayed in Figures 30, 31, 32 and 33, respectively. Tan δ versus frequency 

plots for these poly(imidazolium) salts, are similar to that for the PF6
− salt in that α and α' 

relaxation peaks were generally observed. 

 
Figure 30 tan δ versus Frequency: P4VIm+C2N3

−. [−black solid, 90 C; ---blue dashed, 

110 C; ---red dashed, 130 C; ---green dashed, 150 C]. 
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Figure 31 tan δ versus Frequency: P4VIm+BF4
−). [−black solid, 90 C; −blue dashed,  

110 C; ---red dashed, 130 C; ---green dashed, 150 C; ---purple dashed, 170 C]. 

 

Figure 32 tan δ versus Frequency: P4VIm+ CF3SO3
−). [−blue solid, 30 C; −red solid, 50 

C; −green solid, 70 C; −black solid, 90 C; ---blue dashed, 110 C; ---red dashed, 130 

C] 
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Figure 33 tan  versus frequency, Poly(1-ethyl-3-methyl-4-vinyl-imidazolium TFSI).   

− red line, 70C −Black line, 90C; −blue line 110C; − green line, 130C. 

The anions that were employed differ in geometry and polarizability.  The triflate salt is a 

classic semi-spherical “hard anion”. TFSI and dicyanamide are soft, polarizable anions. 

Tetrafluoroborate, hexafluorophosphate and hexafluoroarsenate are a family non-nucleophilic 

complex anions derived from Lewis acids with increasing molecular volume. 

In order to garner some insight into the nature of the relaxation peaks, an Arrhenius analysis 

was used as an approximation to allow an estimate of the activation energy to be made. The log of 

the maxima in each relaxation peak in the PF6
− spectra were thus plotted against the reciprocal of 

the temperature, T, in kelvin. Arrhenius plots for the α-relaxation [observed in Figure 29(b) and 

(e)] and the α and α' relaxations [observed in Figure 29(d) and (f)] are presented in Figure 34(a) 

and (b). The plots displayed in Figure 34(a) and (b) include a least squares fit line that, over the 

modest temperature range (303-483 K) at which measurements were taken, is a surprisingly good 

fit to the data.  
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Figure 34 (a)  Frequency-max versus 1/T (K): PNVIm+ PF6
- (, -relaxation, data from tan 

 plots; , -relaxation, data from deconvoluted '' vs frequency plots). Points refer to 

measured data.  Lines are least squares fit to fmax data from deconvoluted '' plots. 

 

 

 

Figure 35 (b)  Frequency-max versus 1/T (K): P4VIm+PF6
− (, -relaxation, from tan ; , 

-relaxation, from deconvoluted ''); P4VIm+PF6
− (, '-relaxation, from tan ).  Points 

refer to measured data.  Lines are least squares fit to fmax data from deconvoluted '' plots. 

 

In a plot of tan δ versus temperature at a fixed frequency, the nature of a relaxation peak can 

sometimes be recognized by the temperature position of peaks. In Figure 36, two peaks can be 
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seen in the tan δ plot of poly(1-ethyl-3-methyl-4-vinylimidazolium PF6
−) and poly(1-ethyl-3-

methyl-4-vinylimidazolium TFSI−) at 20Hz. At this frequency, the relaxation peaks can be 

associated with large-scale, segmental motions of polymer chains. The positions of these two 

relaxation peaks on the temperature axis match the DSC results shown in Table 2.  

 

Figure 36  Tan δ versus temperature for poly(1-ethyl-3-methyl-4-vinylimidazolium PF6
−) 

and Poly(1-ethyl-3-methyl-4-vinylimidazolium TFSI−) at 20Hz. 

Table 3 presents fitting parameters,  (dielectric strength) and 0 (dc conductivity), for the 

 and ' relaxations in P4VIm+PF6
− and P4VIm+BF4

−. The high temperature, low frequency data 

may have large errors in the fit parameters because of the strong conduction effect and weak 

relaxation peak seen there. The ' relaxation is “stronger” than the relaxation in both 

P4VIm+PF6
− and P4VIm+BF4

−. The  values for ' increase with increasing temperature in both 

materials; however, the  process has a much weaker temperature dependence than ', especially 

in P4VIm+PF6
−. The conductivity increases with temperature by several orders of magnitude in 

P4VIm+PF6
−, but only slightly in P4VIm+ BF4

−. In both the  and ' relaxations, the relaxation 
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strength increases with temperature. The increase in relaxation strength with temperature for the 

 and ' relaxations, is not expected for a segmental mode relaxation. The conductivity increases 

with temperature by several orders of magnitude in P4VIm+PF6
−, but increases only slightly in 

P4VIm+ BF4
−. 

Table 3 - Temperature dependence of conductivity, 0, and relaxation strength, Δε, 

for the  and ' processes in P4VIm+PF6
- and P4VIm+BF4

-. 

Polymer T (K) () (') 0 (S/cm) 

4-vinyl PF6 

343 5.1 -- 2.8 E-11 

363 5.7 -- 9.9 E-10 

383 8.0 -- 2.3 E-08 

403 7.3 -- 6.1 E-08 

423 8.1 30 2.0 E-07 

443 7.1 74 4.0 E-07 

463 96 890 1.4 E-06 

4-vinyl BF4 

363 2.4 -- 8.1 E-09 

383 3.2 28 2.9 E-08 

403 2.8 46 4.7 E-08 

423 3.2 51 5.2 E-08 

443 4.8 92 7.1 E-08 

 

Fragiadakis, et al. [102] studied a system of more conventional copolymer ionomers and 

report that large values of the dielectric increment may be associated with ion motion.  Indeed, 

for the ' relaxation,  values range from 30-890 for P4VIm+PF6
− and from 28-92 for 

P4VIm+BF4
−.  Accordingly, the  and ' relaxations are attributed to ion-pair motion, with the 

onset of segmental motion perhaps being correlated with ion-pair motion. Plots of versus 

temperature are shown in Figure 37 (a) and (b). For both polymers, it can be seen from Figure 

37 that the relaxation strength is higher for ' relaxations than that for  relaxations, 

indicating more intensive molecular motions. Additionally, in ' relaxations, the relaxation 

strength appears to be flat until the temperature reaches 440K, then it increases abruptly.  
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(a) 

 

(b) 

Figure 37 (a) Temperature dependence of relaxation strength, Δε, for the (blue) and ' 

(red) processes in P4VIm+PF6
−. (b) Temperature dependence of relaxation strength, Δε, for 

the (blue) and ' (red) processes in P4VIm+BF4
−. 

 

In any discussion of the origin of relaxation peaks in the dielectric spectra of ionic polymers 

one is obligated to consider the possibility of ion aggregation. Ion aggregates would be most 

expected in the triflate system in which the anion is “hard” – not highly polarizable.  Soft anions 
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like TFSI and dicyanamide would be least likely to suffer from ion aggregation. The similarity 

of dielectric spectral characteristics across the series of ion-exchanged P4VIm+ salts leads us to 

discount the impact of ion aggregation and any consequent interfacial polarization peaks. While 

critical X-ray diffraction or viscoelastic studies which could rule out ion aggregation have not 

been carried in our P4VIm+ system, the recent viscoelastic study by Nakamura et al. [91], 

indicating the absence of ion aggregates in poly(1-butyl-3-vinylimidazolium salts), supports the 

probability that ion aggregation is not a factor in any features of the dielectric spectra of P4VIm+ 

salts. 

Activation energies were calculated from the slope of the plots of frequency versus 1/T (K) 

for five 4-vinylimidazolium polymer salts (CF3SO3
−, BF4

−, PF6
−, C2N3

−, and TFSI−). These data 

are presented in Table 4. The activation energy of the -relaxation appears to scale with the glass 

transition temperature, with Ea- being lowest for the TFSI− and C2N3
− salts.  The activation 

energy of the '-relaxation process was variable; however, it was highest in the TFSI− and C2N3
− 

salts and lowest with the CF3SO3
− and BF4

− salts.  The differences between the activation energies 

of the  and ' processes were least pronounced in P4VIm+ PF6
− and P4VIm+CF3SO3

−. The 

activation energies of the  relaxation process in P4VIm+ PF6
− and P4VIm+ C2N3

− are similar to 

those in PNVIm+ PF6
− and PNVIm+C2N3

−. These differences in the apparent activation energies 

of the  and ' relaxation processes may be related to how tightly the anion is coupled to the 

imidazolium cation. 



 

69 

 

Table 4 Ea of  and ' relaxations in P4VIm+ salts 

P4VIm+ 
Ea (KJ/mol),

 relaxation 

Ea 

(KJ/mol),

' relaxation 

Heating 

Cycle Tg -mid, 

C 

BF4
- 72 28 186 

PF6
- 83* 109 200 

CF3SO3
- 40 18 213 

C2N3
- 31† 102 88 

TFSI- 28 141 81 

* Ea of PNVIm+ PF6
- = 107 KJ/mol. 

† Ea of PNVIm+ C2N3
-- = 12 KJ/mol. 

 

In light of the substantial difference in the activation energies of the  and ' relaxations of 

the P4VIm+C2N3
− and P4VIm+TFSI− one might speculate these large soft (highly polarizable) 

anions are not tightly coupled and that the nature of the ion-pair motion associated with  and ' 

relaxations are inverted with the -relaxation being more reflective of ion-pair motion preceding 

segmental motion. 

Agapov and Sokolov [6] have proposed that, in some glass-forming systems, ion diffusion 

can be decoupled from structural relaxation, with the extent of decoupling being characterized by 

the deviation of the temperature dependence of the characteristic structural relaxation time, τ, 

from a simple Arrhenius behavior.  This deviation can be uniquely captured in the fragility index, 

m, (a measure of the steepness of the temperature dependence of τ at the glass transition 

temperature, Tg) [103]. At this juncture, more extensive dielectric relaxation studies over a 

broader temperature range are needed to unequivocally elucidate the molecular origins of the 

relaxation processes and the degree of correlation between anion mobility and the glass transition 

in 4-vinylimidazolium polymer salts. While such measurements are planned, the present work 



 

70 

 

represents a significant body of new data on the glass transition and dielectric relaxation 

characteristics of families of poly(1-ethyl-3-methyl-4-vinylimidazolium) and poly(1-ethyl-3-

vinylimidazolium) salts. 

6.2  Dielectric Properties of Imidazole polymers derived from 

ionic liquid 1-butyl-2,3-dimethyl-4-vinylimidazolium monomers 

The dielectric relaxation characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium 

triflate (Tf−), and trifluoromethylsulfonylimide (TFSI−) were evaluated and compared to triflate 

and TFSI− salts of 1-ethyl-3-methyl-4-vinylimidazolium polymers.  

Figure 38 displays the dielectric storage parameter, ε', versus frequency in log-scale for 

TFSI and triflate salts of 1-butyl-2,3-dimethyl-4-vinylimidazolium and 1-ethyl-3-methyl-4-

vinylimidazolium polymers. The temperature dependence of the ε' for P23D4VIm+TFSI−, 

P23D4VIm+Tf−, and P4VIm+TFSI− is much greater than that for P4VIm+Tf−, [38 (a), (b), (c) and as 

compared to 38 (d)]. This is probably because of the lower glass transition temperatures (see 

Table 2) of these three polymers. The dielectric constant tends to saturate at high frequency for 

all the four polymers. 
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(c) 

 

(d) 

Figure 38  Log-scale ε' versus frequency for (a) poly(1-butyl-2,3-dimethyl-

4vinylimidazolium TFSI−) (b) poly(1-butyl-2,3-dimethyl-4vinylimidazolium triflate) (c) 

poly(1-ethyl-3-methyl-4-vinylimidazolium TFSI−) (d) poly(1-ethyl-3-methyl-4-

vinylimidazolium triflate) 
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Figure 39 (a-d) show plots of the dielectric loss parameter, ε'', versus frequency in log-scale 

for TFSI and triflate salts of 1-butyl-2,3-dimethyl-4-vinylimidazolium and 1-ethyl-3-methyl-4-

vinylimidazolium polymers. Two sets of relaxation peaks are apparent in the dielectric spectra of 

all four ionic liquid polymer salts. The intensity of the relaxation peaks in the P4VIm+TFSI− and 

P4VIm+Tf− spectra is lower than that in the spectra of P23D4VIm+TFSI and P23D4VIm+Tf−. This can 

likely be attributed to the greater relative asymmetry of the tetra-substituted 1-butyl-2,3-

dimethyl-4-vinylimidazolium moiety.  
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(d) 

Figure 39 Log-scale ε'' versus frequency for (a) poly(1-butyl-2,3-dimethyl-

4vinylimidazolium TFSI) (b) poly(1-butyl-2,3-dimethyl-4vinylimidazolium triflate) (c) 

poly(1-ethyl-3-methyl-4-vinylimidazolium TFSI) (d) poly(1-ethyl-3-methyl-4-

vinylimidazolium triflate) 

The maximum frequency of dipolar relaxations in poly(1-ethyl-3-methyl-4-

vinylimidazolium) Tf− and TFSI− was analyzed by fitting the dielectric loss ε′′ using the Havriliak-

Negami model, in Equation (6.1). That for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium)  Tf− 

and TFSI− was taken directly from plots of frequency versus tan δ. 

Figure 40 (a and b)  and Figure 41 (a and b) show comparative plots of tan δ (dissipation 

factor) versus frequency, at temperatures ranging from 30C to 150C, for TSFI− and triflate salts 

of P23D4VIm+ and P4VIm+. Included within the figures are 3-dimensional surface plots [log (tan) 

vs temperature vs log(frequency)] that may be advantageous in visualization of the relative 

intensity of the relaxation processes. In the 3-D surface plots, the highest intensity shows as red, 
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lowest is dark blue; green is intermediate intensity. In all four dielectric spectra, two relaxation 

modes,  and ', analogous to those described in Section 6.1 for P4VIm+ salts, were observed.  In 

the dielectric spectra of the P23D4VIm+ salts, shown in Figure 40, the relaxation peaks are strong 

and clearly delineated.  
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(b) P23D4VIm+Tf − 

  

 
Figure 40 (a and b)Frequency dependence of tan δ for (a) P23D4VIm+TFSI−,  

(b) P23D4VIm+TF −.  Data points of different shape and color connected by solid or dashed 

lines of the same color are measured data at different temperatures: ● blue solid, 40 ºC; ● 

red solid, 50 ºC; ● green solid, 60 ºC; ● black solid, 70 ºC; ■ blue solid, 80 ºC; ■ red solid, 90 

ºC; ■ green solid, 100 ºC; ■ black solid, 120 ºC; ▲blue solid, 130 ºC; ▲red solid, 140 ºC; 

▲green solid, 150 ºC.  The 3-D inset plots show log(tan) vs. temperature vs. log().  The 

highest intensity shows as red, intermediate is green, lowest is dark blue. 

Peaks for the  relaxation process in P23D4VIm+TFSI− nearly span the entirety of the 

frequency space.  Peaks for the '-relaxation process span a smaller range of frequencies and 

overlap the frequencies at which peaks for the  process are observed. Peaks for the  relaxation 

process in P23D4VIm+Tf− appear over a frequency range of 20 Hz – 103 Hz. The positional 

frequency resolution of the relaxation processes in both P23D4VIm+TFSI− and P23D4VIm+Tf − is 

substantive; however, the resolution of the peaks in P23D4VIm+Tf −
 is most pronounced (see 

Figures 40a and 40b).  It should also be noted that the intensity of the relaxation is greater than 

that of the '-relaxation.  The greater positional resolution of the  and ' relaxation processes in 
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P23D4VIm+Tf−, as compared to that in the corresponding TFSI− salt, may be a result of the greater 

dipole moment of the triflate anion, 0.94 e Å (4.52 D), versus 0.13 e Å (0.62 D) for TFSI−. [104] 

Figure 41 (a and b) display plots of frequency versus tan  for P4VIm+TFSI− and P4VIm+Tf−. 

The ' relaxation in P4VIm+TFSI− is more intense and more clearly resolved than the -relaxation; 

with the -relaxation peaks being largely subsumed under the envelope of the '-relaxation process 

(see Figure 41a). The intensity of the relaxation in the dielectric spectra of the P4VIm+Tf− 

(shown in Figure 41b) is greater than that of the ' relaxation.  The peaks for the  and ' 

relaxations in P4VIm+Tf− are not as intense or as clearly resolved as those in P23D4VIm+Tf−.  The 

greater asymmetry of the P23D4VIm+ cation is the likely origin of the greater resolution and 

increased intensity of the relaxation peaks. 
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(b) P4VIm+Tf − 

 
 

Figure 41 (a and b)Frequency dependence of tan δ for (a) P4VIm+TFSI−, and  

(b) P4VIm+CF3SO3
−.  Data points of different shape and color connected by solid or dashed 

lines of the same color are measured data at different temperatures: ● blue solid, 40 ºC; ● 

red solid, 50 ºC; ● green solid, 60 ºC; ● black solid, 70 ºC; ■ blue solid, 80 ºC; ■ red solid, 90 

ºC; ■ green solid, 100 ºC; ■ black solid, 120 ºC; ▲blue solid, 130 ºC; ▲red solid, 140 ºC; 

▲green solid, 150 ºC.   The 3-D inset plots show log(tan) vs. temperature vs. log().  The 

highest intensity shows as red, intermediate is green, lowest is dark blue. 

The  and ' relaxations in P4VIm+Tf− are more discreet that those in P4VIm+TFSI−.  As in 

the case of P23D4VIm+Tf−, the increased resolution in P4VIm+Tf− (see Figure 41b) may be 

related to the greater dipole moment of the triflate anion. Because of the substantial overlap in the 

 and ' peaks, dipolar relaxation of P4VIm+ salts was analyzed, by fitting the dielectric loss ε′′ 

using the Havriliak-Negami model, in Equation. (6.1). Experimental '' vs frequency data, the 

deconvoluted -relaxation peak, and the fit to the Havriliak-Negami equation for P4VIm+Tf− at 

120 C are provided in the Appendix. Excel spreadsheets provide data in five degree increments 

from 30 - 150 ºC.  
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The activation energy of the relaxation processes in the triflate and TFSI− salts of P23D4VIm+ 

and P4VIm+ was estimated from the slope of least squares fit lines in plots of the log of the 

frequency of each relaxation peak versus the reciprocal of the temperature, T, over the temperature 

range (303-423 K) at which measurements were taken.  Arrhenius plots of the and ' relaxation 

processes are presented in Figures 42 (a and b), respectively. In Figure 42 (a), it is apparent that 

the slopes of the plots for P4VIm+TFSI− (black solid circles, ●), P23D4VIm+TFSI−  (red solid 

circles, ●) and P23D4VIm+Tf− (green solid circles, ●) are similar and substantially different from 

that for P4VIm+Tf− (blue solid circles,●). The glass transition temperatures of P4VIm+TFSI−, 

P23D4VIm+TFSI− and P23D4VIm+Tf− are also similar. In Figure 42 (b), the slopes of the lines 

for TFSI salts of P4VIm+ and P23D4VIm+ are similar and differ from those for the triflate salts 

which themselves differ from each other. 
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(b) 

Figure 42  Arrhenius plots for P4VIm+ and P23D4VIm+ with two anions for  

(a) α'- and (b) α- relaxation; the fitting parameters are labeled 

The activation energy for the α relaxation processes, presented in Table.5, ranges from 18-56 

KJ/mol and scales with the glass transition temperatures of the respective salts. The correlation 

coefficients for the fit of the least square lines to the data were 0.86, 0.97, 0.87, and, 0.88 for 

P4VIm+Tf −, P4VIm+TFSI−, P23D4VIm+Tf − and P23D4VIm+TFSI−, respectively.  

Table 5 – Ea of  and ' relaxations in P23DMVIm+ and P4VIm+ salts 

Polymer Anion 

Ea 

(KJ/mol),

 relaxation 

Ea 

(KJ/mol),

' relaxation 

P4VIm+ TFSI− 23 47 

Tf− 56 156 

P23DMVIm+ TFSI− 19 63 

Tf− 18 109 
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The activation energy for the ' relaxation processes of the triflate salts (156 KJ/mol and 109 

KJ/mol) are much larger than those of the TFSI salts (47 KJ/mol and 63 KJ/mol). The correlation 

coefficients for the least square fit to the ' relaxation processes are 0.99, 0.97, 0.94, and, 0.92 for 

P4VIm+ Tf−, P4VIm+TFSI−, P23D4VIm+Tf − and P23D4VIm+TFSI−, respectively. On the basis of 

the activation energies of the  and ' relaxation processes, one might speculate that ion motion 

associated with the  relaxation is closely coupled to segmental motion of the polymer backbone 

and that ion motion associated with the ' relaxation is related to translational motion of the 

counterion and is substantially decoupled from the glass transition. 

The relaxation time, calculated as τ = 1 (2πfmax)⁄ , versus temperature K is also shown in 

Figure 43. 
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(b) 

Figure 43  Relaxation time versus temperature for P4VIm+ and P23D4VIm+ with two 

anions for (a) α'- and (b) α- relaxation 

 

The conductivity of the four polymers was analyzed and extracted from the dielectric data 

using the method shown in Figure 29. The extracted conductivity data are plotted versus 

temperature for three polymers, shown in Figure 44. For all three polymers, the ionic 

conductivity increases with increasing temperature as expected. The ionic conductivity of 

P23D4VIM TFSI and triflate reaches 10-3 mS/cm, which is comparable for the number reported 

in other literatures[1], [73]. For P23D4VIM with two anions, the ionic conductivity increases 

linearly up to about 350K, around their glass transition temperatures, then it saturates.   
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Figure 44  Conductivity versus temperature T 

 

Figure 45 shows plots of tan δ versus temperature at fixed frequency for P23D4VIM and 

P4VIm triflate. For P23D4VIM+triflate one sees a peak at about 100ºC in the low frequency 

(20Hz) plot. This is roughly the glass transition temperature of P23D4VIM+triflate, and indicates 

that this relaxation is coupled to the glass transition process. At 1000 Hz, this relaxation moves 

to about 160C.  Because the glass transition temperature of P4VIm triflate is 153C, maxima are 

pushed to temperatures in excess of 440 K and peaks are no observed.  
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Figure 45 Tan δ versus temperature at fixed frequency for P23D4VIM and P4VIm triflate 
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Summary and Conclusions 

A robust process for the synthesis of 1-ethyl-3-methyl-4-vinylimidazolium triflate (EM-4-

VIm+ CF3SO3
-), was developed. This new monomer was synthesized in a pure, dry (water-free) 

state by direct alkylation of 1-methyl-5-vinylimidazole in CH2Cl2 or ethyl acetate solution with 

ethyl triflate at 0 C.  While the monomer tends to polymerize spontaneously at ambient 

temperature or when exposed to water, it can be stored and handled without polymerization as 

long as it is kept dry in its crystalline state and held at temperatures below 0 C.  EM-4-VIm+ 

CF3SO3
- is readily polymerized with a free-radical initiator; and, the resulting polymer has been 

ion-exchanged to create a family of 4-vinylimidazolium polymers in which the counter-ion 

ranged from BF4
-, PF6

-, and AsF6
- to dicyanamide (C2N3

-), bis-trifluoromethylsulfonamide (TFSI-

), and, triflate (CF3SO3
-).   

This same process was employed in the synthesis of 1-ethyl-3-vinylimidazolium triflate  

(N-VIm+ CF3SO3
-) and its subsequent polymerization and ion exchange.  

The trends in the glass transition characteristics of the various 4-vinylimidazolium and N-

vinylimidazolium polymers were similar; however, the glass transition temperatures of P4VIm+ 

BF4
-, PF6

-, AsF6
-, and, CF3SO3

- salts were significantly higher than those of the corresponding 

poly(N-vinylimidazolium) salts.  This difference and the increase in Tg in going from BF4
- to 

AsF6
- in the 4-vinylimidazolium series was attributed to enhanced intramolecular bridging 

between imidazolium moieties position 1,3 or 1,5 along the polymer chain. 

In the 30-210 C temperature range, the dielectric relaxation spectra of the 4-

vinylimidazolium polymer salts exhibited two relaxation modes.  The N-vinylimidazolium 

polymer salt exhibited only one relaxation mode in that temperature range.  The single mode 
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appears to correspond to the -relaxation peak, assigned to ion-pair motion in PNVIm+ TFSI−, 

by Nakamura et al. [92]  The second relaxation peak, that is apparent at lower frequency in the 

dielectric spectra of the 4-vinylimidazolium polymer salts, was identified in this work as the '-

relaxation and is also associated with ion-pair motion.  Assuming the relaxation processes to be 

Arrhenius in nature, the activation energy of the -relaxation in P4VIm+ BF4
−, PF6

−, CF3SO3
−, 

TFSI− and C2N3
− salts ranged from 83 to 28 KJ/mol.  The activation energy of the -relaxation 

in poly(4-vinylimidazolium TFSI− and C2N3
−) was lowest, ranging from 31 to 28 KJ/mol. The 

activation energy of the -relaxation in P4VIm+ salts appears to scale with the glass transition 

temperature of the various salts.  The activation energy of the '-relaxation in P4VIm+ TFSI- and 

C2N3
−, (141 and 102 KJ/mol), respectively, was dramatically higher than that for the -relaxation 

(28 and 31 KJ/mol, respectively). 

1-butyl-2,3-dmethyl-4-vinylimidazolium triflate was synthesized in a pure, dry (water-free) 

state by direct alkylation of 1-butyl-2-methyl-4-vinylimidazole in CH2Cl2 with methyl triflate at 

0 °C. 2,3D4VIm+Tf 
− was polymerized with a free-radical initiator, and the resulting polymer was 

ion-exchanged to create hexafluorophosphate (PF6
−), and bis-trifluoromethylsulfonimide (TFSI−) 

salts. The glass transition characteristics of the PF6
− and triflate salts of 23D4VIm+ polymers are 

anomalous as compared to those of PF6
− and triflate salts of 4-vinyl and N-vinylimidazolium 

polymers. The invariance in the glass transition of P23D4VIm+ with different anions was 

attributed to steric separation enforced by having substituents on the 1, 2, 3, and 4 positions of 

the imidazolium moiety that dramatically diminishes the contribution of counterion size to the 

equilibrium distance between the center of the anion and cation. Indeed the separation may be 
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large enough that the onset of motion of the polymer backbone is decoupled from counterion 

motion.   

The  and ' relaxations of the triflate salts of P23D4VIm+ and P4VIm+ are more clearly 

resolved than in the corresponding TFSI salts. The  and ' relaxations in P23D4VIm+ CF3SO3
− 

are more clearly resolved than the  and ' relaxations in P4VIm+ CF3SO3
−. On the basis of these 

observations, it is proposed that translational motion of the anions is substantially decoupled from 

the polymer and has little influence on the glass transition in PV23D4Im+triflate and TFSI−, and 

P4VIm+TFSI−.  It is also suggested that translational motion of the anion is reflected in the ' 

relaxation and that, because of its greater dipole moment, this motion is most clearly reflected in 

the dielectric spectra of triflate salts. 
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Appendix 

Comparative thermogravimetric analysis of  

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) 

Thermal gravimetric analysis (TGA) of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) 

triflate and TFSI salts of was carried out under a nitrogen atmosphere with a TA Instruments TGA 

2050. The temperature was increased from 25-600oC at 20 oC/min under a nitrogen atmosphere, 

and then held at 600oC for 10 minutes under an air atmosphere. TGA mass loss profiles for triflate 

and TFSI− salts of poly(1-butyl-2,3-dimethylimidazolium) are shown in Figure S1. The thermal 

stability of the triflate and TFSI− salts is similar.  Significant mass loss in the TFSI− salt occurs 

between 430 and 505 C; that in the triflate salt occurs between 440 and 505 C.  

 

Figure S1 TGA of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate)(red) and poly(1-

butyl-2,3-dimethyl-4-vinylimidazolium TFSI)(blue). 

%
 w

e
ig

h
t

Temperature oC

TGA of poly(imidazolium salts)



 

99 

 

DSC thermograms for N-vinylimidazolium polymers 

Poly(1-ethyl-3-vinylimidazolium) triflate exhibits a heat capacity change in the heating 

cycle that can reasonably be assigned as its onset glass transition temperature, Tg-onset, (128oC). 

In the cooling cycle it exhibits a corresponding heat capacity change at 136oC (see Figure S2).   

The lowest temperatures for heat capacity changes in the family of poly(1-ethyl-3-

vinylimidazolium) salts set were seen at around 90oC for the heating cycle in 

trifluoromethylsulfonylimide (TFSI) (Figure S3) and dicyanamide (Figure S4) salts.  In the 

cooling cycle, there is a 25oC difference, in the temperature for onset of heat capacity change 

(95oC and 120oC) for the TFSI and dicyanamide salts, respectively.  

 

Figure S2 DSC scan of poly(1-ethyl-3-vinylimidazolium triflate) from -50oC to 200oC 
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Figure S3 DSC scan of poly(1-ethyl-3-vinylimidazolium TFSI) from -50oC to 200oC 

 

Figure S4 DSC scan of poly(1-ethyl-3-vinylimidazolium dicyanamide) from -50oC to 200oC 

The DSC thermogram of poly(1-ethyl-3-vinylimidazolium hexafluorophosphate), Figure 

S5, exhibits onset heat capacity changes in the heating cycle at about 130C and 167oC.  In the 

cooling cycle the onset of the change in heat capacity is at about and 138oC. 
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Figure S5 DSC scan of poly(3-ethyl-1-vinylimidazolium hexafluorophosphate)  

from -50oC to 220oC 

The hexafluoroarsenate of the N-vinylimidazolium polymer, Figure S6, exhibits a heat 

capacity in the heating cycle, Tg-onset, at about 121oC. 

 

Figure S6 DSC scan of poly(1-ethyl-3-vinylimidazolium hexafluoroarsenate)  

from -50oC to 200oC 
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The onset heat capacity changes seen for the tetrafluoroborate salt of the N-

vinylimidazolium polymer (Figure S7) occur at about 98oC in the heating cycle and at about 

118oC in the cooling cycle.   

 

Figure S7 DSC scan of poly(3-ethyl-1-vinylimidazolium tetrafluoroborate)  

from -50oC to 200oC 

DSC Thermograms of Poly(1-ethyl-3-methyl-4-vinyl imidazolium 

salts) 

The heat capacity changes seen for the hexafluoroarsenate salt of the 4-vinylimidazolium 

polymer (Figure S8) are at about 206oC in the heating cycle and 234oC in the cooling cycle.   

DSC of poly(3-ethyl-1-vinylimidazolium tetrafluoroborate)

-6

-4

-2

0

2

4

6

8

10

-100 -50 0 50 100 150 200 250

Temperature (
o
C)

H
e

a
t 

fl
o

w
 (

m
W

)

Heating Cycle

Cooling Cycle



 

103 

 

 

Figure S8 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium hexafluoroarsenate) from 

-50oC to 200oC 

The heat capacity changes seen for the triflate salt of the 4-vinylimidazolium polymer 

(Figure S9) are at about 145oC in the heating cycle and 150oC in the cooling cycle. 

The hexafluorophosphate of the 4-vinylimidazolium polymer, Figure S10, exhibits an onset 

heat capacity change in the heating cycle at 187oC and 200oC in the cooling cycle.   
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Figure S9 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium triflate ) from -50oC to 

200oC 

 

Figure S10 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium 

hexafluorophosphate) from -50oC to 200oC 



 

105 

 

The heat capacity changes seen for the trifluoromethylsulfonylimide(TFSI) of the 4-

vinylimidazolium polymer (Figure S11) on the heating cycle is 72oC and the cooling cycle has a 

heat capacity change at 92oC.   

 

Figure S1 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium 

trifluoromethylsulfonylimide ) from -50oC to 200oC 

 

The onset heat capacity changes in the DSC scan for the tetrafluoroborate salt of the  

4-vinylimidazolium polymer (Figure S12) occur at about 178oC in the heating cycle and 198oC 

in the cooling cycle.   



 

106 

 

 

Figure S2 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium tetrafluoroborate ) from -

50oC to 200oC 

In the heating cycle, the onset temperature for heat capacity changes in poly(1-ethyl-3-

methyl-4-vinylimidazolium dicyanamide) occurs at about 73oC.  In the cooling cycle the onset 

temperature is about 114oC. 
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Figure S3 DSC scan of poly(1-ethyl-3-methyl-4-vinylimidazolium dicyanamide)  

from -50oC to 200oC 
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DSC Thermograms of poly(1-butyl-2,3-dimethyl-4-

vinylimidazolium) salts 

Glass transition characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazoliium) triflate, 

hexaflurophosphate and trifluoromethylsulfonylimide salts were also evaluated by differential 

scanning calorimetry. DSC thermograms for the triflate, TFSI and PF6
- salts of the polymer are 

shown in Figure S14, S15 and S16, respectively, where heating and cooling cycles and an 

auxiliary 40°C/min rapid heating cycle displayed.  

 

Figure S4 DSC scans for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate): solid blue 

line (20C/min – heating cycle), dotted red line (20C/min – cooling cycle), dashed green line 

(40C/min – rapid heating cycle).  
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Figure S5 DSC scans for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI): solid blue 

line (20C/min – heating cycle), dotted red line (20C/min – cooling cycle), dashed green line 

(40C/min – rapid heating cycle). 

 

Figure S6  DSC scans for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium PF6): solid blue line 

(20C/min – heating cycle), dotted red line (20C/min – cooling cycle), dashed green line 

(40C/min – rapid heating cycle). 
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H-N Fit for poly(1-ethyl-3-methyl-4-vinylimidazolium triflate) 

The fit to the Havriliak-Negami equation for P4VIm+Tf− at 120 C is shown below. 

 

 

Figure S17  Fitted ε'' versus frequency for poly(1-ethyl-3-methyl-4-vinylimidazolium 

triflate) at 120°C.The black dotted line is the measured data. The pink solid line is the fitted 

data using HN equation. The blue dashed line is the fitted α-relaxation and the red dashed 

line is the fitted α’-relaxation. The green dashed line is the contribution of direct 

conductivity. 
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Principles of Dielectric Spectroscopy 

Dielectric spectroscopy (sometimes called impedance spectroscopy), and also known as 

electrochemical impedance spectroscopy (EIS), measures the dielectric properties of a medium 

as a function of frequency. The concept of electrical impedance was first introduced by Oliver 

Heaviside in the 1880s and was soon afterward developed in terms of vector diagrams and 

complex numbers representation by A.E. Kennelly and C.P. Steinmertz. Since then the technique 

has gained in exposure and popularity, propelled by a series of scientific advancements in the 

field of electrochemistry, improvements in instrumentation performance and availability, and 

increased exposure to an ever-widening range of practical applications. 

It is based on the interaction of an external field with the electric dipole moment of the 

material, often expressed by permittivity. It is also a useful method to characterize 

electrochemical systems. Use of this technique has increased tremendously in recent years and it 

is now being widely employed in probing bio-molecular interactions, fuel cell testing, and 

characterization of electrochemical cells.  

Dielectric spectroscopy measures the impedance of a system over a range of frequencies, 

and therefore the frequency response of the system, including the energy storage and dissipation 

properties, is revealed. Often, data obtained by EIS is expressed graphically in a Bode plot or a 

Nyquist plot. Impedance is the opposition to the flow of alternating current (AC) in a complex 

system. A passive complex electrical system comprises both energy dissipater (resistor) and 

energy storage (capacitor) elements. If the system is purely resistive, then the opposition to AC 

or direct current (DC) is simply resistance. 
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There are a number of different dielectric responses, connected to the way a studied medium 

reacts to the applied field (Figure S18) Each dielectric response is centered around its 

characteristic frequency, which is the reciprocal of the characteristic time of the process. In 

general, dielectric mechanisms can be divided into relaxation and resonance processes. The most 

common, starting from high frequencies, are: 

 Electronic polarization 

This resonant process occurs in a neutral atom when the electric field displaces the electron 

density relative to the nucleus it surrounds. This displacement occurs due to the equilibrium 

between restoration and electric forces. Electronic polarization may be understood by assuming 

an atom as a point nucleus surrounded by spherical electron cloud of uniform charge density. 

 Atomic polarization 

Atomic polarization is observed when the nucleus of the atom reorients in response to the 

electric field. This is a resonant process. Atomic polarization is intrinsic to the nature of the atom 

and is a consequence of an applied field. Electronic polarization refers to the electron density and 

is a consequence of an applied field. Atomic polarization is usually small compared to electronic 

polarization. 

 Dipole relaxation 

This originates from permanent and induced dipoles aligning to an electric field. Their 

orientation polarization is disturbed by thermal noise (which misaligns the dipole vectors from 

the direction of the field), and the time needed for dipoles to relax is determined by the local 

viscosity. These two facts make dipole relaxation heavily dependent on temperature, pressure and 

chemical surrounding. 
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 Ionic relaxation 

Ionic relaxation comprises ionic conductivity and interfacial and space charge relaxation. 

Ionic conductivity predominates at low frequencies and introduces only losses to the system. 

Interfacial relaxation occurs when charge carriers are trapped at interfaces of heterogeneous 

systems. A related effect is Maxwell-Wagner-Sillars polarization, where charge carriers blocked 

at inner dielectric boundary layers (on the mesoscopic scale) or external electrodes (on a 

macroscopic scale) lead to a separation of charges. The charges may be separated by a 

considerable distance and therefore make contributions to the dielectric loss that are orders of 

magnitude larger than the response due to molecular fluctuations. 

 Dielectric relaxation 

Dielectric relaxation as a whole is the result of the movement of dipoles (dipole relaxation) 

and electric charges (ionic relaxation) due to an applied alternating field, and is usually observed 

in the frequency range 102-1010 Hz. Relaxation mechanisms are relatively slow compared to 

resonant electronic transitions or molecular vibrations, which usually have frequencies above 

1012Hz. 
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Figure S18  A dielectric permittivity spectrum over a wide range of frequencies. The real 

and imaginary parts of permittivity are shown, and various processes are depicted: ionic 

and dipolar relaxation, and atomic and electronic resonances at higher energies 
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